УДК 535.42:534.29

БРЭГГОВСКОЕ ОТРАЖЕНИЕ СВЕТОВЫХ ВОЛН ОТ СВЕРХРЕШЕТОК ВБЛИЗИ ЭКСИТОННЫХ РЕЗОНАНСОВ

П.А. ХИЛО, Л.И. КРАМОРЕВА, Н.В. ШАТЬКО

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Теоретически исследовано влияние экситонного резонанса в слое сверхрешетки на ее оптические свойства. Показано, что при совпадении частот брэгговского и экситонного резонансов в спектре отражения появляется глубокий провал: глубина провала обратно пропорциональна коэффициенту затухания экситона, а ширина провала пропорциональна параметру продольно-поперечного расщепления. Изучено влияние экситонного резонанса на поляризационные характеристики отраженных от сверхрешетки световых волн.

Введение. Сверхрешетки (СР) на основе GaAs-AlAs широко используются в различных оптических устройствах в качестве брэгговских отражателей [1-3]. Одним из свойств CP исследования оптических является поляризационная методов спектроскопия отраженного света, так как наличие брэгговского резонанса и тонкой структуры брэгговского отражения существенно влияют на эллиптичность и азимут поляризации световых волн [4]. В [5] исследованы энергетические коэффициенты отражения и поляризационные эффекты при наклонном падении световых волн на СР на основе GaAs-AlAs с линейным поглощением одного из слоев. Вместе с тем, хорошо известно, что кристаллы GaAs имеют экситонные полосы поглощения, лежащие в инфракрасной области спектра [6]. Влияние резонансного экситонного поглощения на энергетические коэффициенты отражения СР для случая нормального падения световых волн исследовано в работе [5], но поляризационные характеристики световых волн при отражении от резонансно поглощающих СР до сих пор не изучались.

В настоящей работе исследованы энергетические и поляризационные характеристики отраженных световых волн при наклонном падении на СР, когда частота экситонного резонанса расположена в пределах одного из брэгговских максимумов отражения.

Математическая модель. Рассмотрим отражение световой волны от СР, содержащей N пар чередующихся слоев *GaAs-AlAs*. Частотная зависимость диэлектрической проницаемости *GaAs* в окрестности изолированного экситонного резонанса описывается функцией [6]:

$$\varepsilon_2(\omega) = \varepsilon_2 \left(1 + \frac{\omega_{LT}}{\omega_0 - \omega - i\Gamma} \right), \tag{1}$$

где ω_0 – частота резонанса, ω_{LT} – продольно-поперечное расщепление, Γ – затухание экситона.

Профиль показателя преломления $n(z, \omega)$ вдоль оси Z такой CP описывается выражением:

$$n(z,\omega) = \begin{cases} n_0 & z < 0, \\ \tilde{n}_2(\omega) & m\Lambda < z < m\Lambda + b, \\ n_1 & m\Lambda + b < z < (m+1)\Lambda, \\ n_1 & z > N\Lambda, \\ m = 0,1...N, \end{cases}$$
(2)

где n_0 – показатель преломления покрытия, $\tilde{n}_2(\omega) = \sqrt{\varepsilon_2(\omega)}$, $\tilde{n}_2(\omega) = n_2(\omega) + i\chi_2(\omega)$, где $n_2(\omega)$, $\chi_2(\omega)$ – действительная и мнимая части показателя преломления слоев *GaAs*, n_1 – показатель преломления слоев *AlAs*, $\Lambda = a + b$ – период CP. Для рассматриваемой модели (1) экситонного резонанса имеем:

$$n_{2}(\omega) = \frac{1}{2}\sqrt{\varepsilon_{2}'(\omega) + \sqrt{\varepsilon_{2}'^{2}(\omega) + \varepsilon_{2}''^{2}(\omega)}}; \quad \chi_{2}(\omega) = \frac{1}{2}\sqrt{-\varepsilon_{2}'(\omega) + \sqrt{\varepsilon_{2}'^{2}(\omega) + \varepsilon_{2}''^{2}(\omega)}},$$

