МОДЕЛИРОВАНИЕ ВЕНТИЛЬНО-ИНДУКТОРНЫХ ДВИГАТЕЛЕЙ

В. Н. ГАЛУШКО

Учреждение образования «Белорусский государственный университет транспорта», г. Гомель

Т. В. АЛФЕРОВА, С. И. БАХУР, А. А. АЛФЕРОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого» Республика Беларусь

Введение

Вентильно-индукторные двигатели (ВИД) имеют ряд достоинств, позволяющих считать их наиболее перспективными электромеханическими преобразователями:

1) бесконтактность и отсутствие узлов, требующих обслуживания (нет щеточноколлекторного узла и контактных колец). В связи с этим повышается ресурс и надежность электропривода, упрощается эксплуатация двигателя;

2) вентильная коммутация тока в обмотках допускает значительное напряжение между выводами – до нескольких тысяч вольт;

 широкие возможности по регулированию выходных показателей электропривода (возможность оптимизации режимов работы при изменении скорости и нагрузки) при относительной простоте реализации системы управления;

4) большая перегрузочная способность по моменту;

5) высокие энергетические показатели (КПД и соз ф).

Основными недостатками ВИД являются:

– повышенный уровень шумов и вибраций, возникающих из-за резонансных явлений частей при частотах первой и высших гармоник тока фаз [1]. Вторым источником шумов и вибраций являются ударные колебания частей ВИД, возникающие благодаря наличию разрывов производных токов фаз и производных индуктивностей фаз по углу поворота ротора, если в этот момент токи фаз не равны нулю. Особенно сильно это проявляется, если эти разрывы совпадают по времени [2];

- высокие пульсации момента;

– большие потери мощности в магнитопроводе и обмотках вентильно-индукторных двигателей, которые возникают благодаря наличию токов Фуко, гистерезису и скинэффекту и особенно сильно проявляются при большом числе полюсов ротора и высоких частотах вращения.

С целью снижения влияния указанных недостатков, а также повышения надежности и КПД ВИД предлагается использовать математическое моделирование механической, магнитной, электрической систем, выполнять тепловой расчет проектируемых электрических машин, апробируя полученные результаты с исследуемыми характеристиками действующих ВИД.

Основная часть

При проектировании ВИД был выполнен анализ существующих методик и предлагаемых алгоритмов расчета. Существует несколько вариантов расчета массогаба-

ритных характеристик индукторных машин. В источниках [3], [4] предлагаются алгоритмы, предполагающие в процессе выполнения расчетов произвольное принятие ряда величин (значений коэффициентов). Это приводит к расхождению конечных результатов при абсолютно одинаковых исходных данных. Одним из критериев правильности полученного значения промежуточных величин является сравнение их с накопленной базой данных существующих ВИД.

Алгоритм расчета ВИД включает расчет нелинейных характеристик с применением интерполяции и аппроксимации, позволяет получить значения не только геометрических размеров статора и ротора, но и ряд магнитных и электрических характеристик, а также величины углов, определяющих порядок коммутации фаз. Исходными данными являются: номинальная мощность $P_{\rm H}$, номинальное напряжение инвертора U_d , номинальная частота вращения $\Omega_{\rm H}$, число фаз *m*, число пар полюсов по первой гармонике поля p_1 , внешний диаметр статора D_a , максимальная частота вращения Ω_{max} , номинальный КПД η_{HOM} , число пазов на полюс и фазу для первой гармоники поля q_1 . Произвольно принимаемыми величинами являются: отношение высоты ярма статора k_{has} и высоты зуба статора k_{hzs} к ширине зуба статора β_s ; величина воздушного зазора δ , номинальное напряжение питания инвертора U_d , падение напряжения в вентиле $U_{\rm B}$, длина сердечника I_{δ} , число витков в катушке W_k , падение напряжения на активном сопротивлении обмотки ΔU_R , коэффициент заполнения сердечника сталью k_c , действующее значение плотности тока в катушке *j*_k, индукция и частота при определении потерь В_и и f_и, коэффициенты, учитывающие увеличение потерь в стали ярма и зубцов ВИД вследствие влияния технологических факторов k_{da} и k_{dz} . В процессе выполнения расчетов предварительно принимаются заведомо неточные значения номинального КПД $\eta_{\text{ном}}$, а также высоты зуба h_{zr} и ярма ротора h_{ar} .

