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Abstract. Transmission of electromagnetic waves through nanometric multilayers (nanoresonators) including
a main composite layer made of two alternating strips of low-absorbing dielectrics that is sandwiched between
epsilon-near-zero (ENZ) or metallic spacer layers has been modeled. Analytical models are based on exact
solutions of electromagnetic boundary problems. The spacers with the definite properties lead to extreme
dependences of amplitude transmission coefficients on the system parameters and drastic increase in phase
difference of the transmitted waves. These effects aremost pronounced for subwavelengthmultilayer thicknesses
due to multibeam interference features in the nanoresonator, and they can be amplified when the main layer and
(or) the whole system thicknesses decrease. The investigated transmission features take place under variations of
the system parameters such as anisotropy of the main layer materials, non-ideal realization of ENZ materials,
oblique incidence of the exciting radiation (for small incidence angles). The obtained results can have
applications in development of ultra-thin nanophotonics devices using phase transformation of transmitted
waves.
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1 Introduction

The progress in theory and technologies of nanophotonics,
plasmonics, optics of metamaterials (MMs) and meta-
surfaces provided possibilities to reduce dimensions of
many optical elements such as modulators, filters,
absorbers, phase shifters, holograms, nanoresonators and
others down to nanometer values (see, e.g. recent reviews
[1–12] and numerous references in these works). The main
purpose of such ultra-small devices is to control the
radiation characteristics (amplitude, phase, polarization)
at deeply subwavelength dimensions of a composite
material or system. In particular, large phase differences
of two or more waves at the optical system output are
required for many applications. Traditionally, the
approaches based on increasing optical path difference of
the waves (usage of proper waves in anisotropic media,
propagation through different isotropic materials, applica-
tion of optically dense materials, etc.) are used in this case.
However, these methods require, as a rule, increasing
geometric dimensions of optical elements (to several
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wavelengths and larger), and application of high optical
density materials can lead to an undesirable high reflection
or small transmission due to the large mismatch of
electromagnetic properties of the device components and
ambient media.

In the recent papers [13,14], new possibilities to develop
ultra-thin transformers of reflected waves phase differences
and binary holograms on the basis of perforatedmultilayers
including epsilon-near-zero (ENZ) MMs were revealed and
investigated analytically. ENZ MMs are characterized by
small values of the real and imaginary parts of permittivity,
and these materials are promising for many optics
applications [15–21]. In particular, ENZ components
allowed implementation of new operation regimes of
nanoresonators: all-optical dynamic control of transmit-
tance [22], hybridization of ENZ modes in double nano-
cavities [23], engineering of ENZ resonances in metal-
insulator-metal nanocavities [24]. According to the results
[13,14], the usage of ENZ substrates for such multilayers
can lead to the extreme values of amplitude reflection
coefficients depending on the system parameters. The ENZ
(or metallic for thicker systems) substrate has a significant
impact on the transformation of phase difference of the
reflected waves. According to the modeling results, the
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
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Fig. 1. (a) Scheme of the multilayer with the main composite
layer formed from alternating “strips” of two different materials
that can be optically uniaxial in the general case. The rays in the
substrate transmitted through the multilayer are denoted by
numbers 1 and 2. Ein is the incident wave field, the reflected rays
in the superstrate are not shown. (b) Geometry of the
corresponding electromagnetic boundary problems. The multi-
layer includes upper and bottom layers, which electromagnetic
properties can correspond to isotropic ENZ MMs or metals, and
the main layer. The superstrate and substrate materials are
isotropic and optically thick. Er1, Er2, and Et1, Et2 are the fields
of the waves reflected from and transmitted through Strips 1 and
2, respectively, when the incident wave interacts with the
multilayer. OA denotes the optical axis direction in the materials
of Strips 1 or 2. The other denotations are given in the main text.
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optimization of this system properties allows decreasing
the holograms thicknesses down to the values of the order
of 10–20 nm as well as obtaining nanometric thickness
phase transformers of reflected waves. The analysis [13,14]
pointed to the link between the features of interaction of
electromagnetic waves with ENZ layers (for the reflection
problems) and realization of regimes of effective phase
transformation of the radiation using such low-dimensional
systems. These results make it possible to consider the
more general problem of application of ENZ MM
multilayer components for phase transformation of not
only reflected but also transmitted radiation.

The present paper is devoted to analytical modeling
(using exact solutions of the corresponding boundary
problems) of transmission of electromagnetic waves
through composite multilayers of subwavelength thick-
nesses that include a main dielectric layer sandwiched
between two ENZ MM (or metallic) spacer layers. The
numerical and graphical analysis of such a nanoresonator
model has the following main goals: (i) to specify the
features of operation of the multilayers including ENZMM
spacers that determine new possibilities of obtaining ultra-
thin devices with the large phase difference and transmis-
sion of output waves; (ii) to optimize parameters of the
system under consideration for typical materials of the
layers. The obtained results confirm, in general, possibili-
ties to apply such nanoresonators as effective ultracompact
phase transformers of a new type that can be useful for
nanophotonics applications.

The work has the following structure. The statement of
the problem, solutions of electromagnetic boundary
problems and some consequences of these solutions are
given in Section 2. The numerical modeling and graphical
analysis of the results (Sect. 3) explain the main features of
amplification of transmitted waves phase difference using
the ENZ or metallic spacers of the nanoresonators. In
particular, the conditions are considered in detail when
decreasing the main layer and (or) the whole system
thickness down to significantly subwavelength values leads
to increasing phase difference of the output waves and
rather high transmission. Section 4 includes a brief
discussion of the results and summarizes the paper. The
additional calculations excluded from the main text are
contained in Appendix.

2 Statement of the problem and analytical
model

Let us investigate transmission of an electromagnetic plane
monochromatic wave through a layered system under
oblique incidence of the wave (Fig. 1). The multilayer
scheme and geometry of the corresponding boundary
problem are illustrated in Figure 1a and b. Layers of
thicknesses dl (here and below indexes a, l=1,2,3, b
correspond to the quantities characterizing the multilayer
components in Fig. 1b) are, respectively, the upper, main,
and bottom layers. The upper and bottom layers can play a
role of spacers, protective or controlling layers, nano-
resonator mirrors depending on applications of the system.
Media in front of the upper layer (e.g. air) and behind the
bottom layer (the substrate) are assumed to be semi-
infinite (optically thick). So, the reflected wave inside of the
substrate is absent. Coordinate axis Z is perpendicular to
the layers boundaries and plane XZ is the incidence plane.
Phase multiplier exp [ik0 (m1x+m3z)� ivt] is used in
expressions for the fields below where m=(m1, 0, m3)=
k/k0 is a complex refraction vector [25], k is a wave vector
(vectors are denoted with boldface symbols), k0=v/c is a
wave number for vacuum, i2=� 1, r=(x, y, z) is a radius-
vector. The transversal component of refraction vector is
supposed to be real (m1 is constant at boundaries z=0, dl) and
the longitudinal component m3 is complex in the general
case. Electric field strengths of the incident, Ein, reflected,
Er1,2, and transmitted, Et1,2, waves are considered at the
boundaries z=0 and z= z3=d1+d2+d3 (Fig. 1).

