Доклады Академии Наук СССР 1945. Том XLVIII, № 8

МИНЕРАЛОГИЯ

н. в. ренгартен

ЦЕОЛИТ ИЗ ГРУППЫ МОРДЕНИТА В ВЕРХНЕМЕЛОВЫХ И ПАЛЕОГЕНОВЫХ МОРСКИХ ОТЛОЖЕНИЯХ ВОСТОЧНОГО СКЛОНА УРАЛА

(Представлено академиком Д. С. Белянкиным 26 Х 1944)

Морские осадки датского яруса и палеогена восточного склона Урала содержат аутигенные образования моноклинного цеолита группы морденита. Несмотря на то, что этот минерал содержится в породах часто в значительных количествах, а главное, что его распространение имеет региональный характер, факт существования цеолитов, генетически связанных с морем, констатируется на Урале

впервые.

Цеолит группы морденита был мною обнаружен в целом ряде пунктов восточного склона Урала. Можно сказать, что для датского яруса этот минерал служит надежным коррелятивом, отличающим датские слои от более низких горизонтов мела. Цеолитсодержащие породы встречены среди датских отложений Алапаевского, Троицко-Байновского, Каменского, Синарского и Теченского районов. Кристаллы цеолита обычно приурочены к песчаным отложениям и находятся в тонких (<0,01 мм) фракциях осадков. Цеолиты составляют в некоторых образцах около 70% этих фракций (табл. 1) и присутствуют в них в виде хорошо образованных тончайших кристалликов и мелких агрегатов,

Для палеогеновых осадков цеолит уже не является столь характерным маркирующим минералом. В них он присутствует эпизодически и обычно в меньших количествах, чем в датских слоях. Однако и среди палеогеновых отложений есть осадки, исключительно богатые аутигенными образованиями цеолита. Такими осадками являются песчано-глинистые породы, вмещающие окисные марганцовые руды Полуночного месторождения. Здесь цеолит присутствует не только в виде отдельных кристалликов и мелких агрегатов, рассеянных в массе породы, но также образует крупные (диаметром до 3—4 см)

обособленные скопления.

Последние в виде белых «глазков» отчетливо выделяются на фоне

серой глинистой массы породы.

В большинстве случаев породы, содержащие цеолит, относятся к мелкозернистым кварцевым пескам.

Грануломерический состав их и содержание цеолита в глини-

стой фракции даны в табл. 1.

Кластические зерна окатаны, принадлежат в основном кварцу, реже встречаются глауконит, щелочные полевые шпаты, кремнистые агрегаты. Как акцессорная примесь имеются циркон, рутил, турмалин, гранат, глаукофан. Присутствуют спикулы кремневых губок.

Место взятия образца	Гранулометрический состав в ⁰ / ₀				о/о цеолита
	> 0,25 мм	0,25 — 0,05 мм	0,15 — 0,01 мм	< 0,01 мм	во фракции < 0,01 мм
Р. Синара	0,2	93,6	6,0	6,0	70
Соколовское м-ние бокситов	1,8 0,3 - 0,3	93,6 82,2 76,5 89,2	0,9 0,8 1,1 0,8	3,4 9,7 24,0 9,7	60 50 70 95

Тонкие фракции этих песков состоят из хорошо образованных кристалликов цеолита, пластинок зеленого хлорита и глинистого пелитоморфного материала. Некоторые пластинки хлорита содержат

кристаллики цеолита.

Кристаллы цеолита обладают размерами в среднем 0,05—0,01 мм. Они бесцветны, имеют призматический габитус с ясно выраженными кристаллографическими очертаниями. Кристаллы относятся к моноклинной сингонии. В них определяются: плоскость симметрии, параллельная грани второго пинакоида [010], одна двойная поворотная ось [010] и центр инверсии. Кристаллы образованы комбинациями различных пинакоидов. Углы между пинакоидами в общем постоянны и равны: 116° — угол между [100] и [001] и 125° — угол между [001] и [101]. Наблюдается совершенная спайность по [010] и менее совершенная по [001]. Удлинение минерала отрицательное, погасание близкое к прямому. Оптическая индикатриса расположена так, что ось N_p совпадает с третьей кристаллографической осью, ось N_m со второй, а ось N_g находится в плоскости [010] под углом к первой кристаллографической оси. Определены следующие показатели светопреломления минерала: по N_g 1,487, по N_m 1,485, по N_p 1,483.

топреломления минерала: по N_g 1,487, по N_m 1,485, по N_p 1,483. При отборе минерала для химического анализа мне не удалось полностью отделить пеолит от хлорита. Присутствие последнего сказалось на результате анализа. Поэтому, прежде чем переходить к вычислению формулы пеолита, необходимо исключить из данных анализа то количество окислов, которое падает на долю хлорита.

