УДК 621.311

ИЗУЧЕНИЕ ЗАКОНОМЕРНОСТЕЙ ФОРМИРОВАНИЯ РЕЖИМОВ ЭЛЕКТРОПОТРЕБЛЕНИЯ УЧАСТКОВ НЕФТЕПРОВОДА ДЛЯ ОЦЕНКИ ЦЕЛЕВОГО ПОКАЗАТЕЛЯ ЭНЕРГОСБЕРЕЖЕНИЯ ПРЕДПРИЯТИЙ ТРУБОПРОВОДНОГО ТРАНСПОРТА НЕФТИ

А. С. Фиков, П. М. Колесников

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Беларусь

Для расчета целевого показателя энергосбережения в сопоставимых условиях методикой [1] предусмотрено построение модели режимов электропотребления вида:

$$W = \beta \cdot P_{\text{np}}^{\alpha}, \text{ kBt} \cdot \text{ y/cyt}, \tag{1}$$

где W — суточное электропотребление по участкам нефтепровода, кВт · ч/сут; $P_{\rm np}$ — приведенный суточный грузооборот нефти по участкам нефтепровода, тыс. т · км/сут; α — показатель степени, характеризующий нелинейность взаимосвязи между энергозатратами и приведенным грузооборотом нефти; β — коэффициент пропорциональности между энергозатратами и приведенным грузооборотом нефти.

Коэффициенты регрессии α и β характеризуют не только взаимосвязь энергозатрат и приведенного грузооборота нефти, но и усредненное состояние системы нефтепровода в целом (конфигурация нефтепровода, текущие характеристики насосных агрегатов, физические свойства нефти и т. д.). Поскольку показатель степени α участвует в приведении в сопоставимые условия энергозатрат отчетного периода с базисным периодом, то выявление закономерностей формирования данного параметра является актуальной задачей.

Как и режимы электропотребления участка нефтепровода, показатель α формируется под влиянием двух основных элементов системы нефтепровода: насосные агрегаты (НА), линейная часть. Соответственно изменение показателя α возможно как при неизменном составе насосных агрегатов (за счет изменения характеристики сети), так и при неизменной характеристики сети (за счет изменения состава НА).

Рассмотрены режимы электропотребления участков нефтепровода НРУПТН «Дружба» и на основе аналитических зависимостей показано, что показатель степени α при неизменной характеристике сети в среднем составляет 2,73, а при неизменном составе НА среднем составляет 0,454. На практике за отчетный промежуток времени (целевой показатель энергосбережения рассчитывается ежемесячно) режимы электропотребления многократно меняются как за счет изменения характеристики сети, так и за счет смены состава НА. При этом показатель степени а теоретически может принимать значения от 0,454 до 2,73. Однако следует учитывать вероятностную природу формирования режимов электропотребления, а так же технологическую незавершенность участков нефтепровода. В силу данных причин действительный диапазон значений показателя степени а оказывается несколько шире. Следует отметить, что фактические значения а близкие к 0,5 свидетельствуют о достаточно редкой смене состава НА (или смене состава НА имеющих одинаковые наружные диаметры рабочих колес); значения а близкие к 2,75 свидетельствуют о постоянном имении производительности нефтепровода за счет смены состава НА.

130 Секция Г. Приборы и системы автоматического управления

Литература

1. Методика расчета целевого показателя энергосбережения для предприятий транспорта нефти в сопоставимых условиях. — Минск: Белорусский государственный концерн по нефти и химии «Белнефтехим», 14 июня 2005 г. — 31 с.