Isotropic materials of the input non-absorbing medium
(superstrate), absorbing layers 1, 3 (spacers), and substrate
are characterized by scalar dielectric permittivities ea,1,3,b,
correspondingly. The main composite layer is formed from
the alternating “strips” of two different materials that are
assumed to be optically uniaxial in the general case (Fig. 1).
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The Strips 1 and 2 materials are characterized by the
permittivity tensors e 1ð Þ

2 ¼ diagðe 1ð Þ
e ; e 1ð Þ

o ; e 1ð Þ
o Þ and

e 2ð Þ
2 ¼ diagðe 2ð Þ

o ; e 2ð Þ
e ; e 2ð Þ

o Þ, where e 1;2ð Þ
o is double singular

and e 1;2ð Þ
e is non-singular complex eigenvalues of tensor e 1;2ð Þ

2
(here and below the upper indexes (1,2) point to the
quantities corresponding to Strips 1, 2). So, the optical axis
(OA, Fig. 1b) for the Strip 1 (2) material is parallel to axis
X (Y), respectively.

All the multilayer components are also assumed to be
absorbing (besides the superstrate) and nonmagnetic.
Permittivities ea,1,3,b or components of tensors e 1;2ð Þ

2 can
have the negative real parts, all the imaginary parts of
these quantities are positive according to the causality
condition. So, we consider absorbing linear materials of the
layers and substrate including the possible case of the MM
(ormetallic) layers.Thedenotationsa 0=Re (a) ,a00= Im (a)
will be also used for the real and imaginary parts of scalar or
vector quantities.

Let us also assume that the subwavelength thickness of
the strips d2 (along axis Z) is much less than their linear
sizes in plane XY: d2≪ lx≪ ly where lx,y are characteristic
dimensions of the strips along axes X, Y (the value of d2 is
significantly increased in Fig. 1b for illustrative purposes).
The strips can be obtained with various methods and
materials, e.g. they can be formed from liquid crystals
with the mutually perpendicular director orientations.
The similar schema of application of liquid crystals
cells are used in components of display technologies
for phase modulation of the transmitted radiation
[26–28].

One can note that the considered geometry of inclusions
(the strips) of two materials in the main composite layer is
not critical for the further analysis. For example, this layer
can be originated by the strips with different (unequal)
values of parameters lx,y or by the system of parallel to axis
Z microholes in a homogeneous host material [13,14,29]. It
is important that there are, mainly, two transmitted waves
at the output of the system (in the substrate), and these
waves correspond to interaction of the electromagnetic
field with two different materials (Strips 1, 2) in the main
layer.

We use the constitutive relations D= eE, B=mH
(m=1) and Maxwell’s equations for monochromatic waves
[25]

E ¼ �e�1 m � H½ �;H ¼ m � E½ �; ð1Þ

where e�1 is the inverse to e tensor, and the dispersion
equation, m2= e, for isotropic materials of layers 1, 3 and
media outside of the multilayer. Then the electric field
strength of the waves in media v=a, 1, 3, b (Fig. 1b) can be
written as

E±
v zð Þ ¼ a±

v ; b±v ; ∓
m1

m3ð Þv
a±
v

� �
exp ± ik0 m3ð Þvz

� �
; ð2Þ
where (and below) upper indexes “+” and “–” correspond to
the quantities characterizing transmitted and reflected
proper waves in an isotropic medium (that decay in the
directions along and oppositely to axis Z, respectively), and
values of m3ð Þv are chosen from the corresponding
dispersion equations for the transmitted waves, according
to the condition ðm00

3Þv > 0: In equation (2), the common for
all the waves factor exp(ik0m1x� ivt) is omitted and
complex scalar coefficients a±

v ; b∓v are determined from the
solutions of the boundary problems (for the substrate
a�b ¼ b�b ¼ 0). Themagnetic fields strengths corresponding
to equation (2) are determined by the second relation of
equation (1). Coefficients a±

v ; b∓v in equation (2) are
different for the waves corresponding to interaction of the
incident wave with the Strips 1 and 2 materials (e.g. for
fields Er1 and Er2, Et1 and Et2, Fig. 1b).

The dispersion equations for uniaxial materials of the
strips and corresponding TM and TE proper waves in these
materials take the form

m2
1

e 1ð Þ
o

þm2
3

e 1ð Þ
e

¼ 1; E
1ð Þ
TM ¼ P

m3

e 1ð Þ
e

; 0;�m1

e 1ð Þ
o

 !
;H

1ð Þ
TM ¼ P 0; 1; 0ð Þ;

ð3Þ

m2
1 þm2

3 ¼ e 1ð Þ
o ;E

1ð Þ
TE ¼ Q 0; 1; 0ð Þ;H 1ð Þ

TE ¼ Q �m3; 0;m1ð Þ;
ð4Þ

m2
1 þm2

3 ¼ e 2ð Þ
o ;E

2ð Þ
TM ¼ T

m3

e 2ð Þ
o

; 0;�m1

e 2ð Þ
o

 !
;H

2ð Þ
TM¼ T 0; 1; 0ð Þ;

ð5Þ

m2
1 þm2

3 ¼ e 2ð Þ
e ;E

2ð Þ
TE ¼ R 0; 1; 0ð Þ;H 2ð Þ

TE ¼ R �m3; 0;m1ð Þ;
ð6Þ

where equations (3), (4) and (5), (6) correspond to the
materials of Strips 1 and 2, the values ofm3 are determined
by the corresponding dispersion equations according to the
condition m00

3 > 0 ðm00
3 < 0Þ for the transmitted (reflected)

waves, and the phase multiplayer exp [ik0 (mr)� ivt] is
omitted for each of the proper waves. Complex scalar
coefficients P, Q, T, R in equations (3)–(6) for the
transmitted and reflected waves are determined from the
solutions of the boundary problems.

To solve the electromagnetic boundary problems, we
apply the standard approach using continuity of tangential
components of the resulting fields E, H on the multilayer
boundaries. Then the following expressions for the
amplitude transmission coefficients of wave 1 (transmitted
through Strip 1, Fig. 1) for TM and TE polarizations of the
incident wave, tTM;TE

1 ¼ jtTM;TE
1 jexpði’TM;TE

1 Þ; can be
obtained
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See equation (7), (8) below

where the denotations for equations (2)–(6) are also used,
ha;b;1;3 ¼ m3ð Þa;b;1;3; hTM;TE ¼ ðm3

TM;TEÞ 1ð Þ (according to

the dispersion equations from Eqs. (3) and (4)).
In a similar manner, we have the expressions for the

amplitude transmission coefficients of wave 2 (transmitted
through Strip 2, Fig. 1) for TM and TE polarizations of the
incident wave, tTM;TE

2 ¼ jtTM;TE
2 jexpði’TM;TE

2 Þ :

See equation (9), (10) below

where hTM;TE ¼ ðmTM;TE
3 Þ 2ð Þ (according to the dispersion

equations from Eqs. (5), (6)). In equations (7)–(10), the
expressions for quantities A±, B±

(1,2), C±
(1,2), D±, E±

(1,2),
F±

(1,2) are given in Appendix, values of ha,b,1,3, h
TM,TE are

chosen for the transmitted waves (Im (ha,b,1,3)> 0,
Im (hTM,TE)> 0), and the parameters are also used:
a= ea/ha, b= e1/h1, c ¼ hTM 1ð Þ=e 1ð Þ

e , d= e3/h3, f= eb/hb,
g= hTE (1)/h1, h= hb/h3, p ¼ hTM 2ð Þ=e 2ð Þ

o , q= hTE (2)/h1.

