ВЛИЯНИЕ СОСТОЯНИЯ ДОРОГИ НА ТЕПЛОВОЙ РЕЖИМ ТОРМОЗА

П.В. Мигаев

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Беларусь

Научный руководитель В.А. Балакин

Исследование посвящено влиянию состояния дороги на тепловой режим работы тормозов легковых автомобилей: BA3-2109; Mazda 626; Mercedes Benz 300D; Fiat Croma; Range Rover; Volvo 780. Расчеты проводились для режима экстренного торможения на горизонтальной дороге (см. рис. 1 на с. 35) с коэффициентами сцепления $\varphi = 0,1$ (обледенелая дорога) и $\varphi = 0,8$ (сухая асфальтовая дорога). Принималось, что начальная скорость торможения автомобиля была равна 90 км/ч.

Сведения о типах тормозов автомобилей приведены в таблице.

Марки автомобилей	Передний тормоз	Задний тормоз
Mazda 626	ДКВ; $h_2 = 6$ мм; $K_{\text{вз}} = 0,194$	ДКС; $h_2 = 6,5$ мм; $K_{\text{вз}} = 0,11$
Merscedes Benz 300D	ДКВ; $h_2 = 6$ мм; $K_{\text{вз}} = 0.135$	ДКС; $h_2 = 7.5$ мм; $K_{\text{вз}} = 0.84$
BA3-2109	ДКС; $h_2 = 5$ мм; $K_{\text{вз}} = 0.125$	Б; $h_2 = 6$ мм; $K_{\text{вз}} = 0,668$
Fiat Croma	ДКВ; $h_2 = 6$ мм; $K_{\text{вз}} = 0.1$	ДКС; $h_2 = 5$ мм; $K_{\text{вз}} = 0.125$
Range Rover	ДКВ; $h_2 = 6$ мм; $K_{\text{вз}} = 0.132$	ДКС; $h_2 = 7.5$ мм; $K_{\text{вз}} = 0.11$
Volvo 780	ДКВ; $h_2 = 6$ мм; $K_{\text{вз}} = 0.16$	ДКС; $h_2 = 6$ мм; $K_{\text{вз}} = 0.164$

Примечание. ДКС — дисково-колодочный тормоз со сплошным диском; ДКВ — дисково-колодочный тормоз с вентилируемым диском; Б — барабанный тормоз; $K_{{}_{\rm B3}}$ — коэффициент взаимного перекрытия трущихся пар; h_2 — толщина диска (барабана).

Средние приращения температур в тормозах со сплошным и «вентилируемым» дисками для случаев экстренного торможения определяются формулой:

$$\vartheta_{2}(\eta_{2}, Fo_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})K_{B3}q_{0}h_{2}}{\lambda_{2}}\Theta'_{2}(\eta_{2}, Fo_{2}) - \frac{(1 - \alpha_{T})K_{B3}q_{0}h_{2}^{3}}{t_{T}\lambda_{2}a_{2}}\Theta''_{2}(\eta_{2}, Fo_{2}),$$

где

$$\Theta'_{2}(\eta_{2}, Fo_{2}) = Fo_{2} - \eta_{2} + \frac{\eta_{2}^{2}}{2} + \frac{1}{3} + \sum A'_{n} \cos[\mu_{n}(1 - \eta_{2})] \times \exp(-\mu_{n}^{2}Fo_{2}),$$

$$\Theta_{2}''(\eta_{2}, Fo_{2}) = \frac{Fo_{2}^{2}}{2} + \frac{Fo_{2}}{3} - Fo_{2}\eta_{2} + \frac{Fo_{2}\eta_{2}^{2}}{2} + \frac{\eta_{2}^{4}}{24} - \frac{\eta_{2}^{3}}{6} + \frac{\eta_{2}^{2}}{6} - \frac{1}{45} - \sum_{n=1}^{\infty} A_{n}'' \cos[\mu_{n}(1 - \eta_{2})] \times \exp(-\mu_{n}^{2}Fo_{2}),$$

$$\eta_2 = \frac{z_2}{h_2}, \text{ Fo}_2 = \frac{a_2 t}{h_2^2}, \ \mu_n = n\pi, \ A'_n = \left(-1\right)^{n+1} \frac{2}{\mu_n^2}, \ A''_n = \left(-1\right)^{n+1} \frac{2}{\mu_n^4}.$$

$$\alpha_{\mathrm{T}} = \frac{K_{_{\mathrm{B3}}}\sqrt{\lambda_{1}c_{1}\rho_{1}}}{K_{_{\mathrm{B3}}}\sqrt{\lambda_{1}c_{1}\rho_{1}} + \sqrt{\lambda_{2}c_{2}\rho_{2}}}, \ K_{_{\mathrm{B3}}} = \frac{A_{a_{1}}}{A_{a_{2}}}, \ q_{0} = 2q_{cp} = \frac{2W_{1}}{A_{a_{1}}t_{T}}, \ q_{cp} = \frac{W_{1}}{A_{a_{1}}t_{T}},$$

Средние приращения температур на поверхности трения (при $\eta_2 = 0$) сплошного тормозного диска равны

$$\vartheta_{2}(0, Fo_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})K_{B3}q_{0}h_{2}}{\lambda_{2}}\Theta'_{2}(0, Fo_{2}) - \frac{(1 - \alpha_{T})K_{B3}q_{0}h_{2}^{3}}{t_{T}\lambda_{2}a_{2}}\Theta''_{2}(0, Fo_{2}). \tag{1}$$

