УДК 621.317

АНАЛИЗ АКТИВНЫХ РЕЗИСТИВНЫХ МОСТОВЫХ СХЕМ С НУЛЕВЫМ УРОВНЕМ СИНФАЗНОЙ СОСТАВЛЯЮЩЕЙ В ИЗМЕРИТЕЛЬНОЙ ДИАГОНАЛИ

В. А. КАРПОВ, А. В. КОВАЛЕВ, О. М. РОСТОКИНА, А. В. КАРПОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Данная статья является продолжением работы [1] и посвящена анализу активных мостовых схем, отличающихся от рассмотренных ранее тем, что в измерительной диагонали резистивного моста практически отсутствует синфазная составляющая напряжения, наличие которой характерно для проанализированных в указанной ранее работе активных мостовых схем. Это достигается тем, что в схему вводится дополнительный операционный усилитель (ОУ), а нижняя вершина питающей диагонали мостовыми схемами, в литературе отсутствует систематический анализ выходного преобразования в зависимости от типа питания мостовой схемы (E_0 или I_0) и от различных комбинаций резистивных чувствительных элементов в мосте. Восстановить отмеченный пробел, по мнению авторов, и призвана данная работа.

Известны три активные мостовые схемы с нулевым уровнем синфазной составляющей в измерительной диагонали моста:

 – активная мостовая схема на основе двух ОУ и выходным усилителем с последовательной отрицательной обратной связью [2]–[5];

– активная мостовая схема на основе двух ОУ и выходным усилителем с параллельной отрицательной обратной связью [2]–[5];

– активная мостовая схема на основе двух ОУ и выходным усилителем с комбинированной отрицательной обратной связью [2]–[5].

Активная мостовая схема на основе двух ОУ и выходным усилителем с последовательной отрицательной обратной связью представлена на рис. 1. Выражения для выходного напряжения в зависимости от питания моста напряжением E_0 или током I_0 будут выглядеть следующим образом:

$$U_E = E_0 K \frac{R_1 R_4 - R_2 R_3}{R_1 (R_3 + R_4)};$$
(1)

$$U_{I} = KI_{0} \frac{R_{1}R_{4} - R_{2}R_{3}}{R_{1} + R_{2} + R_{3} + R_{4}},$$
(2)

где $K = (1 + \frac{R''}{R'}) -$ коэффициент усиления выходного усилителя.

Используя те же обозначения для изменения сопротивлений резистивных чувствительных элементов (ЧЭ), что и в [6] (R – начальное сопротивление ЧЭ, δ_R – приращение сопротивления вследствие изменения входной величины), можно получить выходные напряжения схемы в зависимости от расположения ЧЭ в плечах моста и вида питания. Полученные выражения сведены в табл. 1.

Таблица 1

Выходные напряжения для активной мостовой схемы с двумя ОУ и выходным усилителем с последовательной ООС и одним ЧЭ

Выходные на-	Варианты установки ЧЭ			
пряжения	Ι	II	III	IV
$U_{\scriptscriptstyle E}$	$\frac{KE_0}{2}\frac{\delta_R}{1+\delta_R}$	$-\frac{KE_0}{2}\delta_R$ [2]–[5]	$-\frac{KE_0}{2}\frac{\delta_R}{1+0.5\delta_R}$	$\frac{KE_0}{2} \frac{\delta_R}{1+0.5\delta_R}$
U_{I}	$-\frac{KI_0R}{4}\frac{\delta_R}{1+0.5\delta_R}$	$\frac{KI_0R}{4}\frac{\delta_R}{1+0.25\delta_R}$ [2]	$\frac{KI_0R}{4}\frac{\delta_R}{1+0,25\delta_R}$	$-\frac{KI_0R}{4}\frac{\delta_R}{1+0,25\delta_R}$

б)

Рис. 1. Активная мостовая схема на основе двух ОУ и выходным усилителем с последовательной ООС: *а* – с одним ЧЭ; *б* – с двумя синфазными ЧЭ; *в* – с двумя дифференциальными ЧЭ; *г* – с двумя парами дифференциальных ЧЭ. (Римскими цифрами отмечены варианты установки ЧЭ в мостовую схему)