Quantities TTE;TM
1 ¼ jtTE;TM

1 j2, TTE;TM
2 ¼ jtTE;TM

2 j2 can
be considered as the energy transmission coefficients at the
boundary z= z3, and ’TE;TM

1 , ’TE;TM
2 are the phase shifts

arising in transmission of the waves corresponding to rays 1
and 2 (Fig. 1). So, the exact solutions of the
boundary problems are determined by equations
(7)–(10). Let us note that quantities tTM;TE

1;2 in equations
(7)–(10) characterize relations of the corresponding
components of field E.
tTM1 ¼ a
þð1Þ
b exp ðik0hbz3Þ

a
þð1Þ
a

¼
Aþ
b þ cA�

� �
B

ð1Þ
þ � fB

ð1Þ�
d

� �
exp ð

tTE1 ¼ b
þð1Þ
b exp ðik0hbz3Þ

bþð1Þ
a

¼
ðgDþ þD�Þ

�
hE

ð1Þ
þ � Eð1Þ

�
�
exp ð

tTM2 ¼ a
þð2Þ
b exp ðik0hbz3Þ

a
þð2Þ
a

¼
Aþ
b þ pA�

� �
B

ð2Þ
þ � fB

ð2Þ�
d

� �
exp ð

tTE2 ¼ b
þð2Þ
b exp ðik0hbz3Þ

bþð2Þ
a

¼
ðqDþ þD�Þ

�
hE

ð2Þ
þ � Eð2Þ

�
�
exp ð
The phase shift difference (PSD) arising for transmitted
(TM or TE) waves 1 and 2 at the boundary z= z3 and
determining phase transformation effectiveness takes the
form

D’TM;TE ¼ ’TM;TE
1 � ’TM;TE

2 : ð11Þ
Besides the exact PSD (Eq. (11)) at the multilayer

output, we will also use the phase differences arising
between TM or TE waves (that is, for the TM or TE
exciting wave) passing one time (for one pass): (i) only
through the different strips of the main layer

DFTE;TM ¼ Re hTM;TE 1ð Þ
� �

�Re hTM;TE 2ð Þ
� �h i

k0d2; ð12Þ

(ii) only through the different strips of the main layer, but
for the case when the thickness of these strips (d2) is equal
to the whole multilayer thickness (d1+ d2+ d3), that is,
when replacing layers 1, 2, 3 by only the Strips 1, 2
materials

DF∼TE;TM

¼ Re hTM;TE 1ð Þ
� �

�Re hTM;TE 2ð Þ
� �h i

k0ðd1 þ d2 þ d3Þ:
ð13Þ

Then relations D’/DF, D’/DF∼ for the corresponding
polarizations characterize the relative changes of waves 1, 2
PSD at the multilayer output (in presence of layers 1, 2, 3)
in comparison with a “one pass” PSD of these waves arising
�16ac

ik0hTMd2Þ þ cA� � Aþ
b

� �
C

ð1Þ
þ � fC

ð1Þ�
d

� �
exp ð�ik0hTMd2Þ

;

ð7Þ

16hah
TE

ik0hTEd2Þ þ ðgDþ �D�Þ
�
hF

ð1Þ
þ � F ð1Þ

�
�
exp ð�ik0hTEd2Þ

;

ð8Þ

�16ap

ik0hTMd2Þ þ pA� � Aþ
b

� �
C

ð2Þ
þ � fC

ð2Þ�
d

� �
exp ð�ik0hTMd2Þ

;

ð9Þ

16hah
TE

ik0hTEd2Þ þ ðqDþ �D�Þ
�
hF

ð2Þ
þ � F ð2Þ

�
�
exp ð�ik0hTEd2Þ

;

ð10Þ
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for passing through: (i) only the main layer, equation (12);
(ii) the whole multilayer filled by only materials of the
strips, equation (13).

Using the obtained transmission characteristics (Eqs.
(7)–(10)) and the boundary problems solutions, one can
also determine quantities that serve as peculiar amplitude
reflection coefficients characterizing the radiation param-
eters inside of the main layer relatively to ones for the
incident wave. In particular, we have for the field inside of
Strip 1

rTM21 ¼ Pþ

a
þ 1ð Þ
a

¼
2tTM1 dC

1ð Þ
þ � fC 1ð Þ

�
� �

exp ik0 hbz3 � hTM 1ð Þz2
� 	� �

B 1ð Þ
� C

1ð Þ
þ �B

1ð Þ
þ C 1ð Þ

�
;

ð14Þ
rTM23 ¼ P�

a
þ 1ð Þ
a

¼
2tTM1 dB

1ð Þ
þ � fB 1ð Þ

�
� �

exp ik0 hbz3 þ hTM 1ð Þz2
� 	� �

B
1ð Þ
þ C 1ð Þ

� �B 1ð Þ
� C

1ð Þ
þ

;

ð15Þ
rTE21 ¼ Qþ

bþ 1ð Þ
a

¼
2tTE1 h3F

1ð Þ
� � hbF

1ð Þ
þ

� �
exp ik0 hbz3 � hTE 1ð Þz2

� 	� �
F 1ð Þ

� E
1ð Þ
þ � F

1ð Þ
þ E 1ð Þ

�
;

ð16Þ
rTE23 ¼ Q�

bþ 1ð Þ
a

¼
2tTE1 h3E

1ð Þ
� � hbE

1ð Þ
þ

� �
exp ik0 hbz3 þ hTE 1ð Þz2

� 	� �
F

1ð Þ
þ E 1ð Þ

� � F 1ð Þ
� E

1ð Þ
þ

;

ð17Þ
where the denotations from equations (3), (4), (7), (8) are
used. Quantities rTM;TE

21 and rTM;TE
23 characterize reflection

of the proper waves of the corresponding polarizations from
the upper (z= z1= d1) and bottom (z= z2= d1+ d2)
boundaries of the main layer (Fig. 1b) inside of the layer.
As above, we also use energy reflection coefficients at these
boundaries that are determined by the relations
RTE;TM

21 ¼ jrTM;TE
21 j2, RTE;TM

23 ¼ jrTM;TE
23 j2. In a strict sense,

quantities rTM;TE
21;23 and RTE;TM

21;23 are not reflection coeffi-
cients, as the numerators and denominators in equations
(14)–(17) (e.g. Pþ=aþ 1ð Þ

a ) are taken for the different
boundaries z=0, z1,2 without regard for the corresponding
phase multipliers. However, these quantities can be used to
characterize qualitatively energy distribution of the proper
ITM 1ð Þ ¼ jS z1 � z � z2ð Þ 1ð Þ�j
jSin z ¼ 0ð Þj ¼ cos2cffiffiffiffiffi

ea
p

ffiffiffiffiffiffiffiffiffiffiffi
Re

"(vuut
waves in the main layer near boundaries z= z1,2. The
similar to equations (14)–(17) relations can be obtained for
the field inside of the Strip 2 material.

Using equations (3), (14), (15) and the expression for
the time-averaged Pointing vector, S ¼ c

8p

� 	
Re E � H�½ �,

where c is the speed of light in vacuum and asterisk (here
and below) denotes complex conjugation, one can obtain
the normalized value of the resulting electromagnetic field
intensity inside of the main layer (for Strip 1 and TM
incident wave)

See equation (18) below

where the denotations are used: U ¼ jrTM21 j2 exp �2k0z½
Im hTM 1ð Þ� 	� þ rTM21 rTM23

� 	�
exp 2ik0zRe hTM 1ð Þ� 	� �

,V ¼ jrTM23 j2
exp 2k0zIm hTM 1ð Þ� 	� �þrTM23 rTM21

� 	�
exp �2ik0zRe hTM 1ð Þ� 	� �

,
Sin (z=0) is the time-averaged Pointing vector and c is
incidence angle of the incident wave on the boundary z=0.
Equation (18) takes into accountmultibeam interference of
the opposite transmitted and reflected TM proper waves
inside of the main layer.