где $\varepsilon_{2}'(\omega) = \varepsilon_{2}\left(1 + \frac{\omega_{LT}(\omega_{0} - \omega)}{(\omega_{0} - \omega)^{2} + \Gamma^{2}}\right), \quad \varepsilon_{2}''(\omega) = \frac{\varepsilon_{2}\Gamma\omega_{LT}}{(\omega_{0} - \omega)^{2} + \Gamma^{2}}.$

Выберем систему координат так, чтобы плоскость XZ совпадала с плоскостью падения, а ось Y – была перпендикулярна к ней. Пусть плоскополяризованная световая волна с азимутом поляризации φ_0 падает под углом Θ_0 на CP. Электрические векторы падающей E_0 и отраженной E_1 световых волн удобно представить в виде разложения:

$$E_0 = e_{p0}A_0 + e_2B_0, E_1 = e_{p1}A_1 + e_2B_1,$$

где $e_{p0} = \frac{[e_2, k_0]}{|[e_2, k_0]|}, e_{p1} = \frac{[e_2, k_1]}{|[e_2, k_1]|}$ – единичные векторы поляризации, лежащие в

плоскости падения, e_2 – единичный вектор поляризации, перпендикулярный к ней; k_0 , k_1 – волновые векторы падающей и отраженной волн; A_0 , $A_1 - p$ – составляющие; B_0 , B_1 – *s*-составляющие электрического вектора световой волны; $A_0 = A_{in} \cos \varphi_0$, $B_0 = A_{in} \sin \varphi_0$, A_{in} – амплитуда падающей световой волны.

Компоненты A_1 , B_1 электрического вектора E_1 отраженной от СР световой волны равны:

$$A_1 = A_{in}r_p\cos\varphi_0, \quad B_1 = A_{in}r_s\sin\varphi_0$$

где $r_s = \frac{r_{01}^s + r_s^{sL}}{1 + r_{01}^s r_s^{sL}}, r_p = \frac{r_{01}^p + r_p^{sL}}{1 + r_{01}^p r_p^{sL}}, r_{01}^s, r_{01}^p - френелевские коэффициенты отражения на$

границах сред с показателями преломления n_0 и n_1 ; r_s^{sL} , r_p^{sL} – коэффициенты отражения волн *s* - и *p* - поляризаций от согласованной СР. Очевидно, что учет экситонного поглощения в слоях *GaAs* приводит к зависимости r_s^{sL} , r_p^{sL} от частоты. Амплитудный коэффициент отражения от согласованной СР дается выражением [7]:

$$r^{sL} = \frac{CU_{N-1}}{AU_{N-1} - U_{N-2}},$$
(3)

где С, А-элементы матрицы переноса, имеющие вид:

$$C = i\delta\beta e^{-i\varphi_1}\sin\varphi_2, A = \delta e^{-i\varphi_1}(\cos\varphi_2 - i\alpha\sin\varphi_2),$$

где $\delta = (1 - r_{12}^2)/t_{12}t_{21}$, r_{12} – френелевские коэффициенты отражения на границе слоев, t_{12} , t_{21} – френелевские коэффициенты прохождения слоев СР, $\varphi_1 = \omega a m_{1z}/2c$, $\varphi_2 = \omega b (m'_{2z} + im'_{2z})/2c$, где m_{1z} – проекция вектора рефракции m_1 на ось Z в слое AlAs, m'_{2z} , m''_{2z} – действительная и мнимая проекции вектора рефракции m_2 на ось Z в слое GaAs, которые выражаются через $n_2(\omega)$, $\chi_2(\omega)$:

$$m'_{2z} = \frac{1}{\sqrt{2}} \sqrt{p(\omega) + \sqrt{p^2(\omega) + q^2(\omega)}}, \quad m''_{2z} = \frac{1}{\sqrt{2}} \sqrt{-p(\omega) + \sqrt{p^2(\omega) + q^2(\omega)}},$$