Анализ данных, представленных в табл. 1, показывает, что при установке ЧЭ в обратную связь OY_1 и питании схемы от источника напряжения E_0 изменение сопротивления ЧЭ линейно связано с выходным напряжением. Однако это рационально тогда, когда ОУ₁ находится в непосредственной близости от ЧЭ, что не всегда возможно. Питание схемы током I_0 , по сравнению с питанием напряжением дает вдвое меньшую погрешность от нелинейности в случаях, когда ЧЭ установлен в третьем или четвертом плечах моста.

Два синфазных ЧЭ могут быть установлены в плечи моста двумя способами так, как это представлено на рис. 1, б. Выходные напряжения, полученные с использованием выражений (1), (2), представлены в табл. 2.

Выходные напряжения активной мостовой схемы с двумя ОУ и выходным усилителем с последовательной ООС и двумя синфазными ЧЭ

	Варианты установки ЧЭ		
выходные напряжения	Ι	Π	
$U_{_E}$	$-E_0K\delta_R$	$E_{0}K\frac{\delta_{R}}{1+\delta_{R}}$ [3]	
U_{I}	$-\frac{I_0R}{2}\delta_R$	$\frac{I_0R}{2}\delta_R$	

Из полученных данных видно, что первый вариант установки ЧЭ обладает линейностью преобразования при питании схемы как током I_0 , так и напряжением E_0 . Однако второй вариант установки (при питании током) более предпочтителен, поскольку ЧЭ не попадает в обратную связь ОУ.

Дифференциальные ЧЭ можно расположить в мосте так, как это показано на рис. 1, *в*. Используя выражения (1), (2), получаем выходные напряжения, которые сведены в табл. 3.

Таблица 3

Выходные напряжения активной мостовой схемы с двумя ОУ и выходным усилителем с последовательной ООС и двумя дифференциальными ЧЭ

Выходные на-	Варианты установки ЧЭ			
пряжения	Ι	II	III	IV
$U_{\scriptscriptstyle E}$	$KE_0 \frac{\delta_R}{1+0.5\delta_R}$	$-KE_0 \frac{\delta_R}{1-0.5\delta_R}$	$KE_0 \frac{\delta_R}{1+\delta_R}$	$-KE_0\delta_R$
U	$K\frac{I_0R}{2}\delta_R$	$-K\frac{I_0R}{2}\delta_R$	$K\frac{I_0R}{2}\delta_R$	$-K\frac{I_0R}{2}\delta_R$

Из табл. З видно, что при любом расположении ЧЭ и питании током I_0 выходные напряжения линейно связаны с изменением сопротивления ЧЭ. В случае питания схемы напряжением линейным является только четвертый вариант установки ЧЭ. Следует отметить, что в этом случае ЧЭ не установлен в ООС ОУ₁.

Для резистивного датчика с двумя парами дифференциальных ЧЭ (рис. 1, *г*) выходные напряжения, полученные с использованием (1), (2), выглядят следующим образом:

$$U_{E} = 2KE_{0} \frac{\delta_{R}}{1 - \delta_{R}} [3];$$
$$U_{I} = KI_{0}R\delta_{P} [3].$$

И в этом резистивном датчике питание моста током I_0 дает линейное преобразование.

Активная мостовая схема на основе двух ОУ и с выходным ОУ с параллельной ООС [3] представлена на рис. 2. Выходные напряжения при питании моста напряжением и током имеют вид:

$$U_E = -E_0 R_0 \frac{R_1 R_4 - R_2 R_3}{R_1 R_3 R_4};$$
(3)

$$U_{I} = -I_{0}R_{0} \frac{R_{1}R_{4} - R_{2}R_{3}}{R_{4}(R_{1} + R_{3})}.$$
(4)

С помощью данных выражений для схемы, представленной на рис. 2, *a*, можно получить значения выходных напряжений, которые даны в табл. 4.