The standard relations for phase incursion of the waves
inside of the resonator are used usually to determine
conditions when transmission maxima of the similar
nanoresonators are realized (e.g. [22,30]). However, obtain-
ing compact analytical expressions for phases of the
transmitted waves is not trivial in the case under
consideration. So, the detailed numerical analysis of
phases, amplitude and energy transmission coefficients of
the output waves will be executed below using equations
(7)–(13).

Obviously, the obtained simplified model considers
only two “ways” of the transmission in the system that
correspond to “conventional” transmission of rays 1 and 2
(Fig. 1). Clearly, a part of the radiation also reflects from
the strips vertical walls and propagates from one to other
strip with the incidence angle c growth. Moreover, the
analytical model does not account for the strips form, their
location in plane XY, and possible excitation of additional
near-field modes including the effects of extraordinary
interaction of radiation with the system (under conditions
of surface plasmons excitation for the ordered inclusions
arrays) [31–34]. However (similarly to the reflection
models [13,14]), the multilayer (Fig. 1) includes dielectric
strips with the deeply subwavelength thickness (d2≪ l)
and “macroscopic” dimensions in plane XY (l< lx≪ ly).
For optical applications, the values of lx,y (or other
parameters characterizing sizes of the main layer
inhomogeneities and distances between them in plane
XY) can be estimated as several microns or larger. Exactly
that and the condition of small incidence angles allow the
use of transmission coefficients (Eqs. (7)–(10)) for the
main part of the transmitted radiation, and without
application of more complicated diffraction theory
methods (e.g. [35–38]). The similar approach (based on
exact analytical solutions of the boundary problems) was
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

e 1ð Þ
o

U þ Vð Þ
#)2

þ Re
hTM 1ð Þ

e 1ð Þ
e

U � Vð Þ
" #( )2

; ð18Þ



Fig. 2. Dependences of phases ’1,2 (a–c) and energy transmission
coefficients T1,2 (d–f) of waves 1, 2 on the main layer thickness d2
for various materials of layers 1, 3. The values of parameters are:
e1= e3= 2+10�3i (a,d); e1= 2+10�3i, e3= 0.01+0.01i (b,e);
e1= e3= 0.01+0.01i (c,f). The values of parameters for all the
graphs are: d1,3 = 0.25 mm, l=0.63mm. Parameter d2 is used as
the abscissa axis for all the graphs.
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recently confirmed experimentally for calculation of the
waves reflected from the nanometric binary holograms
[29].

3 Numerical and graphical analysis

3.1 Main assumptions and parameters

The main goal of the analysis below is to determine
parameters of the investigated systems when rather large
values of PSD and transmission of waves 1, 2 take place for
the minimal main layer or whole multilayer thicknesses.
According to equations (11)–(13), it means that we
consider the cases when D’/DF> 1, D’/DF∼> 1, that
is, when it is possible to “amplify” PSD of waves 1, 2 in
comparison with the “one pass” PSD corresponding to the
one-time run of the radiation through the main layer or the
whole system. Indexes TM, TE are further omitted when
both types of the waves are considered or the choice of the
waves is clear from the context.

We choose some model ENZ MMs and silver as a
metallic component frequently used in photonics applica-
tions for the materials of layers 1, 3 (the upper and bottom
layers, Fig. 1). The cases are considered when the main
layer is formed from the strips of transparent (low-
absorbing) dielectrics (the numerical analysis shows that it
is a rather optimal case). For all the figures below, air is
assumed to be the superstrate and substrate medium
(ea,b=1), and the spacer layers thicknesses are equal
(d1= d3). The effects under consideration also take place
for the general (less “symmetric”) cases when ea≠ eb, d1≠ d3.

The main features of the nanoresonators occur for both
oblique (for small incidence angles) and normal incidence
of the exciting wave (when the difference between TE
and TM waves disappears). Isotropic dielectrics are
chosen as the main layer materials for many figures below
(Figs. 2–10, Sect. 3.2). The impact of optical anisotropy of
the strips materials (that is not a determining factor for the
effects under investigation within the considered parame-
ter ranges) is characterized by Figures 11, 12 data and
numerical estimations given below (Sect. 3.3). For all the
graphs in Figures 2–10, the parameters are chosen: c=0
(besides the Fig. 8 data), e 1ð Þ

o ¼ e 1ð Þ
e ¼ 2:5þ 10�3i,

e 2ð Þ
o ¼ e 2ð Þ

e ¼ 1 (the Strip 2 material is air). The other
parameter values are given in the figures captions.

Phase shifts in the graphs further are calculated in
relative units of radians/p. Phases ’1,2 are determined
below using built-up functions of the computer algebra
system (Mathcad, PTC) and values of t1,2 (Eqs. (7)–(10)).
As these built-up functions return the principal argument
of a complex number (between –p and p), so phase values
“jumps” can be in graphs of dependences of quantities ’1,2
on the system parameters when phase takes values ±p.

3.2 Case of isotropic main layer materials

The data in Figure 2 illustrate phase and energy
characteristics of the transmitted waves depending on
the main layer thickness for the following choice of the
parameters of layers 1, 3: “conventional” layers (Fig. 2a,d);
one of the layers is conventional, and the other one is ENZ
(Fig. 2b,e); both the layers are ENZ (Fig. 2c,f). When
thickness d2 is varying, the phases and transmission
coefficients modulation is significantly amplified in the
transition from “conventional” to ENZ layers 1, 3.
Figure 2b, e data are “intermediate“ in comparison with
the cases of “conventional” and ENZ layers 1, 3, and the
corresponding graphs do not change when the layers
properties are rearranged: e1↔ e3. When the values of d2
change, for the case of ENZ layers 1, 3, the additional
modulation of quantities ’1,2 and periodic resonance
changes of quantities T1,2 from 0 up to 0.9 are realized
(the data in Fig. 2c,f in comparison with ones in Fig. 2a,d).
It is seen that positions of characteristic points in the
graphs (phase jumps, transmission extrema) depend
strongly on the layers 1, 3 material. The distances between
the neighboring abrupt changes of ’1,2 values from p to –p
(Fig. 2a–c) and maxima of functions T1,2 (d2) (Fig. 2d–f)
are well described by constant values Dd2 and Dd2/2,

correspondingly, where Dd2 ¼ l=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re e 1;2ð Þ

2

� �r
. So, these

properties for each of the nanoresonators corresponding to
Strips 1 and 2 (for low-absorbing main layer materials) are



Fig. 3. The effect of parameter d2 on the real and imaginary parts
of amplitude transmission coefficients of waves 1, 2 (a, b) and
trajectories of the tips of vectors t1,2 on the complex plane
depending on parameters d2 (c–f) and e01;3 (g,h). The values of
parameters are: e1= e3= 2+10�3i (a, c, e); e1= e3= 0.01+0.01i
(b, d, f); e001;3 ¼ 10�3, d2= 39 nm (g, h). The values of parameters
for all the graphs are: d1,3 = 0.25mm, l=0.63mm.
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similar to ones for the “ideal” Fabry-Perot resonator [39]
and have the pronounced interference nature. One can see
that the presence of both ENZ layers 1, 3 leads to the
significant amplification of the interference effects.