Промежуточными проверочными значениями являются: соотношение максимальной ширины паза ротора и ширины зуба статора $b_{nr_max} > b_{zs}$; соотношение минимальной ширины паза статора и ширины зуба ротора $b_{ns_min} > b_{zr}$; границы токового диапазона катушки; амплитудное значение индукции в зубце статора; коэффициент заполнения паза медью.

Выполнение расчета предполагает цикличность. Выполнив вычисления до какого-то значения, необходимо сравнить полученный результат с контрольной цифрой или диапазоном. Если результат сравнения неудовлетворительный, то осуществляется возврат на предыдущий этап, корректируются исходные данные и расчет повторяется. Данное обстоятельство не позволяет оперативно производить расчеты, так как необходимо изменять не один параметр, а иногда все произвольно принимаемые. При этом однозначно определить параметр, требующий изменения, довольно сложно. Еще более непредсказуемо влияют на конечный результат изменения нескольких параметров одновременно.

В работе авторы выполнили сравнение различных методов расчета с целью их дополнения и объединения в некоторых пунктах. Задача по созданию алгоритма, который бы учитывал нелинейность характеристик и выполнял поиск наиболее эффективных решений с точки зрения повышения надежности и КПД, является актуальной.

На первом этапе выполнения расчетов определяются геометрические размеры элементов ВИД. Если в исходных данных не указаны размеры корпуса, то при выполнении расчетов возникают сложности с определением внешнего диаметра актив-

ной части статора D_a , т. е. определением соотношения высоты ярма корпуса h_{ak} и высоты ярма активной части статора h_{as} . Данное соотношение зависит от мощности, размеров и принятого способа охлаждения ВИМ. Наиболее широко применяемым способом охлаждения электрических машин является воздушный. При воздушном способе охлаждения высоту ярма корпуса целесообразно делать наименьшей с целью улучшения теплообмена между активной частью статора и окружающей средой. Минимальное значение h_{ak} ограничивается прочностными характеристиками, которые в свою очередь определяются материалом корпуса. Маломощные и малогабаритные ВИД могут изготавливаться без внешнего корпуса, функции которого у них выполняет активная часть статора. У ВИД, имеющих большие мощности, применяется жидкостный способ охлаждения с принудительной циркуляцией теплоносителя. Для подвода охлаждающей жидкости в корпусе статора необходимо расположить каналы. Для этого потребуется увеличить высоту ярма корпуса статора h_{ak} .

Авторами был выполнен аналитический расчет конструкции и характеристик тягового вентильно-индукторного двигателя мощностью 75 кВт (ВИД-75). Данный электродвигатель имеет жидкостную систему охлаждения. У ВИД-75 высота ярма корпуса статора h_{ak} и высота ярма активной части статора h_{as} примерно равны. При попытке выполнения расчета ВИД-75 по методике, предлагаемой в [4], было установлено отсутствие рекомендаций или указаний по определению значения высоты ярма корпуса статора h_{ak} (рис. 1).

Рис. 1. Поперечное сечение ВИД

Согласно [4] внутренний диаметр активной части статора (расточки статора) определяется по выражению (1):

$$D_i = \frac{D_a}{1 + 2(k_{has} + k_{hzs}) \cdot \sin\left(\frac{\beta_s}{2}\right)},\tag{1}$$

где D_a – внешний диаметр активной части статора; k_{has} – коэффициент, равный отношению высоты ярма активной части статора к ширине зубца статора; k_{hzs} – коэффициент, равный отношению высоты зубца статора к ширине зубца статора; β_s – угловое значение ширины зубцов статора.

