АВТОМАТИЗАЦИЯ ФОРМИРОВАНИЯ КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ НА ДЕТАЛИ ТИПА «ВАЛЫ»

А. М. Городник

Гомельский государственный технический университет имени П. О. Сухого, Беларусь

Научный руководитель В. С. Мурашко

Целью данной работы является автоматизация формирования конструкторской документации на валы трех типов: валы с фаской, валы с полусферой, валы с усеченной сферической поверхностью.

Анализ работы конструкторско-технологических служб ряда промышленных предприятий позволил установить, что одна из наиболее трудоемких проектных процедур в ходе конструкторско-технологической подготовки производства — разра-

ботка конструкторской документации на ряд близких по конструкции деталей и/или сборочных единиц, отличающихся в основном своими размерными параметрами или вариантами исполнения. Данная процедура является трудоемким и нетворческим процессом с низкой производительностью и высокой вероятностью внесения ошибок. Особенно часто требуется выпускать конструкторскую документацию на средства технологического оснащения (СТО) машиностроительного производства: тиски, кондукторы, пресс-формы и т. д., причем подготовка этой документации должна вестись опережающими темпами для обеспечения времени на изготовление СТО к моменту запуска изделия в производство.

Данную проблему можно решить с помощью параметрического проектирования, сущность которого состоит в создании математической модели класса конструктивно однородных изделий, а затем в генерации изображений этих изделий по набору задаваемых размерных параметров [1].

Следует определить, какие изделия можно считать подлежащими параметризации. При рассмотрении 2D-проекций детали видно, что они могут быть разбиты на элементарные графические примитивы: отрезки и дуги. Каждый примитив однозначно определяется координатами своих базовых точек: начальной и конечной точек отрезка, начальной, конечной точек и центра дуги. Тогда проекцию можно представить в виде графа, вершины которого соответствуют базовым точкам, а ребра – параметрическим связям между ними.

Каждая связь i-j, проходящая от i-й до j-й базовой точки, есть вектор параметров $(\overline{d_{i,j}},\alpha_{i,j})$, где $d_{i,j}$ — расстояние от точки i до точки j; $\alpha_{i,j}$ — угол между прямой, проходящей через точки i и j и прямой выбранной в качестве начала отсчета углов.

Два объекта называются конструктивно подобными, если их соответствующие проекции представляются одними и теми же графами.

Использование графов дает возможность, задавшись произвольными координатами x_i , y_i i-й базовой точки, однозначно определить координаты всех остальных базовых точек при обходе графа по формулам:

$$\begin{cases} x_j = x_i + d_{i,j} \cdot \cos \alpha_{i,j}; \\ y_j = y_i + d_{i,j} \cdot \sin \alpha_{i,j}. \end{cases}$$

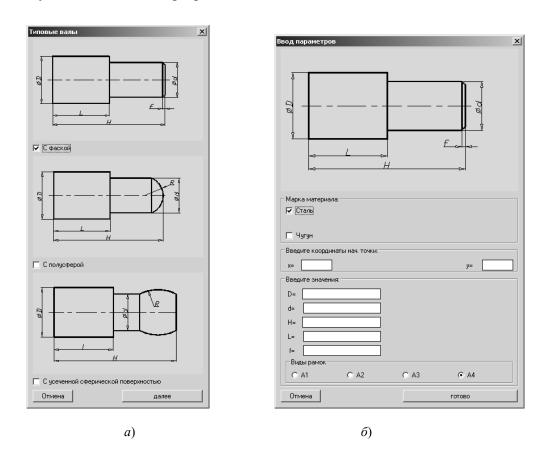
Таким образом, имея граф, описывающий семейство однотипных объектов, конструктору достаточно задать размерные связи между его базовыми точками, а специализированная САПР выполнит обход графа, расчет координат и отображение полученной проекции.

Многие изделия представляются в виде вариантных чертежей, когда изделие состоит из постоянной части с варьируемыми размерами и вариантной части с уникальной геометрией. Очень часто конструктору приходится выпускать документацию на ряд изделий, которые отличаются только своими размерами (линейными или угловыми), а форма их остается неизменной. Поэтому необходимо ввести понятие варианта конструкции, для чего следует разбить граф проекции на константную часть C и переменную часть V. Тогда достаточно потребовать соответствия графов только константных частей для их автоматизированного параметрического проектирования, а вариантные части, являющиеся уникальными, проектируются с применением универсальных САПР с последующим объединением частей C и V.