Changes of quantities t0;001;2 in the transition from
“conventional” to ENZ layers 1, 3 (for the data of
Fig. 2a,d and c,f) are illustrated in Figure 3. For
“conventional” layers 1, 3, the graphs of functions t0;001;2 d2ð Þ
are rather smooth and periodic (Fig. 3a). It is seen, that the
resonance character of the dependences in Figure 2c, f is
due to the similar features of graphs t0;001;2 d2ð Þ (Fig. 3b).
For the case of ENZ layers 1, 3, the trajectories of the tips of
vectors t1;2 ¼ ðt01;2; t001;2Þ on the complex plane change
strongly and similarly when thickness d2 is varied
(Fig. 3c–f). For quantities t1,2 characterizing waves 1, 2,
the trajectory form changes cardinally (Fig. 3c,e in
comparison with Fig. 3d,f). The data in Figure 3g,h
illustrate the trajectories of vectors t1,2 tips for changes of
parameters e01 ¼ e03 in the range (� 2 ;2) when d2= 39 nm.
For the values of the order e01;3 ¼ �0:2� 0:2 the tip of
vector t1 “moves” on the complex plane much “faster” than
one for vector t2 providing larger values of |D’| for ENZ
layers 1, 3. However, the trajectories of the tips of vectors
t1,2 for changing e01;3 are similar (Fig. 3g,h). In Figure 3c–h
graphs, there are denotations of the characteristic points
(values of d2, Fig. 3c–f, and parameters e01;3, Fig. 3g,h)
describing the “motion” of vectors t1,2 tips for increasing d2
or e01;3.

Figure 4 illustrates phase differences (D’, DF, DF∼)
and transmission coefficients (T1,2) of waves 1, 2 for
“conventional” and ENZ layers 1, 3 depending on the
system parameters. For “conventional” layers 1, 3,
quantities T1,2 depend weakly on parameters d2 and l
(when neglecting frequency dispersion of the multilayer
components), and quantities D’, DF have close values
(Fig. 4a,b). So, in this case PSD of waves 1 and 2 at the
boundary z= z3 coincides practically with “one pass” phase
difference DF (Eq. (12)). The situation changes drastically
when choosing ENZ layers 1, 3 for rather thin (sub-
wavelength) main layers (Fig. 4c–h). With that, the ranges
of parameters d2, l, d1,3, e01;3 values can be realized when the
condition D’≫DF is satisfied. So, ENZ layers 1, 3
(isotropic and the same ones for Strips 1, 2) lead to the
drastic increase of waves 1, 2 PSD at the multilayer output
in comparison with quantity DF. In this case, the strong
dependences of quantities T1,2 on the system parameters
also take place (Fig. 4c,d,f,g). It is important that large
values ofD’ andD’/DF can be obtained for the rather high
transmission. For example, the first crossing of the
functions T1,2 (d2) graphs in Figure 4c (for increasing d2)
corresponds to the main layer thickness d2= 39 nm when
D’≈p/2, D’/DF≈ 7 (Fig. 4e), T1,2≈ 0.43. The corre-
sponding point is also pointed in Figure 3c–f, and this value
of d2 is used for the data in Figure 3g, h. The graphs of
functions D’/DF (d2), D’/DF (d1,3), D’ðe01;3Þ have the
pronounced maxima near values d2= 36 nm, d1,3 = 330 nm,
e01;3 ≈ 0, respectively (Fig. 4e–h). Let us note that condition
D’/DF∼< 1 takes place for all the data in Figure 4 (that
characterize the case of a rather large dielectric contrast
between isotropic materials of the strips: je 1ð Þ
2 � e 2ð Þ

2 j≈ 1:5).
So, the fulfilment of conditions DF≪D’<DF∼ is
possible for the considered parameters (for rather small
values of d2 and optimally selected values of d1,3 for ENZ
layers 1, 3). For these data and small dielectric contrasts
(je 1ð Þ

2 � e 2ð Þ
2 j < 0:5), the numerical analysis also showed the

simultaneous fulfilment of more optimal conditions of PSD
amplification: D’/DF> 15, 1<D’/DF∼< 2.



Fig. 4. Dependences of PSD D’, DF, relations D’/DF, D’/DF∼

and energy transmission coefficients T1,2 of waves 1, 2 on the
main layer thickness d2 (a, c, e), wavelength l (b, d), parameters
e01;3 (f, h), d1,3 (g) for various materials of layers 1, 3. The values
of parameters are: e1= e3= 2+10�3i (a, b); e1= e3= 0.01+0.01i
(c, d, e, g); d2= 39 nm (b, d, f, h); e001;3 ¼ 0:01 (f, h). The values of
parameters for all the graphs are: d1,3 = 0.25mm (besides g);
l=0.63mm (besides b, d). Figures e and h detail the data in
Figures c and f, respectively. The black horizontal dashed line in
Figures e, g, h characterize equality to 1 of the corresponding
quantities.

Fig. 5. Dependences of PSD D’, DF, relations D’/DF, D’/DF∼

and energy transmission coefficientsT1,2 of waves 1, 2 on the main
layer thickness d2 (a, b), parameters e01;3 (c), d1,3 (d) for a metallic
material of layers 1, 3. The values of parameters are: e1= e3=
� 13+0.5i (a, b, d); d2= 156 nm (c, d); e001;3 ¼ 0:5 (c). The values
of parameters for all the graphs are: d1,3 = 13 nm (besides d),
l=0.6mm. Figure b details the data in Figure a. The black
horizontal dashed line in fig. b characterizes equality to 1 of the
corresponding quantities.
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The considered effects are also realized for larger values
of parameter Reðe 1ð Þ

2 Þ (e.g. for Reðe 1ð Þ
2 Þ∼ 10). However, in

this case the satisfaction of condition D’≫DF worsens (as
the straight line DF(d2) slope increases), and it is difficult
to obtain simultaneously large values T1,2 (as the maxima
of functionsT1 (d2) andT2 (d2) move apart with the growth
of parameter je 1ð Þ

2 � e 2ð Þ
2 j). Increasing parameter Imðe 1ð Þ

2 Þ is
also not optimal, as it leads to decreasing waves 1, 2
transmission.

The graphs in Figure 5 characterize the multilayer
corresponding to Figure 4 data but for “metallic” layers 1, 3
and rather optimal (for realization of large PSD and
transmission of waves 1, 2) parameters d1,2,3. Qualitatively,
the graphs in Figure 5a,b are similar to ones in Figure 4c,e.
In particular, with the growth of values d2, the first crossing
of the functions T1,2 (d2) graphs in Figure 5a realizes for
d2= 156 nm, when D’≈ 0.7p, D’/DF≈ 2, D’/DF∼≈ 2
(Fig. 5b), T1,2≈ 0.26. However, functions D’ðe01;3Þ
(D’/DF (d1,3)) have no maxima and decrease (increase)
monotonically for the considered parameters values
(Fig. 5c,d). That explains the choice of rather small
(negative) values of e001;3 and thicknesses d1,3 for realization
of large values ofD’,T1,2.With that, we have the condition
d2≪ d1,3 for ENZ layers 1, 3 (Fig. 4), and the opposite one
d2≫ d1,3 for “metallic” layers 1, 3 (Fig. 5).

