АНАЛИЗ ТОЧНОСТИ ОБРАБОТКИ КРИВОЛИНЕЙНЫХ УЧАСТКОВ ВАЛОВ СБОРНЫМИ РЕЗЦАМИ

А. М. Короткевич

Гомельский государственный технический университет имени П. О. Сухого, Беларусь

Научный руководитель М. И. Михайлов

Точность обработки криволинейных участков зависит от характера образующей, точности позиционирования сменных многогранных пластин (СМП) в корпусе сборного инструмента, а также от статической точности системы крепления СМП. Наибольшее влияние оказывает статическая точность, при моделировании которой из базовой системы координат путем последовательных переходов находили такую систему координат, в которой хотя бы одна ось была сонаправлена с силой реакции в базовой точке.

Исходными данными для расчета являются геометрические параметры резца и пластины, а также силы резания.

Для расчета введем глобальную систему координат *OXYZ*. Расчетная схема представлена на рис. 1. Для расчета статической точности необходимо знать величины сил *R*1, *R*2, *R*3, *R*4, *R*5, *R*6 реакций в точках контакта между режущей пластиной и державкой резца, возникающие в результате сил резания. Для нахождения сил реакций составим систему уравнения равновесия сил и моментов (1). Для решения этой системы необходимо знать проекции сил реакций на оси глобальной системы координат (или коэффициенты при реакциях), а также координаты точек контакта 1–6 в глобальной системе координат.

Рис. 1. Расчетная схема

Составим уравнения равновесия на оси координат:

$$\sum Fx = 0; \ Px + R6x + R4xR6x + R1x + R2x + R3x = 0.$$

$$\sum Fy = 0; Py - R1y - R3y - R2y - R6y - R4y - R5y = 0.$$

$$\sum Fz = 0; Pz - R2z - R1z - R3z + R6z + R4z = 0.$$
(1)
$$\sum Mx = 0; -R6z \cdot x6 - R4z \cdot x4 - R5z \cdot x5 + R2z \cdot x2 + R1z \cdot x1 + R3z \cdot x3 = 0.$$

$$\sum My = 0; R6y \cdot z6 + R4y \cdot z4 + R5y \cdot z5 + R1y \cdot z1 - R2y \cdot z2 - R3y \cdot z = 0.$$

$$\sum Mz = 0; -R2x \cdot y2 - R1x \cdot y1 - R3x \cdot y3 + R6x \cdot y6 + R4x \cdot y4 + R5x \cdot y5 = 0.$$

Для нахождения коэффициентов реакций путем последовательных переходов выберем такую систему координат, в которой хотя бы одна ось была сонаправлена с силой реакции. Для точек установочной грани 1, 2, 3:

$$\psi = ((\phi - 60) \cdot \pi \cdot 2)/360;$$

$$a = \operatorname{arctg}(\cos(\psi) \cdot \tan(\alpha) + \sin(\psi) \cdot \tan(\alpha));$$

$$\psi 1 = -(\varphi - 90 + \rho/2) \cdot \pi \cdot 2/360;$$

$\int x$;)		$\cos(\psi 1)$	$sin(\psi 1)$	0)	(1)	0	0		(x2)	
J	,	=	sin(ψ1)	$\cos(\psi 1)$	0	0	$\cos(\alpha)$	$-\sin(\alpha)$	ŀ	<i>y</i> 2	
$\left(z\right)$;)		0	0	1)	0	$sin(\alpha)$	$\cos(\alpha)$)	(z2)	

Откуда получаем:

$$x = x2 \cdot \cos(\psi 1) + y2 \cdot \sin(\psi 1) \cdot \cos(\alpha) - z2 \cdot \sin(\psi 1) \cdot \sin(\alpha);$$

$$y = x2 \cdot \sin(\psi 1) + y2 \cdot \cos(\psi 1) \cdot \cos(a) - z2 \cdot \cos(\psi 1) \cdot \sin(\alpha);$$

$$z = y2 \cdot \sin(\alpha) + z2 \cdot \cos(\alpha) \, .$$

Выражения для проекций на оси глобальной системы координат будут соответствовать выражениям при координатах *x*2, *y*2, *z*2:

$$K1x = -\sin(\psi 1) \cdot \sin(\alpha); \quad K2x = -\sin(\psi 1) \cdot \sin(\alpha); \quad K3x = -\sin(\psi 1) \cdot \sin(\alpha);$$

$$K1y = -\cos(\psi 1) \cdot \sin(\alpha)$$
; $K2y = -\cos(\psi 1) \cdot \sin(\alpha)$; $K3y = -\cos(\psi 1) \cdot \sin(\alpha)$;

$$K1z = \cos(\alpha); K1z = \cos(\alpha); K3z = \cos(\alpha).$$

Аналогично, коэффициенты реакций для точек направляющей грани 4, 5:

$$\eta = (90 - \lambda/2) \cdot \pi \cdot 2/360;$$

$$K4x = -(\cos(\psi 1) \cdot \sin(\eta) + \sin(\psi 1) \cdot \cos(\alpha) \cdot \cos(\eta));$$

$$K4y = -(\sin(\psi 1) \cdot \cos(\eta) + \cos(\psi 1) \cdot \cos(\alpha) \cdot \cos(\eta));$$

