УДК 548.0

ДИСЛОКАЦИОННАЯ МАКРОСКОПИЧЕСКАЯ МОДЕЛЬ КЛИНОВИДНОГО ДВОЙНИКА

О. М. ОСТРИКОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Представленная в работе [1] дислокационная модель механического двойникования обладает существенным недостатком, заключающимся в том, что она позволяет рассматривать механизм двойникования кристаллов в приближении тонкого двойника, когда границы двойника рассматриваются как простое скопление дислокаций в виде дислокационной цепочки. При этом нет возможности рассматривать поля напряжений внутри двойника и изучать роль формы двойниковой границы на напряженное состояние и физические процессы у двойника.

В работах [2]–[5] двойниковая граница рассматривалась на таком масштабном уровне, на котором возможен учет расстояния между двойникующими дислокациями. Однако в этом случае возникают трудности моделирования дальнодействующих напряжений у наиболее часто встречающихся на эксперименте двойников, так как затруднительно суммирование напряжений от большого числа дислокаций, составляющих двойниковую границу. Частично этого недостатка лишена модель, приведенная в [1], так как в ней осуществлен переход от дискретного к непрерывному распределению дислокаций вдоль двойниковой границы. Использование моделей, разрабатываемых в [2]–[5] также затруднительно и в случае двойников со сложной формой их границ.

Таким образом, в настоящее время в дислокационной теории двойникования существует проблема в выработке такой модели двойника, которая при непрерывном распределении двойникующих дислокаций вдоль двойниковых границ с заданной плотностью распределения позволяла бы учитывать форму двойниковой границы. Решение этой проблемы представляется актуальным и целесообразным.

Целью данной работы и стала разработка такой дислокационной модели двойника, которая не требовала бы использования приближения тонкого двойника, и которая рассматривала бы двойник на таком масштабном уровне, когда возможен переход от дискретного к непрерывному распределению двойникующих дислокаций вдоль двойниковых границ с учетом их формы.

В данной работе рассмотрим клиновидный двойник в объеме вдали от поверхности двойникующегося материала. Такие двойники обычно зарождаются у концентратора напряжений, который пусть в нашем случае находится в точке O (рис. 1). В нашей задаче не будем учитывать напряжения, которые создает данный концентратор напряжений. В общем случае в плоскости XOY форма границ клиновидного двойника описывается функциями $f_1(x_0)$ и $f_2(x_0)$ (рис. 1). Пусть дислокации на данных границах параллельны друг другу и оси OZ, перпендикулярной плоскости (рис. 1). Плотность двойникующих дислокаций на границах клиновидного двойника равна ρ_1 и ρ_2 . Тогда напряжения, создаваемые рассматриваемым клиновидным двойником, могут быть определены из формулы

$$\sigma_{ij}(x,y) = \sigma_{ij}^{(1)}(x,y) + \sigma_{ij}^{(2)}(x,y), \tag{1}$$

где

$$\sigma_{ij}^{(1)} = \int_{L_{4R}} \rho_1 \sigma_{ij}^{(1,0)} ds ; \qquad (2)$$

$$\sigma_{ij}^{(2)} = \int_{L_{CR}} \rho_2 \sigma_{ij}^{(2,0)} ds . \tag{3}$$

Здесь $\sigma_{ij}^{(1)}$ и $\sigma_{ij}^{(2)}$ — напряжения, создаваемые каждой из границ клиновидного двойника и определяемые с помощью криволинейного интеграла вдоль профилей двойниковых границ L_{AB} и L_{CB} , соответственно (рис. 1); $\sigma_{ij}^{(1,0)}$ и $\sigma_{ij}^{(2,0)}$ — напряжения, создаваемые на двойниковых границах отдельными дислокациями. Криволинейные интегралы (2) и (3) сводятся к определенным интегралам типа

$$\sigma_{ij}^{(1)}(x,y) = \int_{0}^{L} \sqrt{1 + (f_1'(x_0))^2} \rho_1(x_0) \sigma_{ij}^{(1,0)}(x,y,x_0) dx_0;$$
 (4)

$$\sigma_{ij}^{(2)}(x,y) = \int_{0}^{L} \sqrt{1 + (f_2'(x_0))^2} \rho_2(x_0) \sigma_{ij}^{(2,0)}(x,y,x_0) dx_0 , \qquad (5)$$

где L – длина двойника, равная длине отрезка OB (рис. 1).