The transmission characteristics of waves 1, 2 depend-
ing on parameter d2 for the case of “metallic” layers 1, 3 are
illustrated in Figure 6. The comparison of the graphs in
Figures 2, 6 shows that functions ’1,2 (d2), T1,2 (d2) have a
number of similar features for one or two layers 1, 3 of ENZ
or “metallic-like” materials (comparing Fig. 2b, e, f and
Fig. 6a, c, d). This leads to the qualitative features
considered above for the data in Figure 5. As for the data in
Figure 2b, the graphs in Figure 6a,c do not change for the
layers properties rearrangement: e1↔ e3.

The graphical analysis above illustrates two main
“regimes” of operation of the multilayers depending on



Fig. 6. Dependences of phase differences ’1,2 (a, b) and energy
transmission coefficientsT1,2 (c, d) of waves 1, 2 on the main layer
thickness d2 for various materials of layers 1, 3. The values of
parameters are: e1= 2+10�3i, e3=� 13+0.5i (a, c); e1= e3=
� 13+0.5i (b, d). The values of parameters for all the graphs are:
d1,3 = 13 nm, l=0.6mm. Parameter d2 is used as the abscissa axis
for all the graphs.

Fig. 7. Dependences of PSD D’, DF, relations D’/DF, D’/DF∼

and energy transmission coefficients T1,2 of waves 1, 2 on
thicknesses d2 (a, b, d, e), d1,3 (c, f) for silver layers 1, 3 and two
different wavelengths of the incident wave. The values of the Ag
permittivity for l=292nm (a, b, c), 650 nm (d, e, f) are given in
the text. The values of parameters are: d1,3 = 125 nm (a, b), 9 nm
(d, e); d2= 19 nm (c), 171 nm (f). Figures b and e detail the data in
figures a and d, respectively. The black horizontal dashed line in
figures b, c, e characterizes equality to 1 of the corresponding
quantities.
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layers 1 and 3 properties: for ENZ and metallic materials of
the layers. These regimes can be realized for both the
different and the same material of layers 1, 3 (assuming
these layers to be similar). In particular, one material for
two regimes can be used for the different wavelengths of the
exciting radiation taking into account frequency dispersion
of the dielectric properties. The data in Figure 7 illustrate
possibility to use silver as the layers 1, 3 material. The
literary data contain a rather wide variation of the Ag
permittivity values subject to fabrication methods, thick-
nesses of the layers, etc. For the numerical analysis, the
following values were used: eAg=2.27� 10�3+ 0.08i,
� 19.74+0.85i for l=292, 650 nm, correspondingly [40].
The graphs in Figure 7a, b, c (the ENZ regime) and
Figure 7d, e, f (the metallic regime) well correspond to ones
in Figure 4c, e, g and Figure 5a, b, d, respectively. In
particular, for increasing values of d2, the first crossing of
the graphs T1,2 (d2) in Figure 7a and d corresponds to the
following values of parameters: d2= 19 nm, D’≈ 0.5p,
D’/DF≈ 6, D’/DF∼≈ 0.5, T1,2≈ 0.2 and d2= 171 nm,
D’≈ 0.6p, D’/DF≈ 2, D’/DF∼≈ 2, T1,2≈ 0.3. So, silver
layers 1, 3 can provide the realization of the system under
investigation for two considered operation regimes.

Dependences of the main transmission characteristics
of themultilayersonthe incidenceangle (underc=0�p/10
and TE, TM polarizations of the incident wave) for the
parameters corresponding to Figure 7 data are illustrated in
Figure 8. The graphs in Figure 8a–d and e–h correspond to
the ENZ and metallic regimes, respectively, for silver as the
layers 1, 3 material. The thicknesses d1,2,3 for the data in
Figure 8 correspond to the first crossing of the graphs
T1,2 (d2) in Figure 7a and d, when rather large values of
parameters D’, D’/DF, D’/DF∼, T1,2 take place simulta-
neously. With growth of the incidence angle, phase
characteristics D’, D’/DF have larger values and change
(decrease) stronger in the case of ENZ layers 1, 3 and TM
polarization of the incident wave (the left panels of Fig. 8 in
comparison with the right ones). Parameters DF and
D’/DF∼ change rather weakly for all the data in Figure 8.
For angles c=0�p/20, quantities T1,2 have the
comparable values for both ENZ (Fig. 8a,c) and metallic
(Fig. 8e,g) layers 1, 3. Thus, Figure 8 data characterize the
possibilities of simultaneous realizationof rather largevalues
of PSD and transmission for both the normal and oblique
incidence of the incident radiation on the ultra-thin
multilayers (for rather small c values).

According to the similar analysis (the data are not
shown), Figures 2–5 data do not change qualitatively for
cases of anisotropic materials of the strips (for rather small
anisotropy values of the strips material, e.g. for parameters
e 1;2ð Þ
o ¼ 2:6þ 10�3i; e 1;2ð Þ

e ¼ 2:2þ 2 � 10�3i). These data
changes are also very small for oblique incidence and TM or



Fig. 8. Dependences of PSD D’, DF, relations D’/DF, D’/DF∼

and energy transmission coefficients T1,2 of waves 1, 2 on
incidence angle c for silver layers 1, 3, two different wavelengths
and TM (a, b, e, f), TE (c, d, g, h) polarizations of the incident
wave. The values of parameters are: (a–d) l=292nm,
d1,3 = 125 nm, d2= 19 nm; (e–h) l=650nm, d1,3 = 9 nm,
d2= 171 nm. Figures b, d, f, h detail the data in figures a, c, e,
g, respectively. The black horizontal dashed line in figures b, d
characterizes equality to 1 of the corresponding quantities.
Parameter c is used as the abscissa axis for all the graphs. Values
of c (as D’, DF, DF∼) are given in the relative units of radians/p.

Fig. 9. Dependences of quantities ’1, R21, R23, I
(1) on the main

layer thickness d2 for various materials of layers 1, 3. The values of
parameters are: e1= e3= 2+10�3i (a, c), 0.01+ 0.01i (b),
�13+0.5i (d); d1,3 = 250 nm (a, b), 13 nm (c, d); l=0.63mm
(a, b), 0.6mm (c, d). Denotations of the curves in Figures b, d are
given in Figures a, c. I (1)= ITM (1) (z= d1+ 0.5d2) for all the
graphs. Parameter d2 is used as the abscissa axis for all the graphs.

Fig. 10. Dependences of quantities ’1, R21, R23, I (1) on
parameters e01;3 (a, c), d1,3 (b, d) for various materials of layers
1, 3. The values of parameters are: e001;3 ¼ 0:01 (a, b), 0.5 (c, d);
e01;3 ¼ 0:01 (b), �13 (d); d2= 39 nm (a, b), 156 nm (c, d);
d1,3 = 250 nm (a, b), 13 nm (c, d); l=0.63mm (a, b), 0.6mm
(c, d). I (1) = ITM (1) (z= d1+ 0.5d2) for all the graphs. The black
horizontal dashed line in figs. a, b, c characterizes equality to 1 of
the corresponding quantities.
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TE polarizations of the exciting wave up to incidence
angles of the order of c=p/20 (the changes do not exceed
several per cents, especially for TE waves and metallic
layers 1, 3).

