РАЗРАБОТКА СОСТАВОВ И МЕТОДИКИ ФОРМИРОВАНИЯ ФУНКЦИОНАЛЬНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С ИСПОЛЬЗОВАНИЕМ МИКРОВОЛНОВОЙ ЭНЕРГИИ

А. В. Павленок

Гомельский государственный технический университет имени П. О. Сухого, Беларусь

Научный руководитель А. А. Бойко

Разработка новых и совершенствование существующих методов получения высокодисперсных оксидов является важнейшей составной частью современных исследований в области неорганического синтеза и создания новых материалов. Одним из наиболее приоритетных направлений в изучении данного вопроса является синтез наноматериаллов в СВЧ поле. В настоящее время в мире интенсивно ведутся исследования в области применения СВЧ-излучения для проведения различных химических реакций, термохимических процессов и высокоэффективных энергосберегающих микроволновых технологий. Возможности значительного сокращения затрат открывает применение технологий, в основе которых заложено воздействием электромагнитного излучения СВЧ диапазона на твердые, жидкие или газообразные среды [1]. При традиционных способах нагрева и сушки (конвективном, радиационном и контактном) нагрев объекта происходит по поверхности. Если теплопроводность объекта низка, что имеет место у диэлектриков, то термообработка объекта происходит медленно, с локальным перегревом поверхности нагрева, отчего возможно подгорание этой поверхности, возникновение внутренних механических напряжений.

СВЧ лабораторные установки в области органического синтеза принесли фантастические результаты. Значения скоростей некоторых реакций в условиях СВЧ возрастают примерно в 20–30 раз и более. Многие неорганические вещества (оксиды, сульфиды, карбиды, некоторые кислородосодержащие соли) способны интенсивно поглощать СВЧ и при этом со скоростью более 100 град/мин разогреваться до температуры 1000 °С и выше, что используют при синтезе различных неорганических материалов, в том числе и высокотемпературных сверхпроводников [2]. Достоинство такого метода состоит в том, что удается избежать неконтролируемого изменения состава исходной шихты и осуществить равномерное спекание по всему объему. С использованием СВЧ удается быстро синтезировать неорганические соединения как оксидные фазы, так и нитриды, карбиды.

Рассмотрение вопроса о СВЧ нагреве и синтезе материалов приобретает все больший интерес в научных кругах. Следует отметить, что использование различных методик применения данных технологий значительно ускоряет множество процессов получения материалов, это связано с природой проникновения и распределения микроволновой энергии по всему объему облучаемого вещества. В ходе изучения данной проблемы немаловажным аспектом является использование дорогостоящего оборудования. Этим оборудованием являются промышленные микроволновые печи высокой частоты и мощностью выше 6 кВт.

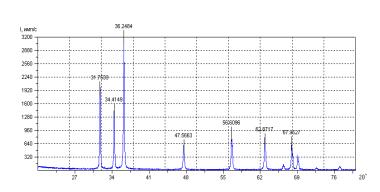

Нами рассмотрена возможность применения СВЧ печи бытового образца с мощностью до 0,8 кВт и рабочей частотой 2,47 ГГц, что существенно снижает энергозатраты. Основным условием использования данной технологии (технологии обработки СВЧ излучением) является возможность поглощения СВЧ волн синтезируемым материалом. В связи с этим встает вопрос о разработке специальной оснастки для СВЧ метода, которая будет применяться для материалов с низким коэффициентом поглощения микроволновой энергии. Для решения поставленной задачи разработана методика получения композитного контейнера (рис. 1), за основу взята технология получения оболочковых форм.

Рис. 1. Контейнер поглотитель

Применение КП как оснастки для синтеза нанопорошка ZnO. Для проверки эффективности работы разработанного контейнера нами синтезирован порошок оксида цинка.

Смешиваем 11,75 г $Zn(NO_3)_3 \cdot 6H_2O$, XЧ, ГОСТ 5106-77; добавляем 2-6 г сахарозы (ТУ 9197-114-54904577-04) и 50-80 мл дистиллированной воды. Размешиваем до полного растворения сухой массы. Полученный золь помещаем в контейнер и ставим в СВЧ печь на 10 мин. Под воздействием электромагнитных волн происходят термохимические реакции, в результате которых формируется нанодисперсный порошок ZnO белого цвета.

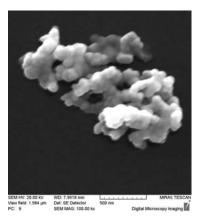


Рис. 2. Дифрактограмма нанопорошка ZnO

Рис. 3. Снимок растрового микроскопа (ZnO)

Результаты эксперимента. Порошок, полученный в результате синтеза, был исследован на ДРОН-7, дифрактограмма (рис. 2) полученного порошка подтверждает, что материал является оксидом цинка. Снимок растрового микроскопа (рис. 3) подтверждает, что порошок наноструктурированный с размером частиц около 70 nm.

Литература

- 14. Многообразие наномира ZnO. [Электронный ресурс] Режим доступа: http://www.nanometer.ru/2007/09/15/nanomaterial_4313.html— Дата доступа: 04.05.2009.
- 15. Мамонтов А.В. Разработка и исследование СВЧ устройств для термообработки диэлектрических материалов. Диссертация на соискание ученой степени кандидата технических наук. Москва. 2005.