Выражения (4) и (5) в совокупности с (1) полностью определяют напряжения, создаваемые клиновидным двойником с формами границ, описываемых функциями $f_1(x_0)$ и $f_2(x_0)$ на масштабном уровне, когда распределение двойникующих дислокаций на двойниковых границах можно считать непрерывным с плотностями $\rho_1(x_0)$ и $\rho_2(x_0)$.



Рис. 1. Схематическое изображение клиновидного двойника

Так как двойникующие дислокации являются частичными дислокациями [2], [3], то их вектор Бюргерса имеет винтовую ($b_{\rm B}$) и краевую ($b_{\rm Kp}$) составляющие. Тогда напряжения, создаваемые единичной двойникующей дислокацией, находящейся на од-

ной или другой двойниковой границе, соответственно, при условии нахождения двойника вдали от поверхности, могут быть определены из соотношений:

$$\sigma_{xx}^{(1,0)} = -\frac{\mu b_{xp}}{2\pi (1-\nu)} \frac{(y - f_1(x_0))[3(x - x_0)^2 + (y - f_1(x_0))^2]}{[(x - x_0)^2 + (y - f_1(x_0))^2]^2},
\sigma_{yy}^{(1,0)} = \frac{\mu b_{xp}}{2\pi (1-\nu)} \frac{(y - f_1(x_0))[(x - x_0)^2 - (y - f_1(x_0))^2]}{[(x - x_0)^2 + (y - f_1(x_0))^2]^2},
\sigma_{xy}^{(1,0)} = \frac{\mu b_{xp}}{2\pi (1-\nu)} \frac{(x - x_0)[(x - x_0)^2 - (y - f_1(x_0))^2]}{[(x - x_0)^2 + (y - f_1(x_0))^2]^2},$$
(6)
$$\sigma_{zz}^{(1,0)} = -\frac{\mu b_{xp}\nu}{\pi (1-\nu)} \frac{(y - f_1(x_0))}{(x - x_0)^2 + (y - f_1(x_0))^2},
\sigma_{zx}^{(1,0)} = -\frac{\mu b_n}{2\pi} \frac{x - x_0}{(x - x_0)^2 + (y - f_1(x_0))^2},
\sigma_{xx}^{(2,0)} = \frac{\mu b_n}{2\pi (x - x_0)^2 + (y - f_1(x_0))^2};
\sigma_{xx}^{(2,0)} = -\frac{\mu b_{xp}\nu}{2\pi (1-\nu)} \frac{(y - f_2(x_0))[3(x - x_0)^2 + (y - f_2(x_0))^2]}{[(x - x_0)^2 + (y - f_2(x_0))^2]^2},
\sigma_{xy}^{(2,0)} = \frac{\mu b_{xp}\nu}{2\pi (1-\nu)} \frac{(y - f_2(x_0))[(x - x_0)^2 - (y - f_2(x_0))^2]}{[(x - x_0)^2 + (y - f_2(x_0))^2]^2},
\sigma_{xy}^{(2,0)} = \frac{\mu b_{xp}\nu}{2\pi (1-\nu)} \frac{(x - x_0)[(x - x_0)^2 - (y - f_2(x_0))^2]}{[(x - x_0)^2 + (y - f_2(x_0))^2]^2},$$
(7)
$$\sigma_{zz}^{(2,0)} = -\frac{\mu b_{xp}\nu}{\pi (1-\nu)} \frac{(y - f_2(x_0))}{(x - x_0)^2 + (y - f_2(x_0))^2},
\sigma_{zz}^{(2,0)} = -\frac{\mu b_n}{2\pi} \frac{(y - f_2(x_0))}{(x - x_0)^2 + (y - f_2(x_0))^2},
\sigma_{zy}^{(2,0)} = \frac{\mu b_n}{2\pi} \frac{(y - f_2(x_0))}{(x - x_0)^2 + (y - f_2(x_0))^2},
\sigma_{zy}^{(2,0)} = \frac{\mu b_n}{2\pi} \frac{(x - x_0)}{(x - x_0)^2 + (y - f_2(x_0))^2},$$