Приняв формулу хлорита

$$3\mathrm{MgO} \cdot 2\mathrm{SiO_2} \cdot 2\mathrm{H_2O} + \mathrm{Fe_2O_3} \cdot \mathrm{Al_2O_3} \cdot \mathrm{SiO_2} \cdot 2\mathrm{H_2O}\text{,}$$

вычтем из данных анализа MgO и ${\rm Fe_2O_3}$ и соответствующие им по формуле ${\rm SiO_2},\ {\rm Al_2O_3}$ и ${\rm H_2O}$ (табл. 2).

Таблица 2

		Цеолит молек. колич	
	COCTAB B 0/0	молек. колич.	
SiO ₂	63,27	1,055	1,008
TiO_2	0,64	0,009	0,009
Al ₂ O ₃	15,22	0,149	0,127
Fe ₂ O ₃	3,53	0,022	
CaO	2,77	0,049	0,049
MgO	1,39	0,035	_
K ₂ O	1,77	0,019	0,019
Na ₂ O	0,69	0,011	0,011
$-\mathrm{H}_2\mathrm{O}$	10,47	0,586	0,586
$+H_2O$	6,11	0,339	0,272
and the state of		Level and the later	
	105,86		

Выводим формулу:

 $2\,(\mathrm{Na}_{,}\mathrm{K})_{2}\mathrm{O}\cdot 3\mathrm{CaO}\cdot 8\mathrm{Al}_{2}\mathrm{O}_{3}\cdot 67\mathrm{SiO}_{2}\cdot 54\mathrm{H}_{2}\mathrm{O}.$

Эта формула чрезвычайно близка к известному в литературе мордениту, который имеет состав:

4Na₂O·4CaO·8Al₂O₃·64SiO₂·50H₂O (1).

Однако описанный нами цеолит не может быть назван собственно морденитом, так как он отличается от последнего иной ориентировкой оптической индикатрисы и несколько более высокими показателями светопреломления.

У морденита плоскость оптических осей перпендикулярна [010], показатели светопреломления по N_p 1,471, по N_g 1,476. У описываемого же нами цеолита плоскость оптических осей параллельна [010],

а все показатели преломления выше 1,476.

Вопрос о генезисе моноклинного цеолита из датских и палеогеновых отложений восточного склона Урала еще не вполне разрешен. Несомненно, что этот минерал находится в породах in situ, а не

Несомненно, что этот минерал находится в породах in situ, а не является принесенным извне вместе с другим терригенным материлом.

Действительно, трудно себе представить условия, при которых, наряду с прекрасно отсортированным песчаным материалом, в бассейне сносились, а главное, осаждались бы тонкие, пелитовые частицы, принадлежащие исключительно хлориту и цеолиту.

Нахождение аутигенного цеолита только в морских отложениях говорит о том, что этот минерал генетически связан с морем и его образование не могло итти в условиях позднего диагенеза, когда

осадки были полностью разобщены с морем.

Однако нам не кажется, что выпадение из морской воды кристаллов деолита шло в строгом смысле одновременно с осаждением терригенного материала. В самом деле, в момент накопления терригенного материала, особенно отсортированного песчаного, морская среда была слишком подвижной для того, чтобы могли оседать тончайшие кристаллики цеолита. Поэтому, скорее всего, кристаллы цеолита возникли и развились в свежем осадке, когда он еще находился под уровнем моря и был пропитан морской водой. Здесь уже водная среда была мало подвижной, химическая же концентрация ее сильно отличалась от нормальной морской благодаря тому, что в осадке шли процессы разложения терригенного материала. Правильное развитие кристаллов с образованием концевых граней указывает на благоприятные условия для свободного роста этих кристаллов (процесс минералообразования шел в рыхлом, не затвердевшем осадке).

В результате взаимодействия морской воды и продуктов выветривания алюминосиликатного терригенного материала стали выпадать

кристаллы цеолита.

Цеолит, генетически связанный с осадочными формациями, может быть назван, подобно глаукониту (2), минералом моря. Он образуется в морском бассейне при процессах хальмиролиза алюмосиликатного терригенного материала.

Основными источниками сноса алюмосиликатного терригенного материала, вероятно, являлись, в большинстве случаев, эффузивные породы типа плагиоклазовых порфиритов, широко развитых вдоль всего восточного склона Урала. В песках датского яруса, например, встречаются пластинки хлорита, содержащие кристаллики цеолита. Возможно, что эти цеолито-хлоритовые агрегаты развились на месте обломков основной массы (гиалопилитовой) эффузивов, где стекло было замещено хлоритом, а плагиоклазовые микролиты — цеолитом.

Широкому развитию коллоидальных образований, столь характерных для датско-палеогеновых морей, а также возникновению богатых водой минеральных соединений (цеолит) должна была способствовать сравнительно низкая температура морского бассейна.

Несомненно, что образование цеолитов в осадочных отложениях явление гораздо менее редкое, чем принято было думать. Дальнейшие исследования в этой области должны осветить более детально вопросы химизма, генезиса и т. д. этой весьма интересной группы водных алюмосиликатов.

Поступило 26 X 1944

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. N. Winchell, Elements of optical mineralogy, Part II, Descriptions of minerals, 1932. ² В. О. Малышева, Главконит и главконитовые породы Европейской части СССР, 1930.

The state of the s