Данное выражение позволяет выполнить расчет при известном значении внешнего диаметра активной части статора. Но при заданном значении внешнего диаметра корпуса статора $D_{\rm BH,K}$ и отсутствии данных о значении $D_{\rm a}$ выражение (1) использовать невозможно. Для выполнения расчета в выражении (1) необходимо вместо $D_{\rm a}$ использовать $D_{\rm BH,K}$ и ввести дополнительно коэффициент, который бы позволял учитывать соотношение размеров ярма активной части статора $h_{\rm as}$ и ярма корпуса статора $h_{\rm ak}$. Тогда выражение примет вид:

$$D_i = \frac{D_{\text{\tiny K.BH}}}{1 + 2(k_{has} + k_{hzs} + k_{hak}) \cdot \sin\left(\frac{\beta_s}{2}\right)},\tag{2}$$

где $D_{\kappa,\text{вн}}$ – внешний диаметр корпуса статора; k_{hak} – коэффициент, равный отношению высоты ярма корпуса статора к ширине зубца статора. Величина коэффициента должна находиться в пределах $0 < k_{hak} < k_{has}$.

Выражение (2) позволяет учитывать или задавать высоту ярма корпуса проектируемого ВИД исходя из предполагаемых мощности, размеров и способа охлаждения.

При определении угловых значений ширины зубцов статора β_s и ротора β_r используются выражения:

$$\beta_s = 0.45t_{zs},\tag{3}$$

где *t*_{zs} – зубцовое деление статора;

$$\beta_r = 0.45t_{zr},\tag{4}$$

где t_{zr} – зубцовое деление ротора.

Коэффициенты 0,45 и 0,5, соответственно, указываются для всех ВИД без учета их конфигурации. В то же время в [3] имеются различия данных коэффициентов для разных конфигураций ВИД. При выполнении расчета ВИД-75 в выражениях (3) и (4) были приняты коэффициенты 0,5 и 0,534, соответственно. Это позволило получить результаты вычислений, соответствующие реальным размерам с погрешностью менее 1 %. При определении угловых значений ширины зубцов статора β_s и ротора β_r в выражениях (3) и (4) целесообразно использовать значения коэффициентов, приведенные в таблице.

Значения коэффициентов для определения угловых значений ширины зубцов ВИД

Число фаз, <i>т</i>	Конфигурация ИМ	Коэффициент для определения угловых значений ширины зубцов ВИД	
		статора	ротора
3	6/4	0,45–0,5	0,5–0,534
3	12/8	0,45–0,5	0,5–0,534
4	8/6	0,45-0,466	0,5-0,51

При определении характеристик катушки фазы предполагается произвольное принятие числа витков W_{κ} с последующим циклическим выполнением расчета с периодическим возвратом на этап изменения числа витков. Согласно [4] количество витков катушки фазы W_{κ} находится по выражению

$$W_{\kappa} = \frac{Jk \cdot 0.5S_{ss}}{I_{s\phi}},\tag{5}$$

где J – плотность тока в катушке ($J = 7-10 \text{ А/мм}^2$); k – коэффициент заполнения паза статора медью (k = 0,35-0,45); S_{ss} – площадь сечения паза статора; $I_{9\phi}$ – действующее значение тока на выходе инвертора.

Авторами предложено на этапе принятия числа витков использовать выражение (5) задавшись значениями плотности тока в катушке J и коэффициента заполнения паза медью k. Это позволит сократить число циклов при последующем определении характеристик катушки фазы, а следовательно, повысить защиту расчета механической системы ВИД от ошибочных решений на стадии проектирования.

При выполнении расчета по [4] не предполагается нахождение массы всего ВИД. Вместо этого выполняется расчет масс активных частей, т. е. массы электротехнической стали статора и ротора и массы меди катушки. В то же время масса вала ротора, корпуса и крышек статора и других элементов, выполненных из неэлектротехнических материалов, не рассчитывается. Неполное нахождение массы ВИД не позволяет объективно судить о его характеристиках и производить тепловой расчет. С целью устранения данного недостатка авторами предложено дополнить алгоритм расчета. Так, для определения полной массы статора необходимо дополнительно рассчитать массу корпуса статора m_{ks} и массу подшипниковых крышек m_{kp} . Для определения

*m*_{ks} предлагается использовать выражение

$$m_{ks} = \frac{\pi \left(D_{\rm BH,\kappa}^2 - D_{\rm a}^2 \right) l_s \rho_{\rm M,\kappa}}{4},\tag{6}$$

где $D_{\rm BH,K}$ – внешний диаметр корпуса статора; $D_{\rm a}$ – внутренний диаметр корпуса статора; l_s – длина корпуса статора; $\rho_{\rm M,K}$ – удельная плотность материала корпуса статора.