Рис. 2. Активная мостовая схема на основе двух ОУ с выходным усилителем с параллельной ООС: *a* – с одним ЧЭ; *б* – с двумя синфазными ЧЭ;
 в – с двумя дифференциальными ЧЭ; *г* – с двумя парами дифференциальных ЧЭ. (Римскими цифрами отмечены варианты установки ЧЭ в мостовую схему)

Таблица 4

Выходные напряжения активной мостовой схемы на основе двух ОУ	
с выходным ОУ с параллельной ООС и одним ЧЭ	

Выходные	Варианты установки ЧЭ			
напряжения	Ι	II	III	IV
$U_{\scriptscriptstyle E}$	$-\frac{E_0R_0}{R}\frac{\delta_R}{1+\delta_R}$	$E_0 \frac{R_0}{R} \delta_R $ [3]	$E_0 \frac{R_0}{R} \frac{\delta_R}{1+\delta_R}$	$-E_0 \frac{R_0}{R} \frac{\delta_R}{1+\delta_R}$
U_I	$-\frac{I_0R_0}{2}\frac{\delta_R}{1+0.5\delta_R}$	$\frac{I_0R_0}{2}\delta_R$	$\frac{I_0R_0}{2}\frac{\delta_R}{1+0.5\delta_R}$	$-\frac{I_0R_0}{2}\frac{\delta_R}{1+\delta_R}$

Анализ полученных выражений показывает, что при расположении ЧЭ в обратной связи OY_1 схема дает линейное преобразование как при питании моста током, так и при питании моста напряжением, однако, как было отмечено выше, это не всегда приемлемо. В среднем же при токовом питании схема имеет вдвое меньшую нелинейность (расположение ЧЭ в первом или третьем плечах).

При использовании этой схемы для резистивного датчика с синфазным ЧЭ, способы его установки в мост представлены на рис. 2, б. Выходные напряжения схемы, полученные описанным выше способом, представлены в табл. 5.

Выходные напряжения активной мостовой схемы на основе двух ОУ с выходным усилителем с параллельной ООС и синфазным ЧЭ

Виходин ю ценралония	Варианты установки ЧЭ		
выходные напряжения	Ι	II	
$U_{\scriptscriptstyle E}$	$-E_0 \frac{2R_0}{R} \frac{\delta_R}{1+2\delta_R}$	$E_0 \frac{2R_0}{R} \frac{\delta_R}{1+\delta_R}$	
U_I	$-I_0R_0rac{\delta_R}{1+\delta_R}$	$I_0 R_0 \frac{\delta_R}{1 + \delta_R}$	

Анализ данных табл. 5 показывает, что в данной активной мостовой схеме при использовании резистивного датчика с синфазным ЧЭ отсутствует линейность преобразования, а наибольшая нелинейность проявляется в случае установки ЧЭ в первое и четвертое плечи моста.

В случае использования резистивного датчика с дифференциальным ЧЭ его в схему можно установить способами, показанными на рис. 2, в. Используя выражения (3), (4), нетрудно получить выходные напряжения, сведенные в табл. 6. Анализ полученных выражений показывает, что при любом питании мостовой схемы выходные напряжения линейно связаны с изменением сопротивления ЧЭ, если резистивный датчик установлен в первое и второе плечи моста. Если резистивный датчик установлен в третье и четвертое плечи, то линейным выходное напряжение становится только в случае питания моста от источника напряжения. Важно отметить, что при линейном преобразовании ЧЭ не попадают в обратную связь ОУ₁.

Таблица б

Выходные	Варианты установки ЧЭ			
папряжения	Ι	II	III	IV
$U_{\scriptscriptstyle E}$	$-E_0 \frac{2R_0}{R} \delta_R$	$E_0 \frac{2R_0}{R} \frac{\delta_R}{1+\delta_R}$	$-E_0\frac{2R_0}{R}\frac{\delta_R}{1+\delta_R}$	$E_0 \frac{2R_0}{R} \delta_R$
U	$-I_0R_0\delta_R$	$I_0 R_0 \frac{\delta_R}{1 - \delta_R}$	$-I_0 R_0 \frac{\delta_R}{1+0.5\delta_R}$	$I_0 R_0 \frac{\delta_R}{1 - 0.5\delta_R}$

