МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ

УДК 536.2.02.001.57

К РЕШЕНИЮ НЕКОТОРЫХ ЗАДАЧ ТЕПЛОПРОВОДНОСТИ МЕТОДОМ МОДЕЛИРОВАНИЯ

Г.П. ТАРИКОВ, Н.В. КОВАЛЕВА

Гомельский государственный технический университет имени П.О. Сухого, Республика Беларусь

Задачи с установившейся температурой имеют большое практическое значение [1]. Стационарные тепловые потоки характеризуются тем, что в области, в которой те-

пло выделяется, установившаяся температура T удовлетворяет уравнению Лапласа $\Delta T = 0$ (1)

Рассмотрим полуограниченное тело (полупространство). На границе этого тела (z = 0) могут быть заданы различные краевые условия. Полагаем, что на части границы тела задано условие первого рода, а на остальной части границы - условие второго рода. Таким образом, приходим к краевой задаче, характеризуемой дифференциальным уравнением теплопроводности (1) и граничными условиями

T = V(x, y) в области Σ плоскости z = 0;

q=0 в плоскости z=0 вне области Σ :

Здесь $q = -\lambda \cdot grad T$, V(x, y) - температура точки (x, y) в области Σ ,

λ – коэффициент теплопроводности.

В дальнейшем, для упрощения задачи, ограничимся рассмотрением случая, когда $V(x, y) = V_0 = const$

и $q \equiv 0$ всюду в плоскости z = 0.

Аналитическое решение сформулированной краевой задачи известно лишь для тех случаев, когда область Σ представляет собой круг, эллипс, кольцо. Получить аналитические решения для более сложных форм области Σ весьма затруднительно.

Рассмотрим возможность моделирования этой задачи.

Для установления аналогии между задачами теплопроводности и электростатики удобнее иметь дело с их интегральными уравнениями.

Интегральное уравнение рассматриваемой задачи теплопроводности получено В. Новацким [2] и имеет вид

$$\iint_{\Sigma} \frac{\phi(x_1, y_1) dx_1 dy_1}{\sqrt{(x - x_1)^2 + (y - y_1)^2}} = -V_0 2\pi.$$
(2)

Здесь

$$\varphi(x,y) = \frac{\partial T}{\partial z}\Big|_{z=0}.$$

Выражение для электростатического потенциала Ψ токопроводящей пластины, имеющей также форму Σ , на которой распределяются поверхностные заряды с плотностью q(x, y), можно записать в виде [3]

$$\iint_{\Sigma} \frac{q(x_1, y_1) dx_1 dy_1}{\sqrt{(x - x_1)^2 + (y - y_1)^2}} = \Psi \cdot 4\pi k_0 \varepsilon.$$
(3)

Из аналогии уравнений (2) и (3) следует, что задачу об определении функции $\phi(x, y)$, распределенной по области Σ , можно заменить задачей о распределении заряда на поверхности токопроводящей пластины, имеющей форму области Σ .

Для оценки погрешности результатов эксперимента была решена задача для области Σ в виде эллипса с полуосями *a* и *b* с помощью электромоделирующего устройства [4].

В таблице приведены значения $\alpha = \phi(x_0, 0) / \phi(0, 0)$, полученные теоретически и экспериментально для некоторых точек области Σ .

y / b		Погреш-	
	Теоретические значения	Теоретические Экспериментальные значения значения	
0	1,00	1,02	1,58
0,1	1,01	1,03	1,96
0,2	1,03	1,05	1,92
0,3	1,05	1,07	2,06
0,4	1,1	1,12	2,15
0,5	1,16	1,18	2,04
0,6	1,25	1,28	2,04
0,7	1,41	1,44	2,24
0,8	1,67	1,63	2,35
0,9	2,30	2,22	3,42

Таблица 1

Из таблицы следует, что погрешность результатов эксперимента в основном не превышает 5 %.

После нахождения функции $\phi(x, y)$ экспериментальным путем, можно определить температурное поле в любой точке тела, используя формулу

$$T(x, y, z) = \frac{1}{2\pi} \iint_{\Sigma} \frac{\varphi(x_1, y_1) dx_1 dy_1}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + z^2}}.$$
(4)

Так как функция $\varphi(x, y)$ в результате экспериментального решения задачи будет известна лишь в ряде точек, то для вычисления интеграла (4) (по конечной области Σ) можно использовать численные методы.

Рассмотрим, в качестве примера, результаты экспериментального определения функции $\varphi(x_0, y_0)$ для области Σ в виде круга с эксцентрично расположенным круглым вырезом. При этом

$$\frac{r}{R} = \frac{2}{9}, \ \frac{l}{R_1} = \frac{2}{3}$$
 (рис. 1).

Математическая обработка результатов эксперимента позволила получить формулы для определения функции $\varphi(x_0, y_0)$ по следующим сечениям исследованной области:

Рис.1

$$1-1' \varphi(x_0, 0) = -\frac{V_0}{R_1} (1 - x_0^2)^{-\frac{1}{2}} \sum_{n=0}^{n=3} a_n x_0^{2n} ,$$

$$1-2 \varphi(y_0, 0) = -\frac{V_0}{R_1} (1 - y_0^2)^{-\frac{1}{2}} \sum_{n=0}^{n=3} b_n y_0^{2n} ,$$

$$1-3 \varphi(y_0, 0) = -\frac{V_0}{R_1} \left[\left(\frac{t}{R_1} \right)^2 - y_0^2 \right]^{-\frac{1}{2}} \sum_{n=0}^{n=3} d_n y_0^{2n} .$$
(5)

Значения коэффициентов полиномов, входящих в формулы (5), приведены в таблице.

Таблица 2

Коэффициенты							
a_0	0,649	b_0	0,649	d_0	0,288		
a_1	0,410	b_1	0,880	d_1	0,229		
<i>a</i> ₂	-0,929	b_2	-2,292	d_2	-9,163		
<i>a</i> ₃	0,627	b_3	1,577	d_3	27,308		

Таким образом, метод электрического моделирования позволяет решать задачи теплопроводности со смешанными граничными условиями для областей Σ произвольной формы.

Литература

- 1. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967.- 278с.
- 2. Новацкий В. Вопросы термоупругости. М.: АН СССР, 1962.- 321с.
- 3. Тамм И.Е. Основы теории электричества. М.: Наука, 1976. 475с.
- 4. А.с. №434426. Устройство для решения задач физических полей /Бородачев Н.М., Тариков Г.П. Бюл. № 24.- 1974.