где μ – модуль сдвига; ν – коэффициент Пуассона. Принималась представленная на рис. 1 ориентировка винтовой и краевой составляющих вектора Бюргерса.

В данной работе рассмотрим случай, когда $\rho_1 = \rho_2 = \rho = \text{const.}$ Примем также еще одно допущение, касающееся формы границ двойника. Пусть границы двойника будут прямолинейными, и двойник будет иметь форму равнобедренного треугольника ABC (рис. 1) с шириной у устья (отрезок AC) равной H. Такие двойники часто встречаются на эксперименте (рис. 2) и, как правило, характеризуют начальную стадию развития клиновидных двойников в бездефектной области кристалла. Данные двойники также могут образовываться у концентратора напряжений в объеме материала,

например, при пропускании через него импульса электрического тока, приводящего к разрядке напряжений у концентратора напряжений путем образования двойника [6]. В рассматриваемом случае будем иметь:

$$f_1(x_0) = \frac{H}{2} \left(1 - \frac{x_0}{L} \right); \tag{8}$$

$$f_2(x_0) = -\frac{H}{2} \left(1 - \frac{x_0}{L} \right). \tag{9}$$

Puc. 2. Клиновидные двойники, имеющие вид равнобедренных треугольников. Снимок сделан с помощью электронного микроскопа NANOLAB-7

При этом (4) и (5) примут вид

$$\sigma_{ij}^{(1)}(x,y) = \rho \sqrt{1 + \left(\frac{H}{2L}\right)^2} \int_0^L \sigma_{ij}^{(1,0)}(x,y,x_0) dx_0 ; \qquad (10)$$

$$\sigma_{ij}^{(2)}(x,y) = \rho \sqrt{1 + \left(\frac{H}{2L}\right)^2} \int_0^L \sigma_{ij}^{(2,0)}(x,y,x_0) dx_0.$$
 (11)

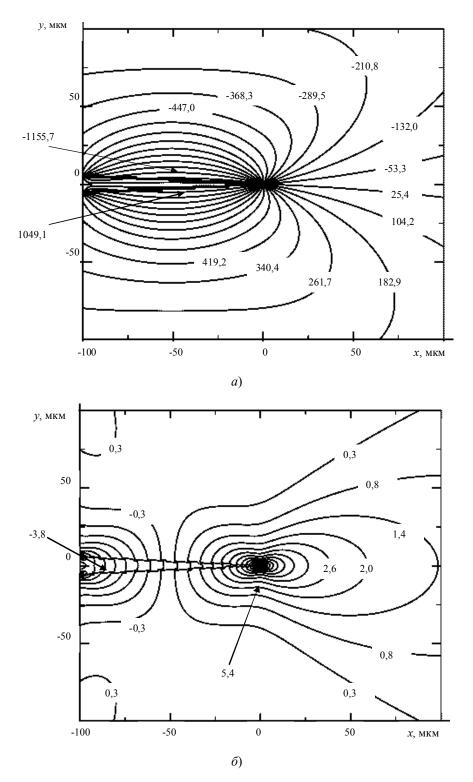
Результаты расчетов представлены на рис. 3. При этом для удобства вычислялись безразмерные величины $\eta_{ij}(x,y) = \frac{\sigma_{ij}(x,y)}{\sigma_{ii}^{(0)}}$, где