Выходные напряжения активной мостовой схемы на основе двух ОУ с выходным усилителем с параллельной ООС и дифференциальным ЧЭ

Выходные напряжения для резистивного датчика с двумя парами дифференциальных ЧЭ, полученные с использованием (3), (4), имеют вид:

$$U_E = -E_0 \frac{4R_0}{R} \frac{\delta_R}{1+\delta_R};$$
$$U_I = -I_0 2R_0 \frac{\delta_R}{1+\delta_R}.$$

Из этих выражений видно, что при использовании резистивного датчика с двумя парами дифференциальных ЧЭ в данной схеме преобразование нелинейно.

Известен еще один тип активной мостовой схемы – это схема с использованием двух ОУ и выходным усилителем с комбинированной ООС [6], [7]. В этой схеме сигнал мостовой схемы подается как на неинвертирующий, так и на инвертирующий входы выходного ОУ, соответственно, по этим входам ОУ имеет последовательную и параллельную ООС. Схема представлена на рис. 3. В общем виде выходные напряжения схемы при питании моста напряжением E_0 и током I_0 имеют вид:

$$U_E = -E_0 R_0 \frac{R_1 R_4 - R_2 R_3}{R_1 R_2 R_3};$$
(5)

$$U_{I} = -I_{0}R_{0}\frac{R_{1}R_{4} - R_{2}R_{3}}{R_{2}(R_{1} + R_{3})}.$$
(6)

Рис. 3. Активная мостовая схема на основе двух ОУ с выходным усилителем с комбинированной ООС: *a* − с одним ЧЭ; *б* − с двумя синфазными ЧЭ; *в* − с двумя дифференциальными ЧЭ; *г* − с двумя парами дифференциальных ЧЭ. (Римскими цифрами отмечены варианты установки ЧЭ в мостовую схему)

Используя (5), (6), получаем выражения для выходных напряжений схемы с резистивным датчиком с одним ЧЭ. Эти выражения сведены в табл. 7, анализ выражений которой показывает, что если ЧЭ установлен в первое плечо моста, то в независимости от питания моста преобразование является линейным. При питании напряжением схема линейно преобразует сопротивление ЧЭ в напряжение, он установлен в третье плечо моста. В остальных случаях схема нелинейно преобразует изменение сопротивления ЧЭ в выходное напряжение. Важное отличие данной схемы от рассмотренных выше состоит в том, что при линейном преобразовании ЧЭ не расположен в обратной связи ОУ₁ (табл. 1, 4).

Выходные напряжения активной мостовой схемы на основе двух ОУ с выходным усилителем с комбинированной ООС с одним ЧЭ

Выходные	Варианты установки ЧЭ			
папряжения	Ι	II	III	IV
$U_{\scriptscriptstyle E}$	$-E_0 \frac{2R_0}{R} \delta_R$	$E_0 \frac{2R_0}{R} \frac{\delta_R}{1+\delta_R}$	$-E_0 \frac{2R_0}{R}\delta_R$	$E_0 \frac{2R_0}{R} \frac{\delta_R}{1+\delta_R}$
U	$-I_0R_0\delta_R$	$I_0 R_0 \frac{\delta_R}{1 + \delta_R}$	$-I_0 R_0 \frac{\delta_R}{1-0.5\delta_R} $ [6]	$I_0 R_0 \frac{\delta_R}{1+0.5\delta_R}$

В случае использования в рассматриваемой схеме резистивного датчика с двумя синфазными ЧЭ варианты их установки в мост показаны на рис. 3, б. Выходные напряжения, полученные с использованием (6), (7), даны в табл. 8.

Таблица 8

Выходные напряжения активной мостовой схемы на основе двух ОУ с выходным усилителем с комбинированной ООС с двумя синфазными ЧЭ

	Варианты установки ЧЭ		
выходные напряжения	Ι	II	
$U_{\scriptscriptstyle E}$	$-E_0 \frac{2R_0}{R} \frac{\delta_R}{1+\delta_R}$	$E_0 \frac{2R_0}{R} \frac{\delta_R}{1+\delta_R}$	
U_{I}	$-I_0R_0\delta_R$	$I_0 R_0 \frac{\delta_R}{1+\delta_R}$	

Из табл. 8 видно, что в случае расположения синфазных ЧЭ в первом и четвертом плечах моста и питании его током уравнение преобразования является линейным. В других случаях уравнение нелинейно.

