СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ СВЕТОТРАНСФОРМИРУЮЩИХ МАТЕРИАЛОВ ДЛЯ СОЗДАНИЯ БЕЛЫХ СВЕТОДИОДОВ

А. О. ДОБРОДЕЙ, Е. Н. ПОДДЕНЕЖНЫЙ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Существуют различные способы создания белого света с помощью светодиодов (СД). Но в основном белые СД изготавливаются на основе синего кристалла и желтого люминофора. Кристалл покрывается слоем геля с порошком люминофора. Толщина слоя такова, чтобы часть синего излучения возбуждала люминофор, а часть проходила без поглощения (рис. 1). Этот способ прост и в настоящее время наиболее экономичен.

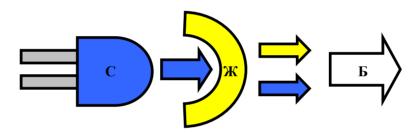


Рис. 1. Получение белого света смешением излучений синего светодиода и желтого люминофора: С – синий свет, Ж – желтый, Б – белый

Большинство производителей белых СД используют в качестве желтого люминофора иттрий-алюминиевый гранат, легированный трехвалентным церием (ИАГ, YAG: Ce^{3+}). Спектр люминесценции таких люминофоров характеризуется максимальной длиной волны в диапазоне 530–560 нм.

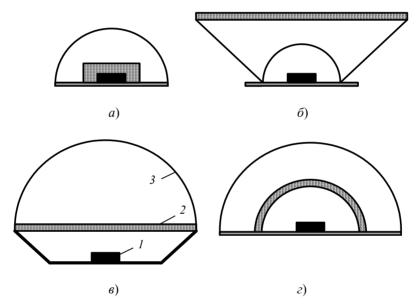
Существуют также люминофоры на основе силикатных и оксинитридных систем. К настоящему времени для силикатных люминофоров не достигнуто такое же высокое значение квантовой эффективности, как для YAG:Ce³⁺ (более 90 %). Создание оксинитридных люминофоров имеет более сложную технологию синтеза.

Люминофоры на органической основе до сих пор не слишком долговечны, чтобы использоваться в мощных промышленных и бытовых светильниках, неорганические же получают в условиях высоких температур синтеза, что не позволяет наносить их непосредственно в виде пленок на подложки из стекла или полимера.

Люминофор на основе ИАГ обладает определенными недостатками: узкая полоса возбуждения, ограничения на индекс цветопередачи и цветовую температуру излучения СД. Тем не менее, эффективность таких люминофоров довольно высока.

Основные идеи актуальных разработок в этом направлении следующие:

- использование в качестве активатора двухвалентного европия с широкой полосой возбуждения;
- построение матрицы люминофора на группировках SiN^+ (высокая стабильность) и AlO^+ (необходимый цвет излучения, высокая квантовая эффективность);

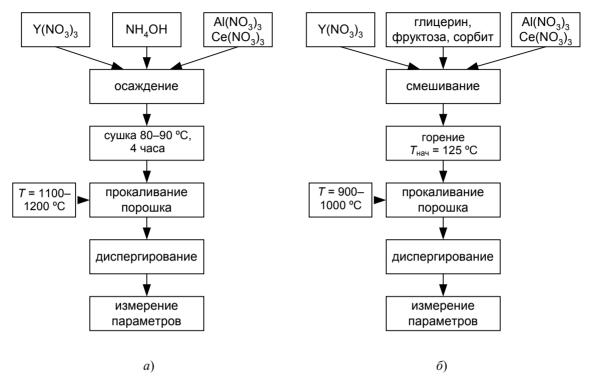

- координационная сфера активатора составлена атомами кислорода и азота.

Одним из последних направлений в области технологии преобразования цвета излучения при изготовлении белых СД является использование люминесцирующей керамики, которая позволит получать светодиоды с высокой однородностью цвета и повышенной временной стабильностью.