Electromagnetic field inside of the main layer for
various parameters of themultilayer is characterized by the
graphs in Figures 9 and 10. It is seen that the transition
from “conventional” (Fig. 9a,c) to ENZ (Fig. 9b) or metallic
(Fig. 9d) layers 1, 3 is accompanied by the significant
amplification of the reflection (described by parameters
R21, R23) of the waves on the boundaries z= z1,2 inside of
the layer for the definite thicknesses d2. With that, the
values of d2 for the “peaks” of values of R21, R23 and T1 for
the corresponding graphs in Figure 9b and Figure 2f,
Figure 9d and Figure 6d coincide. Near to the “peaks” of
values of R21, R23 and T1 (that is, when the optical
interference effects are amplified in the main layer), the
leap-frog change of the wave 1 phase takes place (Fig. 9b,d).
As for Figure 2 data, the distances between the neighboring
abrupt changes of ’1 values from p to –p and maxima of
functions R21 (d2), R23 (d2) (Fig. 9b,d) are well described by
values Dd2 and Dd2/2, respectively. The values R21, R23> 1



Fig. 11. Dependences of PSD D’, DF, relations D’/DF,
D’/DF∼ and energy transmission coefficients T1,2 of waves 1, 2
on the main layer thickness d2 (a, b), parameters e01;3 (c, d) for a
ENZ material of layers 1, 3 and anisotropic materials of the main
layer. The values of parameters are: e1= e3= 0.01+0.01i (a, b);
e01;3 ¼ 0:01 (c, d); d2= 39 nm (c, d). The values of parameters for

all the graphs are: e 1;2ð Þ
o ¼ 2:6þ 10�3i; e 1;2ð Þ

e ¼ 2:2þ 10�3i;
d1,3 = 250 nm; l=0.63mm; ea,b=1; c=0. Figures b and d detail
the data in Figures a and c, respectively. The black horizontal
dashed line in Figures b, d characterizes equality to 1 of the
corresponding quantities. TM polarization of the incident wave is
used.
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in Figures 9, 10 data characterize qualitatively reflection
from the corresponding boundaries without taking into
account the opposite waves interference inside of the main
layer. For all the data in Figures 9 and 10, the normalized
intensity of the resulting field inside of the main layer for
Strip 1 (determiningbyEq. (18)with account of theopposite
waves interference) has the values ITM (1)< 1 (values of
ITM (1) (z= d1+0.5d2) are given in Figs. 9, 10). This
condition points to the conservation of the energy fluxes
balance in the main layer. So, Figure 9 data confirm the
interference nature of the considered effects of PSD
amplification for waves 1, 2 at the multilayer (nano-
resonator) output.

The graphs in Figure 10 illustrate the effect of
parameters e01;3, d1,3 on the energy fluxes and field intensity
inside of the main layer. For ENZ layers 1, 3, the
pronounced maxima of the functions characterizing
dependences of quantities R21, R23 on parameters e01;3,
d1,3 (Fig. 10a,b) take place. For metallic layers 1, 3, such
maxima are absent (the data in Fig. 10c for e01;3 < 0,
Fig. 10d). When varying parameters d1,3, the abrupt phase
’1 changes take place for ENZ layers 1, 3 (Fig. 10b). For
metallic layers 1, 3 (Fig. 10d), the values of R21,R23, I

TM (1)

decrease quickly with growth of d1,3. The graphs of
quantity ITM (1) given in Figures 9, 10 depend very weakly
on the choice of coordinate z of the point inside of the main
layer. That is conditioned by the small value of parameter
Imðe 1ð Þ

2 Þ ¼ 10�3 determining small absorption of the
radiation inside of the main layer. According to the
numerical analysis results, dependences I (1) (z) enhance
with the growth of absorption (for Imðe 1ð Þ

2 Þ values of the
order of 10�2� 10�1). With that, values of I (1) decrease
with increasing z from d1 to d1+ d2.
3.3 Case of uniaxial main layer materials

The data in Figure 11 correspond to ones in Figure 4c,e,f,h
but for the case of an uniaxial material (with the different
orientations of the optical axis for the strips, Fig. 1) of
Strips 1, 2. It is seen that the main features of the
considered effects also take place for the anisotropic
components of the main layer. For ENZ layers 1, 3, there
are pronounced maxima of the functions characterizing
dependences of quantities |D’|, D’/DF, D’/DF∼, T1,2 on
parameters d2 and e01;3 (Fig. 11). With that, conditions
D’/DF≫ 1, D’/DF∼> 1 take place (Fig. 11b, d). Small
anisotropy values of the strips material (|eo� ee|<0.5, as
for the case of isotropic strips with small values je 1ð Þ

2 � e 2ð Þ
2 j)

lead to the growth of possible values D’/DF, D’/DF∼ (the
data in Fig. 11b,d in comparison with ones in Fig. 4e,h).
According to Figure 11 data, the parameters ranges are also
possible for anisotropic materials of the strips when rather
large transmission and amplification of waves 1, 2 PSD are
realized simultaneously.

The data in Figure 12 illustrate impact of parameters
e0o;e (the main layer material is chosen similarly to the data
in Fig. 11) on the properties of the considered systems for
the choice of ENZ (Fig. 12a,b) and metallic (Fig. 12c,d)
layers 1, 3. The graphs in Figure 12a,b and c,d are obtained
for the values of d1,2,3 corresponding to the first maximum
of functions D’ (d2), D’/DF (d2), D’/DF∼ (d2) in
Figures 11a,b and 5a,b, respectively. It is seen that the
graphs in Figure 12a and b, c and d are “symmetric”
relatively to the vertical axis determined by the condition
e0o;e ¼ 0 (for the chosen TM polarization of the incident
wave). Functions D’ðe0o;eÞ increase (Fig. 12a,c) or decrease
(Fig. 12b,d) monotonically for the investigated ranges of
values e0o;e. For all the cases considered in Figure 12, one of
functions T 1;2ðe0o;eÞ is constant and the other one is
characterized by one (Fig. 12a,b) or two (Fig. 12c,d)
maxima. The condition D’/DF≫ 1 can be satisfied for
rather wide ranges of values e0o;e (with growth of je0o;ej) only
for ENZ layers 1, 3 (Fig. 12a,b). Formetallic layers 1, 3, this
condition is also possible but for the narrow ranges of
values e0o;e (for e

0
o;e > 0) corresponding to the quick changes

of functions D’ðe0o;eÞ (Fig. 12c, d). With that, for “metallic”
parameters of the main layer materials (for e0o;e < 0), the
condition D’≈DF takes place (Fig. 12c,d).
4 Conclusion

The characteristic properties of transmission of electro-
magnetic waves through nanocomposite multilayers
including ENZ MM or metallic spacer (upper and bottom)



