ИССЛЕДОВАНИЕ УТЕЧЕК ЖИДКОСТИ В ПОРШНЕВЫХ ПАРАХ ГИДРОМАШИН

Н. Н. Михневич, А. В. Михневич

Гомельский государственный технический университет имени П. О. Сухого, Беларусь

Во многих гидравлических машинах конструктивно необходимы малые зазоры, без которых невозможна их нормальная работа. Однако наличие зазоров ведет к неизбежным утечкам рабочей жидкости, что сказывается на важных эксплуатационных характеристиках гидромашин. Кроме того, течение жидкости в малых зазорах обладает качественным своеобразием и может существенно отличаться от расчетного.

В работе приведены результаты исследования течения гидравлических жидкостей в радиальных зазорах поршневых пар на экспериментальной установке, моделирующей как статические, так и динамические условия работы поршневой пары. Установка содержит насос с гидравлическим мультипликатором, позволяющим получать давление до 120 МПа. Возвратно-поступательные (осциллирующие) движения штока создавались специальным виброприводом.

Анализ полученных экспериментальных результатов показывает закономерное нарастание величины утечек при увеличении давления до некоторого определенного предела. В опытах с неподвижным штоком с некоторых значений давления (20–50 МПа) происходит резкое уменьшение величины утечек и последующее их более медленное нарастание с иной закономерностью. При увеличении радиального зазора в поршневой паре значение максимума утечек, с которого начинается резкое их уменьшение, смещается в сторону более высоких значений рабочего давления.

Расчет течения рабочей жидкости, в частности утечек, в поршневых парах гидромашин основан на закономерностях классической ньютоновской гидродинамики. Теоретические (расчетные) результаты удовлетворительно согласуются с экспериментальными результатами только до определенных значений давления. При дальнейшем увеличении давления наблюдается аномальное поведение жидкости, выраженное в резком уменьшении утечек через радиальный зазор, исследованной в статических условиях поршневой пары. При увеличении зазора закономерность ньютоновской гидродинамики сохраняется до более высоких давлений.

Обнаруженные явления при течении жидкости в малых зазорах поршневых пар могут быть объяснены явлением облитерации малых зазоров.

При осциллирующих движениях штока аномальных изменений утечек жидкости через зазоры поршневых пар не обнаружено. Осциллирующие движения штока приводят к разрушению облитерационных (упорядоченных надмолекулярных) структур. В этом случае течение жидкости в радиальном зазоре поршневой пары удовлетворительно согласуется с закономерностями ньютоновской гидродинамики во всем исследованном диапазоне давлений.

Обнаружено, что при достижении давления, примерно соответствующего аномальному изменению утечек в статических условиях, потребляемая вибратором мощность резко возрастает, что свидетельствует о необходимости дополнительного подвода энергии на разрушение образующихся облитерационных структур.

Обнаруженные явления резкого уменьшения утечек и увеличения потребляемой мощности на преодоление трения в поршневых парах необходимо учитывать при проектировании современных гидромашин и гидростатических устройств высокого давления.