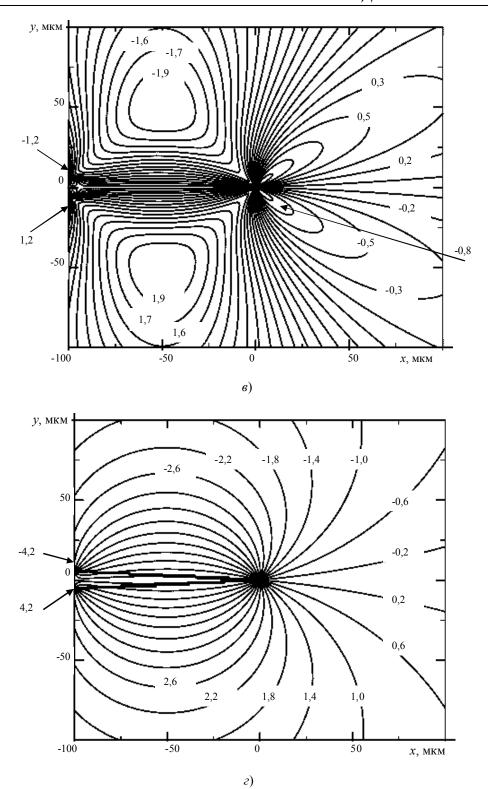
$$\sigma_{ij}^{(0)} = \left(\rho A_{ij} \sqrt{1 + (H/2L)^2}\right) / L. \tag{12}$$

Здесь
$$A_{xx}=A_{yy}=A_{xy}=rac{\mu b_{\mathrm{kp}}}{2\pi(1-\mathrm{v})},\ A_{zz}=rac{\mu \mathrm{v} b_{\mathrm{kp}}}{2\pi(1-\mathrm{v})},\ A_{zx}=A_{zy}=rac{\mu b_{\mathrm{B}}}{2\pi}$$
 .

Распределение $\eta_{ij}(x,y)$ имеет такой же вид, как и $\sigma_{ij}(x,y)$. Различие заключается в численных значениях. Однако случай $\eta_{ij}(x,y)$ является более общим и не требующим учета численных значений констант A_{ij} , которые для физического анализа не дают существенной информации.

На рис. З четко прослеживаются двойниковые границы, являющиеся концентраторами напряжений. Это указывает на правомерность используемого в модели подхода. В отличие от существующих в настоящее время дислокационных моделей, использующих приближение тонкого двойника, в нашем случае возможно детальное рассмотрение области внутри клиновидного двойника и возможен расчет в ней напряженного состояния.





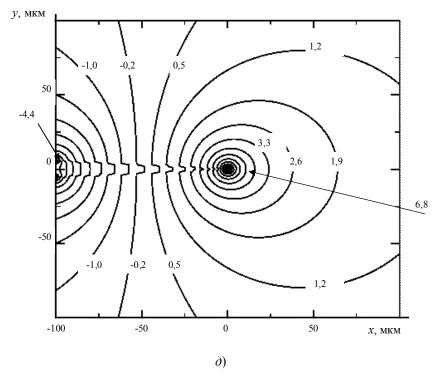


Рис. 3. Распределение $\eta_{ij}(x,y)$: $a-\eta_{xx}(x,y)$; $\delta-\eta_{xy}(x,y)$; $s-\eta_{yy}(x,y)$; $\varepsilon-\eta_{zz}(x,y)$ и $\eta_{zx}(x,y)$; $\partial-\eta_{zy}(x,y)$

Большая концентрация напряжений в основном наблюдается и у вершины клиновидного двойника. Численные значения этих напряжений могут быть найдены из (1), (10) и (11) при x = y = 0.

Нормальные напряжения σ_{xx} знакопеременны по отношению к направлению развития двойника, совпадающим с направлением оси OX. В положительном направлении оси OY данные напряжения отрицательны, а в отрицательном направлении оси OY – положительны (рис. 3, a). Таким образом, у одной из границ клиновидного двойника напряжения σ_{xx} сжимающие, а у другой – растягивающие. Максимальные значения σ_{xx} принимают на границах двойника, причем в большей степени в средней их части, чем у вершины двойника.