где $p(\omega) = n_2^2(\omega) - \chi_2^2(\omega) - n_1^2 \sin^2 \theta_0$, $q(\omega) = 4n_2^2(\omega)\chi_2^2(\omega)$,

 $U_N = \sin[(N-1)K\Lambda]/\sin(K\Lambda), K\Lambda = \arccos[(A+D)/2], K-$ модуль волнового вектора волны Блоха в СР, $D = \delta \exp(i\varphi_1)(\cos\varphi_2 + i\alpha\sin\varphi_2)$. Параметры α и β зависят от состояния поляризации волн. Для волны *s*-поляризации при расчете r_s^{sL} следует полагать:

$$\alpha_{s} = \frac{1}{2} \left(\frac{m_{1z}}{m'_{2z} + im''_{2z}} + \frac{m'_{2z} + im''_{2z}}{m_{1z}} \right), \ \beta_{s} = \frac{1}{2} \left(\frac{m'_{2z} + im''_{2z}}{m'_{1z}} - \frac{m'_{1z}}{m'_{2z} + im''_{2z}} \right).$$

Для волны p -поляризации при расчете r_p^{sL} параметры α и β принимают вид:

$$\alpha_{p} = \frac{1}{2} \left(\frac{m_{1z}(m_{2} + i\chi)^{2}}{m_{1}^{2}(m'_{2z} + im''_{2z})} + \frac{m_{1}^{2}(m'_{2z} + im''_{2z})}{m_{1z}(m_{2} + i\chi)^{2}} \right),$$

$$\beta_{p} = \frac{1}{2} \left(\frac{m_{1z}(m_{2} + i\chi)^{2}}{m_{1}^{2}(m'_{2z} + im''_{2z})} - \frac{m_{1}^{2}(m'_{2z} + im''_{2z})}{m_{1z}(m_{2} + i\chi)^{2}} \right).$$

Вдали от экситонного резонанса $\chi_2(\omega) \to 0$, следовательно $q(\omega) \to 0$ и выражение (3) определяет амплитудный коэффициент отражения согласованной СР без учета поглощения [7].

Введем комплексную величину $\xi = \frac{B_1}{A_1} = \frac{r_s}{r_p} t g \varphi_0$, которая позволяет рассчитать эллиптичность ρ отраженной волны [8]:

$$\rho = \frac{1 + |\xi|^2 - \sqrt{\left(1 + |\xi|^2\right)^2 + \left(\xi - \xi^*\right)^2}}{1 + |\xi|^2 + \sqrt{\left(1 + |\xi|^2\right)^2 + \left(\xi - \xi^*\right)^2}}.$$
(4)

Исходя из выражений (3) и (4) изучались спектральные зависимости энергетических коэффициентов отражения световых волн *s* - и *p* -поляризаций, эллиптичности и ориентации эллипса поляризации отраженной от СР световой волны при условии, что частота экситонного резонанса находится в пределах брэгговского максимума первого порядка. Исследовалась классическая сверхрешетка *GaAs-AlAs* с показателями преломления $n_1 = 3,4$ и $n_2 = 3,6$ и соотношением толщины слоев b = a = A/2. Параметры экситона брались из экспериментальной работы [9]: $\omega_{LT} = 2,73 \cdot 10^{11}$ с⁻¹, $\Gamma = 1,67 \cdot 10^{12}$ с⁻¹.

Результаты расчетов. На рис. 1 приведены спектральные зависимости энергетических коэффициентов отражения от СР световых волн *s* - и *p* -поляризаций. Видно, что на частоте экситонного резонанса происходит глубокая модуляция коэффициентов отражения световых волн. Это поведение R_s и R_p волн объясняется тем, что в случае, когда частота падающей световой волны совпадает с частотой экситонного резонанса ω_0 , возникает значительное поглощение в слоях *GaAs*.