Массу подшипниковых крышек *m*_{кр} можно найти по выражению

$$m_{\rm kp} = \frac{\pi \left(D_{\rm BH,K}^2 - d_0^2 \right) 2 l_{\rm kp} \rho_{\rm M, kp}}{4},\tag{7}$$

где $D_{\rm BH,K}$ – внешний диаметр корпуса статора; d_0 – диаметр вала ротора; $l_{\rm kp}$ – длина крышки статора; $\rho_{\rm M,kp}$ – удельная плотность материала крышек статора.

Для определения массы ротора необходимо найти дополнительно массу вала ротора $m_{\rm B,p}$. Для этого авторами предложено использовать выражение

$$m_{\rm B,p} = \frac{\pi d_0^2 l_{\rm B,p} \rho_{\rm M,B,p}}{4}, \tag{8}$$

где d_0 – диаметр вала ротора; $l_{\text{в.р.}}$ – длина вала ротора; $\rho_{\text{м.в.р.}}$ – удельная плотность материала вала ротора.

После определения полной массы ротора по [3] рекомендуется найти критическую частоту вращения ротора $n_{\rm kp}$, используя выражение

$$n_{\rm kp} = 3,67 \cdot 10^5 \frac{d_0}{l_{\rm B} \sqrt{G l_{\rm B}}},\tag{9}$$

где d_0 – диаметр вала ротора; $l_{\rm B}$ – длина вала ротора между подшипниками; G – масса ротора.

После определения $n_{\rm kp}$ выполняем ее сравнение с $n_{\rm max}$. Проверочным условием является

$$n_{\rm kp} >> n_{\rm max}.\tag{10}$$

В настоящее время разработаны и применяются пакеты прикладных программ (ELCUT, FEMM, NISA) [3], позволяющие рассчитывать параметры и топологию магнитного поля с учетом насыщения стали магнитопровода. Расчеты распределения магнитного поля всех программ основаны на методе конечных элементов исходных дифференциальных уравнении поля, решаемых итерационным методом Ньютона-Рафсона. Исследование делится на три основных этапа: формирование исходных данных, решение задачи моделирования, верификация моделей и сравнение результатов моделирования с характеристиками реальных ВИГ и ВИД. В этап подготовки исходных данных входит построение геометрии модели, дискретизация области моделирования на выбранные типы конечных элементов, задание свойств материалов. Перед решением задачи моделирования задаются области с токовыми нагрузками (определяется плотность тока) и граничные условия. Результаты программ моделирования представляются в геометрическом распределении магнитной индукции, напряженности, векторного потенциала, топологии, индуктивности магнитного поля и т. д. После компьютерного расчета проводилась верификация полученных моделей с помощью изменения влияющих факторов и проверка адекватности модели, т. е. статистическая обработка результатов моделирования и сравнение с экспериментальными данными; при расхождении результатов в модель вводились поправки и уточнения с учетом причин отклонения.

Помимо создания достоверных моделей магнитной системы, решались следующие задачи:

 – создание моделей, которые могут быть использованы для изучения процессов, протекающих в ВИД при различных конфигурациях их фазных обмоток и коммутации токов в них, с учетом взаимодействия сцепленных с ними магнитных потоков;

 – разработка методики аналитического расчета магнитной проводимости воздушного зазора вентильных индукторных машин в функции угла поворота ротора;

 – разработка математической модели, функционально связывающей параметры вентильных индукторных электромеханических систем с их характеристиками;

 исследование влияния изменения отдельных параметров электрической машины на энергетические и динамические характеристики ВИД с целью получения практических рекомендаций, необходимых для их рационального проектирования;

 верификация и апробация результатов моделирования, подтверждающих достоверность результатов теоретических исследований.

Анализ предыдущих исследований

Важными особенностями ВИД являются дискретность работы фаз, наличие датчика положения ротора, по сигналам которого осуществляется коммутация фаз. Эти схемотехнические отличия должны учитываться при исследовании статических и динамических характеристик. В процессе вращения ротора ИМ происходит непрерывное изменение величины воздушного зазора между статором и ротором в каждой ее фазе. Данное изменение влечет за собой изменение магнитной проводимости (магнитного сопротивления) участка магнитной цепи, в которой замыкается магнитный поток, сцепленный с фазой.