 $K4z = -\sin(\alpha) \cdot \cos(\eta);$

$$K5x = -(\cos(\psi 1) \cdot \sin(\eta) + \sin(\psi 1) \cdot \cos(\alpha) \cdot \cos(\eta));$$

 $K5y = -(\sin(\psi 1) \cdot \cos(\eta) + \cos(\psi 1) \cdot \cos(\alpha) \cdot \cos(\eta));$

$$K5z = -\sin(\alpha) \cdot \cos(\eta).$$

Коэффициенты реакций для точки опорной грани 1:

$$K6x = -(\cos(\psi) \cdot \sin(\eta) + \sin(\psi) \cdot \cos(\alpha) \cdot \cos(\eta));$$

$$K6y = -(\sin(\psi) \cdot \sin(\eta) + \cos(\psi) \cdot \cos(\alpha) \cdot \cos(\eta));$$

$$K6z = -\sin(\alpha) \cdot \cos(\eta)$$
.

Для перевода измеренных в местной системе координат точек контакта в глобальную систему координат путем последовательных переходов определим матрицу связи A123 и выразим требуемые координаты.

$$\begin{split} A123 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -b \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -\frac{t}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\frac{\rho}{2}) & -\cos(\frac{\rho}{2}) & 0 & 0 \\ -\sin(\frac{\rho}{2}) & \cos(\frac{\rho}{2}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \\ \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & \sin(\alpha) & 0 \\ 0 & -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\psi) & \sin(\psi) & 0 & 0 \\ \sin(\psi) & \cos(\psi) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} . \end{split}$$

	0,019	0,018	-0,209	0)
41.22 -	0,241	0,241	0,209	-1,5
A123 =	- 0,171	-0,171	0,97	-6
	0	0	0	1)

Аналогично для точек 4 и 5:

$$A45 = \begin{pmatrix} -0,628 & -0,627 & -0,462 & -15,259 \\ 0 & 0 & 0 & -6 \\ -0,707 & -0,706 & 0,043 & -12,595 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \ K4b = A45 \cdot \begin{pmatrix} xb4 \\ yb4 \\ zb4 \\ 1 \end{pmatrix}; \ K5b = A45 \cdot \begin{pmatrix} xb5 \\ yb5 \\ zb5 \\ 1 \end{pmatrix};$$

$$A6 = \begin{pmatrix} 0,025 & 0,025 & -0,381 & 21.17 \\ 0 & 0 & 0 & -6 \\ -0,945 & -0,9441 & -0,264 & -34,267 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \ K6b = A6 \cdot \begin{pmatrix} xb6 \\ yb6 \\ zb6 \\ 1 \end{pmatrix}.$$

С учетом полученных результатов систему (1) перепишем в виде

$$\begin{pmatrix} R1\\ R2\\ R3\\ R4\\ R5\\ R6 \end{pmatrix} = \begin{pmatrix} K1x & K2x & K3x & K4x & K5x & K6x \\ K1y & K2y & K3y & K4y & K5y & K6y \\ -K1z & -K2z & -K3z & K4z & K5z & K6z \\ K1y \cdot z1 & K2y \cdot z2 & K3y \cdot z3 & K4y \cdot z4 & -K5y \cdot z5 & -K6y \cdot z6 \\ -K1z \cdot x1 & -K2z \cdot x2 & -K3z \cdot x3 & K4z \cdot x4 & K5z \cdot x5 & K6z \cdot x6 \\ K1x \cdot y1 & K2x \cdot y2 & K3x \cdot y3 & -K4x \cdot y4 & -K5x \cdot y5 & -K6x \cdot y6 \end{pmatrix}^{-1} \begin{pmatrix} Px \\ Py \\ Pz \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Зная координаты точек, перемещения точек в направлении, противоположном направлению реакций, плоскостным методом моделирования смоделируем общее перемещение пластины. Рассмотрим 2 случая: пластина в первоначальном положении и пластина, смещенная под действием сил резания. Составим 2 системы уравнений. Решив их, найдем координаты точки пластины до и после перемещения, а следовательно и общую величину перемещения.

 $0,239 \cdot x - 2,446 \cdot y - 0,0073 \cdot z + 2,481 = 0;$ $0,687 \cdot x - 0,434 \cdot y - 3,84 \cdot z + 76,5 = 0;$ $-0,126 \cdot x + 0,991 \cdot y - 0,009 \cdot z = 0;$ Xp = 2,197; Ye = 0,463; Ze = -20,22; $0,231 \cdot x - 2,35 \cdot y - 1,01 \cdot z + 2,138 = 0;$

Секция I. Машиностроение

 $0,61 \cdot x - 0,41 \cdot y - 3,9 \cdot z + 77,5 = 0;$

$$-0,126 \cdot x + 0,991 \cdot y - 0,009 \cdot z = 0;$$

$$X_s = 2,05; Y_s = 0,6; Z_s = -21.$$

Зная координаты точки до перемещения и после перемещения, определим величину смещения пластины:

$$\delta = \sqrt{(Xp - Xs)^{2} + (Yp - Xs)^{2} + (Zp - Zs)^{2}}$$

$\delta = 0.805$.

Таким образом, мы определили статическое перемещение пластины, т. е. статическую точность, равную 0,805 мм.