Рис. 1. Зависимость энергетических коэффициентов $R_{s,p}$ волн *s*- и *p*-поляризации от величины отстройки $\Delta \omega$ от резонансной частоты, N = 40

Рисунки 2, 3 демонстрируют спектральные зависимости энергетических коэффициентов отражения от СР световых волн *s*-поляризации для значений продольно-поперечного расщепления ω_{LT} и коэффициента затухания экситона Γ , отличающихся в 10 раз. Видно, что глубина провала обратно пропорциональна коэффициенту затухания экситона Γ , а ширина провала пропорциональна параметру продольно-поперечного расщепления ω_{LT} . Аналогичные спектральные зависимости имеют место для волн *p*-поляризации.

Рис. 2. Зависимость коэффициента отражения R_s волны s-поляризации от величины отстройки $\Delta \omega$ от резонансной частоты, N = 40, при различных значениях параметра продольно-поперечного расщепления $\omega_{LT} = 2,73 \cdot 10^{11} \text{ c}^{-1}$ (кривая 1) и $\omega_{LT} = 27,3 \cdot 10^{11} \text{ c}^{-1}$ (кривая 2)

Рис. 3. Зависимость коэффициента отражения R_s волны s-поляризации от величины отстройки $\Delta \omega$ от резонансной частоты, N = 40, при различных значениях коэффициента затухания $\Gamma = 1,67 \cdot 10^{12} \text{ c}^{-1}$ (кривая 1) и $\Gamma = 16,7 \cdot 10^{12} \text{ c}^{-1}$ (кривая 2)

Исследование эллиптичности ρ отраженной от СР световой волны в пределах брэгговского максимума отражения от величины отстройки $\Delta \omega$ от резонансной частоты показывает, что наличие экситонного резонанса приводит к возникновению эллиптической поляризации отраженной световой волны, максимальная величина которой пропорциональна числу слоев СР (рис. 4). Кроме того, обнаружено смещение частоты, соответствующей максимуму эллиптичности в длинноволновую область при увеличении числа слоев СР.

Рис. 4. Зависимость эллиптичности ρ отраженной световой волны от величины отстройки $\Delta \omega$ от резонансной частоты, при различных значениях числа слоев сверхрешетки

Выводы. Таким образом, в работе исследовано влияние экситонного резонанса в слое СР на ее оптические свойства. Показано, что при совпадении частот Брэгга и экситонного резонанса в спектре отражения появляется глубокий провал. Глубина провала обратно пропорциональна коэффициенту затухания экситона Γ . Ширина линии провала пропорциональна параметру продольно-поперечного расщепления ω_{LT} .

Обнаружено влияние экситонного резонанса на эллиптичность отраженного света. Наличие экситонного резонанса приводит к возникновению эллиптической поляризации отраженной световой волны, максимальная величина которой пропорциональна числу слоев СР. Кроме того, наблюдается смещение частоты, соответствующей максимуму эллиптичности в длинноволновую область спектра при увеличении числа слоев СР.

Список литературы

- 1. Saka T., Hirotani M., Susana H. //J.Appl. Phys. 1993.V.73. P 380-383.
- 2. Saka T., Hirotani M., Susana H. //J.Appl. Phys. 1993. V.74. P. 3189-3193.
- 3. Ueno Y. //IEEE J.Quant.Electron., 1994.QE-30. P. 223-224.
- 4. Хило П.А. //ЖПС. 2000. Т. 67, № 2. С. 199-202.
- 5. Хило П.А. //Изв. НАНБ. Сер. физ.-матем. наук. 2001. № 2. С. 93-96.
- 6. Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987. 616 с.
- 7. Kavokin A., Kaliteevski M. //J.Appl. Phys. 1996.V.79. P. 595-598.
- Федоров Ф.И. Оптика анизотропных сред. Минск: Издательство АН БССР, 1958. – 380 с.
- Ивченко Е.Л., Копьев П.С., Кочерешко В.П. и др. //Физ. и техн. полупроводн. 1988. – Т. 22. – С. 784-788.

Получено 27.04.2004 г.