Электромагнитные и электрические переходные и установившиеся процессы в ВИД описываются нелинейными дифференциальными уравнениями. Структура уравнений определяется числом фаз двигателя, режимом работы вентильного коммутатора. Индуктивности обмоток зависят от текущего положения ротора и значения тока, протекающего в обмотке [4].

Существующие наработки по математическому описанию ВИД можно классифицировать по трем основным видам:

1. В системе координат, привязанной к фазам ВИД, с учетом зависимости индуктивностей фаз от положения ротора.

В этом случае [5] математическое описание процессов в ВИД представляется в виде трех подсистем уравнений, каждая из которых описывает поведение определенной составной части ВИД: уравнения идеального вентильного коммутатора, электромашинной части двигателя, равновесия моментов на валу двигателя.

Процесс преобразования электрической энергии в механическую описывается уравнениями баланса энергий и мощностей, которые следуют из второго закона Кирхгофа для электрической цепи, образованной источником питания и фазной обмоткой.

Фаза ВИД обладает активным и изменяющимся в широком диапазоне индуктивным сопротивлениями. Второй закон Кирхгофа для фазы в общем случае имеет вид:

$$u + e = iR$$

где u – напряжение сети; i – мгновенное значение тока фазы; e – ЭДС, наведенная в фазе.

С учетом потокосцепления обмотки (Ф):

$$u = iR + \frac{d\psi}{dt}$$

Потокосцепление у является функцией тока *i* и угла поворота ротора у:

$$\frac{d\psi}{dt} = \frac{d\psi}{di}\frac{di}{dt} + \frac{d\psi}{d\gamma}\frac{d\gamma}{dt} = L_{\mu}\frac{di}{dt} + \Omega\frac{d\gamma}{dt},$$

где $L_{\mu} = \frac{d\psi}{di}$ – дифференциальная индуктивность фазы; $\Omega = \frac{d\gamma}{dt}$ – угловая частота вращения ротора; $L_{\mu}\frac{di}{dt}$ – трансформаторная ЭДС, обусловленная изменением тока в фазе; $\Omega \frac{d\gamma}{dt}$ – ЭДС вращения, связанная с изменением потокосцепления фазы, которое происходит в результате взаимного перемещения сердечников статора и ротора.

Тогда для напряжения источника питания можно записать уравнение

$$u = iR + L_{\mu}\frac{di}{dt} + \Omega\frac{d\gamma}{dt}.$$

Выразим уравнение мгновенного момента ВИД, основанное на мгновенной механической мощности:

$$p_{\rm Mex} = i\Omega \frac{d\Psi}{d\gamma} = \Omega M.$$

Выражение для мгновенного электромагнитного момента через производную потокосцепления по углу поворота ротора: $M = i \frac{d\psi}{d\gamma}$.

Индуктивность фазы для линейной магнитной системы зависит только от взаимного положения сердечников, а точнее, только от проводимости зазора, которая изменяется в широких пределах на интервале от рассогласованного до согласованного положения:

$$L = w^2 \mu_0 \frac{S_3}{\delta_3},$$

где L – индуктивность фазы; w – число витков фазы; S_3 – эквивалентная площадь воздушного пространства, через которую проходит магнитный поток; δ_3 – эквивалентный зазор.

2. Основанные на схемах замещения магнитной цепи, где индуктивности и взаимной индуктивности фаз являются функциями положения ротора, а также фазных токов.

Подобная модель для двухфазного ВИД представлена в [5], при этом энергия магнитного поля определяется как:

$$W = \frac{1}{2}i_{a}^{2}L_{a}(\gamma;i_{a};i_{B}) + \frac{1}{2}i_{B}^{2}L_{a}(\gamma;i_{B};i_{a}) + \frac{1}{2}i_{a}i_{B}M(\gamma;i_{a};i_{B}).$$

3. Основанные на представлении ротора машины эквивалентной обмоткой возбуждения.

Среди всех перечисленных типов моделей последний имеет структурнотопологическую привязку и не пресыщен математическими преобразованиями.