где

$$\Theta'_{2}(0, Fo_{2}) = Fo_{2} + \frac{1}{3} + \sum A'_{n} \cos \mu_{n} \times \exp(-\mu_{n}^{2} Fo_{2}),$$

$$\Theta_2''(0, Fo_2) = \frac{Fo_2^2}{2} + \frac{Fo_2}{3} - \frac{1}{45} - \sum_{n=1}^{\infty} A_n'' \cos \mu_n \times \exp(-\mu_n^2 Fo_2).$$

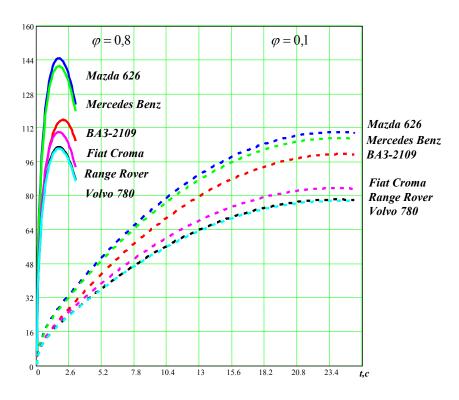
В вентилируемом тормозном диске средние приращения температур при экстренных торможениях определяются из выражений

$$\vartheta_{2}(\eta_{2}, Fo_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})q_{0}K_{B3}h_{2}}{\lambda_{2}}\Theta_{2}^{""}(\eta_{2}, Fo_{2}) - \frac{(1 - \alpha_{T})q_{0}K_{B3}h_{2}^{3}}{t_{T}\lambda_{2}a_{2}}\Theta_{2}^{"}(\eta_{2}, Fo_{2}),$$

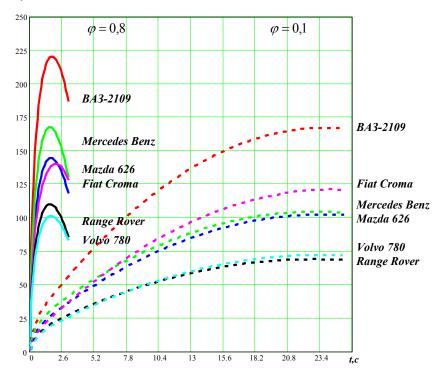
где

$$\Theta_2'''(\eta_2, Fo_2) = 1 - \eta_2 + \frac{1}{Bi_2} - \sum_{n=1}^{\infty} A_n''' \cos(\mu_n \eta_2) \times \exp(-\mu_n^2 Fo_2),$$

$$Bi_2 = \frac{\alpha'' h_2}{\lambda_2}, \ ctg\mu_n = \frac{1}{Bi_2}\mu_n, \ A_n''' = \frac{2(\mu_n^2 + Bi_2^2)}{\mu_n^2(\mu_n^2 + Bi_2^2 + Bi_2)}.$$


На поверхности трения при $\eta_2 = 0$

$$\vartheta_{2}(0, \operatorname{Fo}_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})q_{0}K_{B3}h_{2}}{\lambda_{2}}\Theta_{2}^{""}(0, \operatorname{Fo}_{2}) - \frac{(1 - \alpha_{T})q_{0}K_{B3}h_{2}^{3}}{t_{T}\lambda_{2}a_{2}}\Theta_{2}^{"}(0, \operatorname{Fo}_{2}), \qquad (2)$$


где

$$\Theta_2^{\prime\prime\prime}(0, \text{Fo}_2) = 1 + \frac{1}{Bi_2} - \sum_{n=1}^{\infty} A_n^{\prime\prime\prime} \times \exp(-\mu_n^2 \text{Fo}_2).$$

 $\Delta \mathcal{G}, K$

Puc. 1. Зависимость приращения температур при коэффициенте сцепления с дорогой $\phi = 0.8$ и $\phi = 0.1$

Уравнение (1) и (2) можно переписать в виде

$$\vartheta_{2}(0, \operatorname{Fo}_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})q_{0}K_{\scriptscriptstyle{B3}}h_{2}}{\lambda_{2}} \left[1 - \frac{\Theta_{2}''(0, \operatorname{Fo}_{2})}{\Theta_{2}'(0, \operatorname{Fo}_{2})} \frac{1}{\operatorname{Fo}_{2_{T}}} \right], \tag{3}$$

$$\vartheta_{2}(0, \operatorname{Fo}_{2}) - \vartheta_{0} = \frac{(1 - \alpha_{T})q_{0}K_{B3}h_{2}}{\lambda_{2}} \left[1 - \frac{\Theta_{2}''(0, \operatorname{Fo}_{2})}{\Theta_{2}'''(0, \operatorname{Fo}_{2})} \frac{1}{\operatorname{Fo}_{2_{T}}} \right], \tag{4}$$

где $\text{Fo}_{2_T} = \frac{a_2 t_{\text{T}}}{h^2}$ – число Фурье, соответствующее концу процесса торможения.

При кратковременных однократных торможениях значение теплового потока q_4 мало и $\Theta_2'(0, \text{Fo}_2) \approx \Theta_2'''(0, \text{Fo}_2)$;

 $\lambda_{1,2}$; $C_{1,2}$; $\rho_{1,2}$; $a_{1,2}$ – соответственно теплопроводность, теплоемкость, плотность, температуропроводность фрикционной накладки и диска.

 q_0 – начальная интенсивность фрикционного тепловыделения

При кратковременных однократных торможениях значение теплового потока q_4 мало и $\Theta_2'(0, \operatorname{Fo}_2) \approx \Theta_2'''(0, \operatorname{Fo}_2)$.