К светодиодам белого цвета, используемых для систем освещения, предъявляются следующие требования:

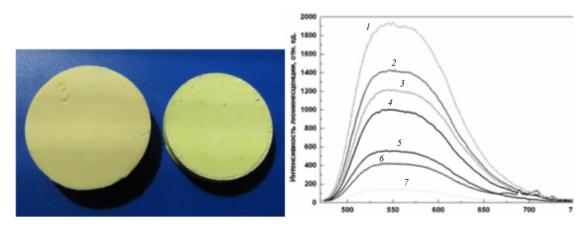
- однородность света;
- малый разброс по координатам цветности;
- высокая световая отдача СД;
- высокая цветовая однородность;
- определенная цветовая температура.

Известны различные способы размещения люминофора-преобразователя относительно кристалла светодиода (рис. 2) [1].

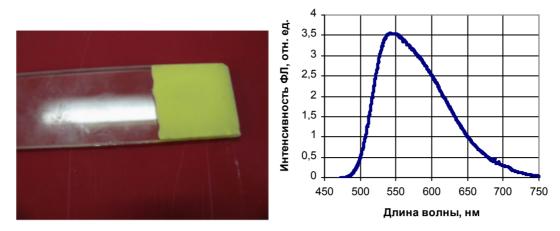

 $Puc.\ 2.$ Варианты расположения люминесцентных преобразователей относительно кристалла СД: a — нанесение компаунда на поверхность кристалла; δ — удаленная светотрансформирующая пластина; ϵ — удаленная светотрансформирующая пластина с линзой (I — кристалл СД синего цвета; 2 — люминофор-преобразователь; 3 — линза); ϵ — люминофорное покрытие на внутренней поверхности полусферической линзы

Люминофорные покрытия требуемой толщины наносят в виде суспензий. Толщина люминофорных покрытий определяется размером частиц люминофора и колеблется в диапазоне 15–30 мкм. В качестве связующих материалов, определяющих вязкость суспензий и прочность люминофорных покрытий, применяют различные полимеры.

В НИЛ ТКН ГГТУ им. П. О. Сухого разработана улучшенная методика синтеза порошковых микрокристаллических люминесцентных материалов путем соосаждения гидроксидов иттрия и алюминия аммиаком с последующей термообработкой (рис. 3, a).

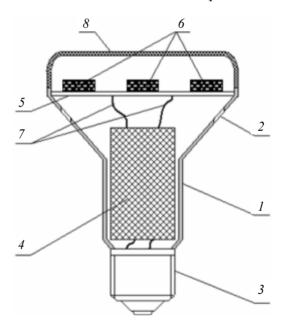

Также разработана и патентуется в настоящее время новая методика формирования наноструктурированных порошкообразных материалов на основе ИАГ, легированного ионами переходных и редкоземельных элементов (Fe, Mn, Cr, Eu, Ce и др.) методом термохимической реакции горения (рис. 3, 6), являющихся

исходными материалами для получения высокоплотной керамики и композитов для создания белых СД. Установлено, что при соблюдении оптимальных режимов идентифицируется фаза граната кубической модификации $Y_3Al_5O_{12}$.

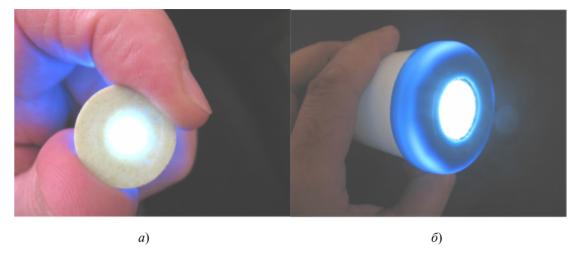

Рис. 3. Схемы получения порошка иттрий-алюминиевого граната: a – метод осаждения; δ – метод горения

В НИЛ ТКН получена люминесцентная керамика на основе порошка ИАГ и исследованы ее люминесцентные характеристики (рис. 4).