Скалывающие напряжения σ_{xy} знакопеременны по отношению к оси, параллельной оси OY и проходящей через середину двойника (точку L/2 на оси OX). У вершины двойника данные напряжения положительны, а у устья — отрицательны (рис. 3, δ). В средней части двойника напряжения σ_{xy} минимальны.

Распределение нормальных напряжений σ_{yy} представлено на рис. 3, ϵ . Они положительны в первой и третьей четвертях плоскости XOY и отрицательны — во второй и четвертой. Это приводит к балансировке напряжений у вершины двойника и сравнительно невысоким их значениям у устья (рис. 3, ϵ).

Напряжения σ_{zz} и σ_{zx} имеют одинаковую конфигурацию (рис. 3, ε) и отличаются лишь по величине. Данные напряжения отрицательны в первой и второй четвертях плоскости XOY и положительны — в третьей и четвертой. Это приводит к кон-

центрации напряжений у границ двойника. В данном случае знак напряжений у границ двойника различен.

Напряжения σ_{zy} (рис. 3, ∂) меняют знак, как и напряжения σ_{xy} , однако у данных напряжений несколько различна конфигурация.

В качестве примера, демонстрирующего возможности разрабатываемой модели в рассмотрении напряжений внутри двойника, рассмотрим распределение $\eta_{xx}(x,y)$ внутри клиновидного двойника с линейными границами. Данное распределение представлено на рис. 4. Видно, что напряжения внутри клиновидного двойника распределены неравномерно, однако они симметричны относительно оси OX.

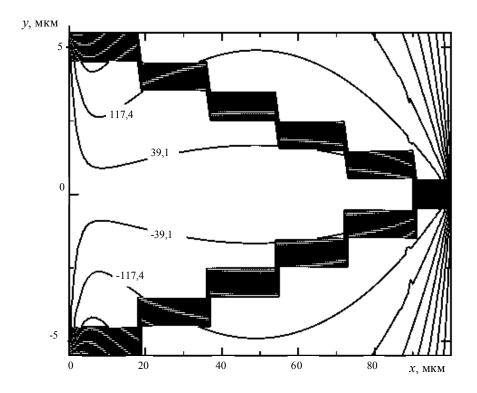


Рис. 4. Распределение $\eta_{xx}(x,y)$ внутри клиновидного двойника

Таким образом, разработана макроскопическая дислокационная модель клиновидного двойника, позволяющая учитывать особенности форм их границ в расчетах полей напряжений. Впервые клиновидный двойник не рассматривается в приближении тонкого двойника, что дало возможность рассмотреть напряжения внутри двойника без исключения макроскопического подхода.

Литература

- 1. Косевич, А. М. Дислокационная теория упругого двойникования кристаллов / А. М. Косевич, В. С. Бойко // Успехи физических наук. 1971. Т. 104, № 2. С. 101—255.
- 2. Остриков, О. М. Напряженное состояние у вершины клиновидного двойника / О. М. Остриков // Механика твердого тела. -2004. -№ 2. C. 104-113.
- 3. Остриков, О. М. Напряженное состояние у клиновидного двойника при дисбалансе плотностей двойникующих дислокаций / О. М. Остриков // Прикладная механика и техническая физика. 2002. Т. 43, № 4. С. 180–182.

- 4. Савенко, В. С. Влияние электрического тока на распределение примесей у двойниковой границы / В. С. Савенко, О. М. Остриков // Известия вузов. Сер. Черная металлургия. 1998. № 6. С. 12–14.
- 5. Савенко, В. С. Поля напряжений у границы клиновидного двойника / В. С. Савенко, О. М. Остриков // Письма в журнал технической физики. 1997. Т. 23, № 22. С. 1—6.
- 6. Остриков, О. М. Влияние импульсного электрического тока большой плотности на особенности двойникования монокристаллов висмута / О. М. Остриков // Физика и химия обработки материалов. 2003. № 1. С. 12–15.

Получено 12.01.2006 г.