При использовании в данной схеме резистивного датчика с дифференциальным ЧЭ можно расположить ЧЭ так, как это показано на рис. 3, *в*. Полученные с использованием (5), (6) выражения для выходных напряжений сведены в табл. 9.

Анализ выходных напряжений, представленных в табл. 9, показывает, что при установке ЧЭ в первое и третье плечи моста выходное напряжение линейно связано с изменением сопротивления датчика вне зависимости от питания током или напряжением. При установке ЧЭ в первое и второе плечи схема линейна при питании моста напряжением. Однако при этом ЧЭ попадает в обратную связь OУ₁, что не всегда приемлемо.

При использовании двух дифференциальных ЧЭ в рассматриваемой схеме (рис. 3, *г*) можно получить следующие выходные напряжения:

$$U_E = -E_0 \frac{4R_0}{R} \frac{\delta_R}{1 - \delta_R};$$

$$U_I = -2I_0 R_0 \frac{\delta_R}{1 - \delta_R} \quad [6].$$

Из этих выражений видно, что данная схема преобразует изменение сопротивления резистивного датчика нелинейно.

Выходные на-	Варианты установки ЧЭ			
пряжения	Ι	II	III	IV
$U_{\scriptscriptstyle E}$	$-E_0 \frac{2R_0}{R} \delta_R$	$E_0 \frac{2R_0}{R} \frac{\delta_R}{1+\delta_R}$	$-E_0 \frac{2R_0}{R} \delta_R$	$E_0 \frac{2R_0}{R} \frac{\delta_R}{1+\delta_R}$
U	$-I_0R_0\delta_R$	$I_0 R_0 \frac{\delta_R}{1 + \delta_R}$	$I_0 R_0 \frac{\delta_R}{1 - 0.5\delta_R} [6]$	$I_0 R_0 \frac{\delta_R}{1+0.5\delta_R}$

Выходные напряжения активной мостовой схемы на основе двух ОУ с выходным усилителем с комбинированной ООС с дифференциальным ЧЭ

Проведенный анализ позволяет провести рациональный выбор измерительной схемы для конкретного вида резистивного датчика. Пользуясь полученными таблицами, можно рассчитать чувствительность, оценить нелинейность преобразования и разместить ЧЭ датчика в мосте таким образом, чтобы избежать риска неустойчивой работы используемых активных элементов.

Литература

- 1. Карпов, В. А. Анализ простейших активных мостовых схем для резистивных датчиков / В. А. Карпов, А. В. Ковалев, О. М. Ростокина // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. – 2012. – № 1. – С. 34–40.
- 2. Щербаков, В. И. Электрические схемы на операционных усилителях : справочник / В. И. Щербаков, Г. И. Грездов. К. : Техника, 1983. 213 с.
- 3. Walt Kester, Editor, 1992 Amplifier Applications Guide, Section 2, 3. Analog Devices Inc., 1992.
- 4. Методы практического конструирования при нормировании сигналов с датчиков. Материалы семинара фирмы AD. 2006 г. URL: http://www.autexspb.da.ru. Дата обращения: 08.11.2011.
- 5. Волович, Г. И. Схемотехника аналоговых и аналого-цифровых электронных устройств / Г. И. Волович. М. : ДОДЕКА-ХХІ, 2007. С. 147–149.
- Левшина, Е. С. Электрические измерения физических величин. Измерительные преобразователи / Е. С. Левшина, П. В. Новицкий. – Л. : Энергоатомиздат, 1983. – 370 с.
- 7. Гутников, В. С. Интегральная электроника в измерительных устройствах / В. С. Гутников. – Л. : Энергия, 1980. – 248 с.

Получено 07.05.2012 г.