Fig. 12. Dependences of PSD D’, DF, energy transmission
coefficients T1,2 of waves 1, 2 on parameters Reðe 1;2ð Þ

e Þ (a, c) and
Reðe 1;2ð Þ

o Þ (b, d) for various materials of layers 1, 3 and anisotropic
materials of the main layer. The values of parameters are:
(a) e1= e3=0.01+0.01i, e 1;2ð Þ

o ¼ 2:6þ 10�3i, Imðe 1;2ð Þ
e Þ ¼ 10�3,

d1,3= 250nm, d2= 28nm, l=0.63mm; (b) e1= e3=0.01+0.01i,
Imðe 1;2ð Þ

o Þ ¼ 10�3, e 1;2ð Þ
e ¼ 2:2þ 10�3i, d1,3=250 nm, d2=28nm,

l=0.63mm; (c) e1= e3=� 13+0.5i, e 1;2ð Þ
o ¼ 2:6þ 10�3i,

Imðe 1;2ð Þ
e Þ ¼ 10�3, d1,3=13nm, d2= 156nm, l=0.6mm; (d) e1=

e3=� 13+0.5i, Imðe 1;2ð Þ
o Þ ¼ 10�3, e 1;2ð Þ

e ¼ 2:2þ 10�3i,
d1,3= 13nm, d2=156 nm, l=0.6mm. The values of parameters
for all the graphs are: ea,b=1; c=0. The black horizontal dashed
line in all thefigures characterizes equality to 0 of the corresponding
quantities. TM polarization of the incident wave is used.
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layers and the main layer made of two alternating strips of
low-absorbing dielectrics have been considered. The
analytical modeling based on the exact solutions of
electromagnetic boundary problems points to new possi-
bilities of such nanoresonators usage as ultra-thin phase
transformers of the transmitted radiation. Counterintui-
tively, but the “addition” to the system of two isotropic
spacer layers (that are the same for rays 1, 2, Fig. 1, and do
not change the “one pass” phase difference of the
transmitted waves) with the definite properties gives the
opportunities to increase significantly the exact PSD (by
an order of magnitude or more) of the transmitted waves.
The numerical and graphical analysis shows that the
considered effects are most pronounced under subwave-
length multilayer thicknesses and accompanied by the
significant amplification of multibeam interference inside
of the main layer.

Two main regimes of the composite nanoresonator
usage for amplification of the transmitted waves PSD are
revealed: (i) for ENZ spacers when the conditions d2≪ d1,3,
DF≪D’≲DF∼ are realized; (ii) for metallic spacers when
d2≫ d1,3, DF, DF∼<D’. These regimes were investigated
for both model (ENZ and metallic) materials and silver
(using two different wavelengths of the incident radiation)
as spacer materials. For the considered ranges of the
nanoresonator parameters, maximal values of PSD and
transmission of the output waves are not realized
simultaneously. But if the system is slightly tuned away
from the maximal values, the parameter regions take place
when PSD and transmission of the output waves are rather
large for the whole multilayer thicknesses down to values of
l/2 and less (e.g. this is confirmed by the Figs. 4, 5, 7 data).
With that, the main layer thicknesses can be less than l/15
and l/4 for the regimes (i) and (ii), respectively. So, the
conditions are possible when decreasing the whole system
thickness down to significantly subwavelength values can
lead to substantial increasing PSD of the transmitted
waves. The investigated transmission features also take
place when changing the system parameters such as
possible presence of absorption (losses) of the nano-
resonator components, anisotropy of the main layer
materials, non-ideal realization of ENZ materials [41],
oblique incidence of the exciting radiation (for small
incidence angles).

Let us note that mechanisms of realization of large PSD
for reflected and transmitted waves using the nanometric
multilayers with ENZ components considered in [13,14]
and the given paper are different. For reflection problems,
the features of reflection of one of the waves from the ENZ
substrate play a key role, and the interference effects are
not main determining factors. For transmission, the effects
of amplification of multibeam interference inside of the
multilayer (that forms the nanoresonator) correspond to
the conditions of obtaining large PSD of the transmitted
waves. However, for both cases, the application of ENZ
components for the considered layered systems leads to the
quickly changing and extreme values of amplitude
reflection or transmission coefficients depending on the
system parameters. Namely that determines the main
possibilities to amplify PSD of the output waves and
decrease the whole system thickness.

The considered features of phase transformations of the
transmitted waves can take place for various layered
systems including the investigated nanoresonators or their
modifications. The paper results also point to possibilities
of exhibition of the investigated effects for the case when
the main layer is originated by one optically anisotropic
material. With that, the effective PSD amplification shall
relate to the phase difference of proper waves (with
different polarizations) in this material. One of the simplest
methods to validate the obtained results is, apparently, a
registration of the transmitted waves interference at the
output of the considered systems, e.g. in the regimes of
zero-order phase plates of subwavelength thicknesses.

The obtained results can be applied to develop various
ultra-thin devices using phase transformation of transmit-
ted waves, such as modulators, phase plates, filters,
metasurfaces, nanoresonators, sensors, liquid crystals cells
with reduced active material volumes, data processing
system components, and for other nanophotonics applica-
tions. In general, together with the reflection problems
analysis [13,14], the modeling results point to the new and
perspective approaches (that can be simply realized within
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the frames of existing thin films technologies) for
realization of multilayered nanometric optical elements
including ENZ components for effective phase transforma-
tion of both reflected and transmitted radiation. Moreover,
the considered “amplification” of the transmitted waves
phase differences using pair of nanometric ENZ or metallic
layers could be of interest for phase-contrast microscopy
methods [42–44]. One can expect that addition of such
suitable layers on the substrate and cover glass (between
which there is a transparent sample, a “phase object”, e.g.
biological cell) enhances weak phase contrasts of different
regions of the sample and the image quality. That is of
interest, in particular, for many biology and medicine
applications of phase-contrast microscopy of transparent
objects.

The author expresses the sincere appreciation to Dr Yuri Gritsai
for the very fruitful discussions of the problem statement and
results of this paper.
Appendix

The expressions for quantities A±, B±
(1), C±

(1), D±, E±
(1),

F±
(1) in equations (7) and (8) take the form

A± ¼ b� að Þ exp ik0h1d1ð Þ± bþ að Þ exp �ik0h1d1ð Þ; ðA1Þ

B±
1ð Þ ¼ 1þ cdð Þ exp ik0h3d3ð Þ± 1� cdð Þ exp �ik0h3d3ð Þ;

ðA2Þ

C ±
1ð Þ ¼ 1� cdð Þ exp ik0h3d3ð Þ± 1þ cdð Þ exp �ik0h3d3ð Þ;

ðA3Þ

D± ¼ h1 � hað Þ exp ik0h1d1ð Þ± h1 þ hað Þ exp �ik0h1d1ð Þ;
ðA4Þ

E±
1ð Þ ¼ ðh3 þ hTE 1ð ÞÞ exp ik0h3d3ð Þ

± ðh3 � hTE 1ð ÞÞ exp �ik0h3d3ð Þ; ðA5Þ

F ±
1ð Þ ¼ ðh3 � hTE 1ð ÞÞ exp ik0h3d3ð Þ

± ðh3 þ hTE 1ð ÞÞ exp �ik0h3d3ð Þ: ðA6Þ

In a similar manner, we have for quantities B±
(2), C±

(2),
E±

(2), F±
(2) in equations (9), (10)

B±
2ð Þ ¼ 1þ pdð Þ exp ik0h3d3ð Þ± 1� pdð Þ exp �ik0h3d3ð Þ;

ðA7Þ

C ±
2ð Þ ¼ 1� pdð Þ exp ik0h3d3ð Þ± 1þ pdð Þ exp �ik0h3d3ð Þ;

ðA8Þ
E±
2ð Þ ¼ ðh3 þ hTE 2ð ÞÞ exp ik0h3d3ð Þ

± ðh3 � hTE 2ð ÞÞ exp �ik0h3d3ð Þ; ðA9Þ

F ±
2ð Þ ¼ ðh3 � hTE 2ð ÞÞ exp ik0h3d3ð Þ

± ðh3 þ hTE 2ð ÞÞ exp �ik0h3d3ð Þ: ðA10Þ
The expressions for quantitiesA±,D± (Eqs. (A1), (A4))

are also true for equations (9) and (10). The relations for
the parameters in equations (A1)-(A10) are given in the
main text.
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