ОПТИМИЗАЦИЯ РЕЗОНАТОРНО-ЩЕЛЕВОГО ИЗЛУЧАТЕЛЯ ДЛЯ АНТЕННЫ РЛС САНТИМЕТРОВОГО ДИАПАЗОНА

Д. В. Барауля, А. А. Кутень

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Беларусь

Научный руководитель Н. И. Вяхирев

Представлены результаты разработки модели антенной решетки из резонаторно-щелевых излучателей (рис. 1).

Рис. 1. Антенная решетка 3 × 3 из резонаторно-щелевых излучателей

Излучатель представляет щель или систему щелей, прорезанную в проводящем экране, закрытую металлической полостью (резонатором). Щель возбуждается в одной или нескольких точках с помощью коаксиальной или полосковой линии [1]. Излучатели располагаются в узлах прямоугольной сетки.

Рассчитаны электродинамические характеристики антенной решетки, элементом которой является одна щель полуволновой длины. Сосредоточенный источник расположен в центре щели. Резонатор имеет размеры: вдоль оси $OX = 0,52\lambda$, вдоль оси $OZ = 0,2\lambda$, и соответствуют резонансному режиму работы (мнимая часть входной проводимости $B_y = 0$) [1]. Ширина щели = 0,002 λ . Параметры решетки: период вдоль оси $OX = 0,65\lambda$, период вдоль оси $OY = 0,6\lambda$.

На рис. 2 показано амплитудное распределения поля в щели для $\theta = 0^{\circ}$ при сканировании в *E*-плоскости ($\phi = 0^{\circ}$).

Рис. 2. Амплитудное распределение поля вдоль щели для $\theta = 0^\circ$; $\phi = 0^\circ$

Рис. 3. Амплитудное распределение поля вдоль щели для $\theta = 33^\circ$, 30° ; $\varphi = 0^\circ$

Кривая на рис. З иллюстрирует характерное распределение поля в щели в момент появления дифракционного лепестка при сканировании.

На рис. 4, 5 приведены зависимости активной (G_y) и реактивной (B_y) составляющих входной проводимости щелевой антенны в составе периодической решетки от угла сканирования в *E*-плоскости. Резкие выбросы на кривых G_y и B_y соответствуют моменту появления дифракционного лепестка при сканировании. Диапазон углов $\theta \approx \pm 30^\circ$ является рабочим (входная проводимость почти не изменяется).

Рис. 4. Зависимость активной входной проводимости от угла сканирования в Е-плоскости

Рис. 5. Зависимость реактивной входной проводимости от угла сканирования в *E*-плоскости

Секция IV. Промышленная электроника 243

В результате проделанной работы были рассчитаны электродинамические характеристики модели бесконечной антенной решетки из резонаторно-щелевых излучателей; определен рабочий диапазон углов сканирования в *E*-плоскости: $\theta \approx \pm 30^{\circ}$.

Литература

- 1. Антенны и устройства СВЧ (проектирование ФАР) / под ред. Д. И. Воскресенского. М. : Радио и связь, 1981.
- 2. Амитей, Н. Теория и анализ фазированных антенных решеток / Н. Амитей, В. Галиндо, Ч. Ву ; пер. с англ. / под ред. Г. Т. Маркова, А. Ф. Чаплина. М. : Мир, 1974.