РАЗВИТИЕ МНОГОМЕРНО-ВРЕМЕННОГО ОПЕРАТОРНОГО МЕТОДА АНАЛИЗА ЭЛЕМЕНТОВ САУ ДЛЯ РЕШЕНИЯ ЗАДАЧИ СИНТЕЗА И ИДЕНТИФИКАЦИИ НЕЛИНЕЙНЫХ СИСТЕМ, ОХВАЧЕННЫХ ОБРАТНОЙ СВЯЗЬЮ

А. А. Толстенков

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Беларусь

Научный руководитель В. А. Савельев

Большинство систем автоматического управления имеют в своем составе нелинейные элементы, что значительно усложняет их анализ и синтез.

Классический подход к исследованию подобных элементов имеет ряд недочетов. В частности, использование одномерного интегрального преобразования Лапласа, которое приводит к необходимости вычисления интегралов свертки от произведения временных функций [1].

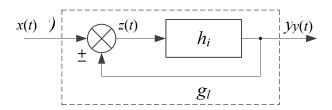
Альтернативой традиционному подходу является использование многомерного интегрального преобразования по Лапласу [3], основы которого были заложены профессором Солодовниковым В. В. [2].

Так, разработанный профессором Луковниковым В. И. [4], [5] многомерновременной операторный метод (МВОМ) анализа позволяет устранить недостатки традиционных подходов. Научная идея МВОМ заключается в первоначальном переходе от естественной одномерной временной области к искусственной многомерной временной области с независимыми временными переменными, принадлежащими различным сомножителям, и последующем использовании прямого и обратного многомерных преобразований по Лапласу.

Однако использования MBOM для решения задачи синтеза и идентификации нелинейных систем имеет ряд трудностей, в первую очередь связанные с тем, что системы имеют замкнутую структуру [5].

Для расширения границ применимости метода целесообразно использовать математический аппарат рядов Вольтерра, что, как следует из работ [2], [6], является наиболее рациональным подходом для аналитического синтеза нелинейных элементов системы. Также следует отметить, что данный подход свободен от ряда недостатков, свойственных аппарату дифференциальных уравнений, результаты его применения также могут интерпретироваться в удобных для пользователя терминах и формах (динамические звенья).

Чтобы более наглядно показать конструктивное различие подходов, рассмотрим безынерционный нелинейный элемент охваченный обратной связью (рис. 1).



Puc. 1. Структурная схема безынерционного нелинейного многомерного элемента охваченного обратной связью

Пусть передаточная функция пассивного звена h_i ограничена вторым порядком $H_2(s_i;s_2)$.

Тогда, согласно МВОМ (будем записывать сразу в операторной форме):

$$Z_2(s_1; s_2) = X(s_1) \pm Y_2(s; s_2);$$

$$Y_2(s_1; s_2) = Z_2(s_1; s_2) \cdot H_2(s_1; s_2).$$
(1)

Следовательно, суммарный выходной сигнал всей системы:

$$Y_2(s_1; s_2) = \frac{H_2(s_1; s_2) \cdot X(s_1)}{1 \mp H_2(s_1; s_2)}.$$
 (2)

Из уравнения (2) получим суммарную многомерно передаточную функцию системы:

$$G_2(s_1; s_2) = \frac{Y_2(s_1; s_2)}{X(s_1)} = \frac{H_2(s_1; s_2)}{1 \mp H_2(s_1; s_2)}.$$
 (3)

Теперь применим для этого же соединения математический аппарата рядов Вольтерра.

Прежде всего, запишем соотношения входного и выходного сигнала системы, в виде многомерного функционала Вольтерра степени i во временной области:

$$y(t_1; ...; t_l) = \int_E g_l(\tau_1; ...; \tau_l) \prod_{r=1}^l x(t_r - \tau_r) d\upsilon_{\tau}.$$
 (4)

Теперь, перейдем к операторной форме записи:

$$Y(s_1; ...; s_l) = G_l(s_1; ...; s_l) \prod_{r=1}^{l} X(s_r),$$
 (5)

где $Y(s_1; ...; s_l)^{\bullet} = y(t_1; ...; t_l)$ и $G_l(s_1; ...; s_l)^{\bullet} = g_l(\tau_1; ...; \tau_l)$. Причем изображение ядра $g_l(\tau_1; ...; \tau_l)$ является обычной дробно-рациональной функцией от l переменных с действительными коэффициентами.