Puc. 4. Люминесцентная керамика на основе ИАГ, легированного церием и спектры ее люминесценции ($\lambda_{\text{воз6}}$ = 455 нм): I – YAG–SiO₂, A3Ce; T = 1500 °C, t = 2 ч; 2 – YAG–SiO₂, A3Ce; T = 1550 °C, t = 2 ч; 3 – Si–B–Ce – 0,15 г, T = 1600 °C, t = 1 ч; t – Si–B–Ce – 0,05 г, t = 1600 °C, t = 1 ч; t – YAG–SiO₂, A2Ce; t = 1400 °C, t = 2 ч; t – Si–B–Ce – 0,015 г, t = 1600 °C, t = 1 ч; t – YAG–SiO₂, A3Ce; t = 1300 °C, t = 2 ч


На основе порошка ИАГ получено люминесцентное покрытие и исследованы его люминесцентные характеристики (рис. 5).

Puc. 5. Люминесцентное покрытие на стекле и спектр его люминесценции ($\lambda_{8036} = 455$ нм)


Авторами разработана и запатентована конструкция светодиодной лампы (рис. 6) [2], которая предназначена для эксплуатации внутри помещений в качестве источника рассеянного белого света и может использоваться для прямой замены ламп накаливания и галогенных ламп с цоколем типоразмера Е27.

Задача, на решение которой направлена конструкция лампы [2], заключается в увеличении срока службы лампы и повышение однородности светового потока.

 $Puc.\ 6.\$ Лампа светодиодная: I — полимерно-керамический корпус; 2 — вентиляционные отверстия; 3 — цоколь E27; 4 — блок питания; 5 — теплопроводящая подложка; 6 — синие светодиоды мощностью 1 или 3 Вт; 7 — проводники; 8 — рассеиватель, выполненный в виде преобразователя света (термостойкая пластина или сегмент сферы)

Лампа (рис. 6) состоит из цоколя типоразмера E27, композитного полимернокерамического корпуса, в котором находится блок питания, преобразующий переменное напряжение сети 220 В в постоянное напряжение 12 В, проводников и теплопроводящей подложки, с расположенными на ней светодиодами синего цвета свечения. В верхней части корпуса расположен рассеиватель — термостойкая полимерно-керамическая пластина с распределенными в ней частицами люминофора (рис. 7, a), которая преобразует свечение синих светодиодов в белый рассеянный свет. Люминофор в виде покрытия может быть нанесен на внутреннюю или внешнюю поверхность рассеивателя (рис. $7, \delta$).

Puc.~7.~Образцы люминесцентных преобразователей: a – композит SiO_2 – $YAG:Ce^{3+}$ при возбуждении люминесценции синим светодиодом; δ – макет осветительного прибора на основе синих светодиодов и люминесцентного преобразователя

Заключение

Разработаны методики синтеза порошкообразных материалов, активированных ионами редкоземельных элементов для преобразования излучения синих СД в белый свет, которые могут быть использованы в качестве исходного сырья для получения люминесцирующих полимерно-керамических композитов и оптической керамики.

Изучение спектрально-люминесцентных характеристик, полученных порошков и композитов на их основе подтвердило перспективность их применения для оптоэлектроники и систем освещения.

Авторами разработана и запатентована конструкция светодиодной лампы, которая предназначена для эксплуатации внутри помещений в качестве источника рассеянного белого света и может использоваться для прямой замены ламп накаливания и галогенных ламп с цоколем типоразмера E27.

Авторами подготовлена и подана заявка на изобретение «Способ получения наноструктурированного порошка ИАГ, легированного церием».

Литература

- 1. Allen, S. C. A nearly ideal phosphor-converted white light-emitting diode / S. C. Allen, A. J. Steckl // Applied physics letters 92, 143309 (2008).
- 2. Добродей, А. О. Лампа светодиодная : пат. на полезную модель РБ / А. О. Добродей, Е. Н. Подденежный. № 6440 ; получ. 03.05.2010 ; опубл. 30.08.2010 // Афіц. бюл. / Нац. цэнтр інтэлектуал. уласнасці. 2010. № 4 (75). С. 236.

Получено 09.11.2010 г.