РАЗРАБОТКА СВЕТИЛЬНИКОВ НА ОСНОВЕ СИС ДЛЯ Ж/К СЕКТОРА

Е. В. Соболев

Гомельский государственный технический университет имени П. О. Сухого, Беларусь

Научный руководитель Л. И. Евминов

Цель работы. Исследование возможных путей экономии электроэнергии в осветительной сети ж/к сектора.

Разработка светильников на основе светодиодных источников света (СИС) для ж/к сектора.

Из объектов жилищно-коммунального сектора перспективными, с точки зрения использования светильников со светодиодами (СД) в настоящее время могут быть те, в которых действующими нормативными документами установлены сравнительно низкие уровни освещенности при отсутствии требований к качеству цветопередачи или невысоком уровне этих требований.

К таким объектам можно отнести:

- лифтовые холлы;
- лестничные площадки;
- поэтажные коридоры.

Анализ существующей системы освещения ж/к сектора на примере жилого девятиэтажного дома представлен в табл. 1, где объектами исследования выступали поэтажные коридоры, лифтовые холлы, лестницы и лестничные площадки жилого дома.

Таблица 1

Анализ существующей системы освещения

Объект исследования	Освещенность, лк	Освещенность согласно СНБ 2.04.05-98, лк	Потребляемая мощность (по дому), Вт
Лифтовые холлы	19 ± 12	20	125
Лестничные площадки	11 ± 9	10	200
Поэтажные коридоры	14 ± 10	20	2700
		Pcym =	3,025 кВт

Как видно из табл. 1 освещенность исследуемых объектов не соответствует нормам, следовательно, можно выделить две задачи:

- 1. Приведение освещенности поэтажных коридоров, лифтовых холлов и лестничных площадок жилого дома к нормам согласно СНБ 2.04.05-98.
 - 2. Экономия электроэнергии за счет внедрения светильников на основе СД.

В качестве исходных данных примем характеристики СД HPL-H77FSICO:

Таблица 2

Основные характеристики СД HPL-H77FSICO

Сила света, мкд	30000	
Световой поток, лм	90	
Потребляемая мощность, Вт	3	
Угол свечения, °	120 ± 5	

Произведем расчет необходимого количества светодиодов для обеспечения необходимого уровня освещенности согласно СНБ 2.04.05-98 для каждого из исследуемых объектов. Результаты расчета представлены в табл. 3.

Таблица 3

Расчет количества СД для обеспечения норм согласно СНБ 2.04.05-98

Объект исследования	Освещенность СНБ 2.04.05-98, лк	Количество светодиодов, шт.	Потребляемая мощность, Вт	Потребляемая мощность (по дому), Вт
Лифтовые холлы	20	2	6	30
Лестничные площадки	10	2	6	30
Поэтажные коридоры	20	8	24	1080
			Pcym =	1,14 кВт

Как видно из табл. 1 и 3, при использовании СД для освещения ж/к сектора, происходит снижение потребляемой мощности в 2,65 раз.

Согласно табл. 3, разрабатываем светильники для каждого из исследуемых объектов.

Лифтовые холлы. Светильник лифтовой типа СВО

Технические характеристики:

Напряжение питания: ~220 В.

Мощность потребления светильника: не более 4 Вт.

Оптическая система:

1 светодиод (сила света 30 кд).

Цвет свечения – теплый белый.

Установка:

Светильник монтируется в потолок лифтовой кабины.

Экспериментальная кривая силы света светильника типа СВО представлена на рис. 1.

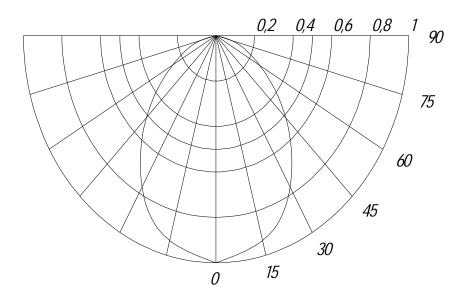


Рис. 1. Экспериментальная кривая силы света светильника типа СВО

Поэтажные коридоры. Модернизация светильника ПСХ

Технические характеристики:

Напряжение питания: ~220 В.

Мощность потребления светильника: не более 7 Вт.

Оптическая система:

2 светодиод (сила света 30 кд).

Цвет свечения – теплый белый.

Установка:

Тип крепления светильника – настенный.

Лестничные площадки. Светильник коридорный типа СБО

Технические характеристики:

Напряжение питания: ~220 В.

Мощность потребления светильника: не более 13 Вт.

442 Секция XI. Современные проблемы энергосбережения

Оптическая система:

4 светодиод (сила света 30 кд).

Цвет свечения – теплые белый.

Установка:

Тип крепления светильника – настенный.

Производим расчет сметной стоимости электромонтажных работ и сроки окупаемости при реконструкции жилого дома. Результаты расчета представлены в табл. 4.

Таблица 4

Реконструкция жилого дома

Наименование оборудования	Количество, шт.	Цена, руб.	Всего, руб.
Светодиод	380	9000	3 420 000
Выпрямитель	55	10000	550 000
Стоимость оборудования	Итого	K	3 970 000
Монтаж оборудования	15 % от К	$K1 = 0.15 \cdot K$	595 500
Стоимость мероприятия		$K_M = K + K1$	4 565 500
Снижение мощности, кВт		ΔP	1, 885
Экономия э/э, тыс кВт · ч		ΔW	16 512,6
Экономия платы за э/э		ΔИw	2 536 137,82
Статический срок окупаемости, год			1,80
Динамический срок окупаемости, год			2,08