Далее, используя оператор перехода к одной переменной в комплексной области [4], из соотношения (5) получим соотношения, подобные уравнениям (1), но в виде ядер Вольтерра:

$$Y_{l}(s_{1};...;s_{l}) = \sum_{j=1}^{m} \left\{ H_{j}(s_{1};...;s_{j}) \prod_{f=1}^{j} Z(s_{f}) \right\}^{*};$$

$$Z_{i}(s_{1};...;s_{i}) = X(s_{1};...;s_{l}) - Y_{l}(s_{1};...;s_{l}).$$
(6)

Выразим $Y(s_1;...;s_l)$ из (6), получим уравнение замкнутой системы, записанное относительно сигнала ошибки $Z(s_1;...;s_l)$:

$$X(s_1; ...; s_l) = Z(s_1; ...; s_i) + H_1(s_1)Z(s_1; ...; s_i) + \sum_{j=2}^{m} \left\{ H_j(s_1; ...; s_j) \prod_{f=1}^{j} Z(s_f) \right\}^*.$$
 (7)

Решения уравнения (7) будем искать в виде ряда

$$Z(s_1; ...; s_i) = \sum_{i=1}^{\infty} \left\{ K_i(s_1; ...; s_i) \prod_{r=1}^{i} X(s_r) \right\}^*.$$
 (8)

Подставив (8) в (7) получим выражение, соответствующее последовательному соединению этих систем. Тогда изображение первых двух ядер последовательного соединения можно получить, группируя члены одинаковой размерности,

$$G_1(s_1) = K_1(s_1)H_1(s_1);$$

$$G_2(s_1; s_2) = K_1(\sum_{r=1}^2 s_r) \cdot H_2(s_1; s_2) + K_2(s_1; s_2) \cdot \prod_{r=1}^2 H_1(s_r), \tag{9}$$

то есть первое ядро – одномерное с одномерным, второе – одномерное с двумерным плюс двумерное с одномерным.

В итоге, учитывая, что последовательное соединение (7) и (8) дает систему с единичной передаточной функцией, из (9) получим:

$$\begin{cases}
1 = [1 + H_1(s_1)]K_1(s_1), \\
0 = [1 + H_1(\sum_{r=1}^2 s_r)]K_2(s_1; s_2) + H_2(s_1; s_2) \cdot \prod_{r=1}^2 K_1(s_r).
\end{cases}$$
(10)

Отсюда ядра по сигналу ошибки:

$$\begin{cases}
K_{1}(s_{1}) = \frac{1}{1 + H_{1}(s_{1})}, \\
K_{2}(s_{1}; s_{2}) = \frac{-H_{2}(s_{1}; s_{2})}{\left[1 + H_{1}(\sum_{r=1}^{2} s_{r})\right] \cdot \prod_{r=1}^{2} \left[1 + H_{1}(s_{r})\right]}.
\end{cases} (11)$$

Для изображений ядер этой же системы по выходному сигналу, необходимо учитывать их связь с ядер по сигналу ошибке:

$$\begin{cases}
W_1(s_1) = G_1(s_1) = K_1(s_1) \cdot H_1(s_1) = \frac{H_1(s_1)}{1 + H_1(s_1)}, \\
W_i(s_1; ...; s_i) = G_i(s_1; ...; s_i) = -K_i(s_1; ...; s_i),
\end{cases}$$
(12)

где i = 2; 3;

В итоге из уравнения (11) и (12) получим многомерную передаточную функцию в виде суммы ядра Вольтерра соответствующих порядков:

$$G_1(s_1; s_2) = G_1(s_1) + G_2(s_1; s_2).$$
 (13)

Проанализировав (3), (11) и (13), можно заметить, что использование классического MBOM при данных начальных условиях не целесообразно, так как полученная с помощью него передаточная функция не обладает свойствами многомерного элемента системы (взаимосвязь переменных), а является лишь искусственной многомерной проекцией одномерной функции в операторном виде. Следовательно, ее дальнейшее использования как элемента системы негативно повлияет на точность конечного результата. Использование же MBOM в купе с математическим аппаратом рядов Вольтерра позволяет нам сохранить многомерные свойства системы при любых структурных преобразованиях.

Литература

1. Иващенко, Н. Н. Автоматическое регулирование. Теория и элементы систем / Н. Н. Иващенко. – М. : Машиностроение, 1973.-607 с.

- 2. Солодовников, В. В. Анализ и синтез нелинейных систем автоматического регулирования при помощи рядов Вольтерра и ортогональных спектров / В. В. Солодовников, А. Н. Дмитриев, Н. Д. Егупов; под ред. В. В. Солодовникова. М.: Машиностроение, 1969. Кн. 3, Ч. 2: Техническая кибернетика. С. 223–254.
 - 3. Смышляева, Л. Г. Преобразование Лапласа функций многих переменных / Л. Г. Смышляева. Л. : Изд-во ЛГУ, 1981. 132 с.
- ников // Вест. КГТУ, посвящ. 65-летию проф. Соустина Б. П. Красноярск : Изд-во КГТУ, 1998. С. 102–110.

 5. Козлов, А. В. Многомерно-временно операторный метод анализа элементов системы автоматического управления с нелинейностями типа «произведения» : дис. ... канд. тех. наук :

4. Луковников, В. И. Многомерный операторный метод анализа систем с модуляцией / В. И. Луков-

681.511.4 / А. В. Козлов. – Гомель, 2007. – 134 с.
6. Пупков, К. А. Основы кибернетики. Математические основы кибернетики / К. А. Пупков. – М.: Высш. шк., 1974. – 416 с.