Чтобы создать набор формирования чертежей определенного класса деталей, в данной работе валов, сначала необходимо было выбрать из уже имеющихся рисунков наиболее сложные и полно отражающие все особенности данного класса. Далее на их основе разрабатывается чертеж типовой детали. Все его размеры должны быть выражены в параметрах. До начала разработки программного обеспечения необходимо выделить в этом чертеже основу детали и функциональные элементы.

Основа любой детали — это заготовка, из которой с помощью последующей обработки (сверления, точения, фрезерования и пр.) получается требуемое изделие. В принципе, все основы можно представить как заготовку в форме либо цилиндра, либо параллелепипеда без отверстий, однако на практике заготовки бывают более сложными по форме. В предлагаемой работе основой является двухступенчатый вал.

Функциональный элемент, с точки зрения разработчика программного обеспечения — это одна параметрическая обработка заготовки. При обработке модели заготовки необходимо корректно модифицировать весь ее чертеж. Отсюда некоторая двойственность термина «функциональный элемент», с одной стороны, это технологическая операция над деталью заготовкой, а с другой — программа, модифицирующая чертеж заготовки. Для пользователя функциональный элемент — это программа или команда, модифицирующая чертеж заготовки в полном соответствии с некоторой технологической обработкой детали-заготовки. Для вала с фаской функциональным элементом будет фаска; для вала с полусферой функциональный элемент — усеченная сферическая поверхность. Все функциональные элементы должны быть независимы друг от друга, т. е. иметь возможность выполняться в любой последовательности и любое количество раз, если это не противоречит корректному осуществлению соответствующих им операций над деталью заготовки.


Система AutoCAD содержит все необходимые средства для изготовления чертежей вариантным методом. В качестве языка программирования используется AutoLISP [2], что позволяет создать надстройку над редактором AutoCAD. Кроме того, AutoCAD дает возможность строить разнообразные интерфейсы пользователя с системой путем использования: экранного меню пользователя, падающего меню, графического меню. AutoCAD предусматривает также возможность самостоятельного написания диалоговых окон, отличных от определенных в системе. Для этой цели был разработан специальный язык управления диалоговыми окнами DCL.

Результатом данной работы является программа Валы.lsp. При разработке программы необходимо было начертить рабочие параметрические эскизы заданных деталей; проанализировать и выявить все размеры, которые необходимы для программирования данных деталей; разработать канонические математические модели деталей, то есть указать все точки, расчет которых необходим для отображения детали полностью.

Основные функции программы при построении детали — загрузка диалога ввода параметров детали; задание переменным начальных параметров (рис. 1); проверка на корректность ввода параметров детали; функция рисования рамки на выбор пользователя формата A1, A2, A3, A4 с заполнением необходимых атрибутов; функция рисования основы детали; функция рисования функционального элемента; функция отражения детали на ось OX; расчет массы детали с учетом выбранного материала (сталь или чугун) и занесение ее значения в соответствующую позицию штампа; функция нанесения размеров детали [1], [2].

После построения требуемой детали программа в командной строке AutoCAD задает запрос со следующими функция: новая деталь, т. е. повторное выполнения построения; поворот; перемещение; отражение; масштаб.

Использование AutoCAD, AutoLISP позволяет строить открытые САПР системы автоматизированной конструкторской документации, т. е. вносить изменения в существующие элементы и разрабатывать новые.

Рис. 1. Диалоговые окна: a – выбор типа вала; δ – ввод параметров

Литература

- 1. Мурашко, В. С. Использование языка AutoLISP для автоматизированного проектирования : практ. пособие к выполнению лаб. работ по курсу «Основы САПР» для студентов специальностей 1-36 01 01 «Технология машиностроения» и 1-36 01 03 «Технологическое оборудование машиностроительного производства» / В. С. Мурашко. Гомель : ГГТУ им. П. О. Сухого, 2007. 35 с.
- 2. Бугрименко, Г. А. Автолисп язык графического программирования в системе AutoCAD / Г. А. Бугрименко. Москва : Машиностроение, 1992. 144 с.