Процесс моделирования характеристик ВИД состоит из ряда этапов, для каждого из этапов выполнен свой набор готовых шаблонов прототипов в различных программах моделирования, критерии для верификации, методики пошаговой реализации, критерии оптимизации. Все этапы взаимосвязаны и предполагают существующие конструкции и характеристики параметров, а также возможность изменения в зависимости от целей разработки; существующий инструментарий разработки позволяет решать исследовательские и оптимизационные задачи.

Исследования характеристик ВИД проводились методом математического моделирования для *m*-фазного ВИД с независимым управлением фазами при сложном трапециидальном законе изменения токов; симметричной одиночной, парной и несимметричной коммутацией фазных токов (рис. 2).

Рис. 2. Пример результатов расчета магнитной системы ВИД (Excel и FEMM): *а* – картина поля линий магнитной индукции модели; *б* – график изменения тока в фазе в зависимости от углового положения зубца ротора

Результаты сравнения аналитического и модельного расчета в программе FEMM представлены на рис. 3. Значимость отличий с помощью однофакторного дисперсионного анализа в программах Microsoft Excel и Statistica 6 указывает на то, что различие между средними статистически незначимо. Достигнутая точность моделирования дает возможность широкого практического использования данного способа расчета. Отклонения характеристик объясняются, по-видимому, просчетами физического моделирования и неизбежными ошибками при выборе приближенного характера кривой намагничивания стали магнитопровода и количеством участков разбиения. В рассмотренном примере *F*-критерий показывает, что различие между средними статистически незначимо и нулевая гипотеза о равенстве средних не отвергается.

Рис. 3. Графическое изображение в программе FEMM контуров, используемых при верификации результатов

На рис. 4 приведены некоторые результаты исследования ВИД конфигурации 6/4 при различных геометрических параметрах ротора (a)–(e) и сравнительная характеристика электромагнитного момента (ж) ротора при неизменном законе коммутации. По горизонтальной оси – угловое положение зубца ротора относительно зубца статора, по вертикальной оси – электромагнитный момент на валу ротора.

a)

г)

Рис. 4. Графическое распределение поля в ВИД конфигурации 6/4 при различных геометрических параметрах ротора (а)-(е) и сравнительная характеристика электромагнитного момента (ж)

Следует заметить, что расчет магнитных систем привязан к двумерным координатам, а в дальнейшем необходимо решать трехмерную задачу распределения магнитной индукции.

Заключение

Таким образом, разработанная методика расчета индуктивностей фаз вентильной индукторной машины в функции углового положения ротора отличается от известных получением функциональной аналитической зависимости между геометрией зубцовой зоны и значением индуктивности. Выявлено влияние геометрических размеров зубцовой зоны на энергетические и динамические характеристики ВИД.

В рамках данной работы были созданы модели ВИД, позволяющие исследовать его характеристики при любой конфигурации фазных обмоток и коммутации токов в них. Для реализации модели необходима информация об архитектуре двигателя, включающая число фаз и систему коммутации, число полюсов статора и число полюсов ротора. Также требуется знание теплопроводности элементов и других параметров для теплового расчета ВИД. Полученная модель учитывает взаимодействие магнитных потоков, сцепленных с фазами машины, и насыщение стали магнитопровода.

Литература

- 1. Шабаев, В. А. Анализ источников шума вентильно-индукторного двигателя / В. А. Шабаев // Электротехника. 2005. № 5. С. 62.
- Wu, C. Analysis and reduction of vibration and acoustic noise in the switches reluctance drive / C. Wu, C. Pollock // IEEE transaction on industry application. – V. 31. – 1995. – № 1. – P. 91–98.
- Meeker, D. Finite Element Method Magnetics : User's Manual. Version 4.0 / D. Meeker. June 17, 2004. – Режим доступа: http://feem.foster-miller.com.
- 4. Ткачук, В. Електромеханотроніка / В. Ткачук. Львів : Видавництво Національного університету «Львівська політехніка», 2006. 440 с.
- 5. Голландцев, Ю. А. Уравнения вентильного индукторно-реактивного двигателя при одиночной коммутации фаз / Ю. А. Голландцев // Электротехника. 2003. № 7/03. С. 45–51.

Получено 05.09.2014 г.