## 82 Секция Б. Моделирование процессов, автоматизация конструирования ...

1

Изменяя длину напорной трубки при различных скоростях волочения длинномерного изделия, была получена зависимость изменения толщины *h* формируемого слоя от длины *l* напорной трубки, вид которой приведен на рис. 4.

В результате проведенных экспериментов было установлено, что процесс формирования защитного покрытия необходимо производить при скорости волочения, превышающей скорость свободного истечения порошкового материала, и длине напорной трубки, равной 20...22 мм.

## ЗАТУХАЮЩИЙ АПЕРИОДИЧЕСКИЙ ТЕПЛОВОЙ РЕЖИМ НА ФАЗОВОЙ ГРАНИЦЕ ВЫСОКОСКОРОСТНОЙ КРИСТАЛЛИЗАЦИИ

## О. Н. Шабловский, Д. Г. Кроль

Гомельский государственный технический университет им. П. О. Сухого, Республика Беларусь

Некоторые современные способы получения твердых материалов характеризуются большими скоростями кристаллизации. Проблема разработки и анализа математических моделей локально-неравновесного затвердевания находится в начальной стадии развития. Состояние этого вопроса и библиография имеются в [1]. В данной работе изучаются некоторые эволюционные свойства фазовой границы (ФГ) в релаксационной тепловой задаче о высокоскоростной кристаллизации материала с нелинейными теплофизическими свойствами.

Изучаемая математическая модель состоит из уравнения энергии и уравнения для теплового потока эволюционного (релаксационного) типа:

$$\widetilde{c}c\frac{\partial T}{\partial t} + \frac{\partial q}{\partial x} = 0, \quad q + \gamma \frac{\partial q}{\partial t} = -\widetilde{\lambda}\lambda \frac{\partial T}{\partial x},$$
(1)

где T – температура; q – удельный тепловой поток;  $\lambda$  – коэффициент теплопроводности;  $c = \rho c_{\rho}$  – удельная объемная теплоемкость;  $\gamma$  – время релаксации теплового потока; t – время; x – декартова координата. Безразмерные параметры  $\tilde{\lambda} = (\lambda_b T_b)/(x_b q_b)$ ,  $\tilde{c} = (c_b T_b x_b)/(t_b q_b)$  составлены из масштабов (они отмечены нижним индексом b) величин, применяемых для обезразмеривания уравнений (1). В последующих аналитических выкладках и численных расчетах все величины – безразмерные.

Условия динамической совместности и условия устойчивости на  $\Phi\Gamma$  $x = x_i(t)$  имеют вид [2]:

$$q_{j}-q_{\star}=\widetilde{c}N(u_{j}-u_{\star})-L(N+\gamma dN/dt), \quad (q_{j}-q_{\star})N=\widetilde{\lambda}(V_{j}-V_{\star}), \quad N=dx_{j}/dt, \quad (2)$$

$$w_*^2 < N^2 \widetilde{N}^2 < (V_* - V_j) / (u_* - u_j) < w_j^2,$$
(3)

где  $dV/dT = \lambda/\gamma$ ; du/dT = c;  $L = L_b x_b/(t_b q_b)$ ;  $\tilde{N}^2 = \tilde{c}/\tilde{\lambda}$ ;  $L_b$  – теплота фазового перехода единицы объема вещества;  $w^2 = \lambda/(c\gamma)$  – квадрат скорости распространения тепловых возмущений; индексами  $_{*,j}$  отмечены значения функций, соответственно, справа (жидкая фаза) и слева (твердая фаза) от ФГ. Неравенства (3) характеризуют устойчивость разрыва при знакопостоянной выпуклости функции V = V(T). Ситуация со знакопеременной выпуклостью обсуждается в [2, 3]. Действуя аналогично [4], выделяем температурные интервалы  $[T_j, T_c]$  и  $[T_c, T_c]$  слева и справа от точки фазового перехода  $T_c \equiv const$ . Теплофизические параметры среды для каждого интервала свои и описываются зависимостями вида  $\lambda = \lambda^0 + \lambda^1 T$ ,  $\gamma \equiv const$ , а также  $c = c_0 / (T_c - T)^a$ , 0 < a < 1 и  $c = \hat{c}_0 / (T - T_c)^{\hat{a}}$ ,  $0 < \hat{a} < 1$ . Решение уравнений (1) находим в зоне кристаллизации  $x \in [x_w, x_j]$ . Граничное условие на левой неподвижной границе  $x = x_w : T = T_w$  либо  $q = q_w$ . Эволюционные свойства фронта фазовых превращений изучим, применяя численно-аналитический подход [2] к задаче о ФГ кристаллизации. В данной работе рассмотрим апериодический режим затухания во времени свойств теплового поля за разрывом  $x = x_j(t)$ . Это дает возможность охарактеризовать один из физически допустимых вариантов установления квазистационарного режима движения ФГ. Изучение эволюционных (периодических и непериодических) режимов установления постоянной скорости ФГ важно, в частности, потому, что в настоящее время основные аналитические результаты исследования релаксационных задач кристаллизации получены в рамках допущения  $N \equiv const$ , [1].

Выполним преобразование независимых переменных [2], перейдем от (x, t) к аргументам  $(z, \alpha, \beta)$ :

$$\alpha = \alpha_0 \exp(k - n)t, \quad \beta = \beta_0 \exp(-k - n)t; \quad 0 < k < n, \quad \alpha_0, \beta_0 \in (0, 1);$$
  

$$z = x - N_0 t + l_1 \alpha + l_2 \beta + l_3 \alpha^2 + l_4 \beta^2 + l_5 \alpha \beta + l_6 \alpha^3 + l_7 \alpha^2 \beta + l_8 \alpha \beta^2 + l_8 \alpha \beta^3 + ...; l_i - const, i \ge 1.$$

Линия  $z_j = 0$  является образом ФГ. Уравнения теплопереноса (1) и граничные условия (2), (3) удовлетворяются функциональными степенными разложениями:

$$T = T_{0}(z) + \alpha T_{1}(z) + \alpha^{2} T_{2}(z) + \beta \Theta_{1}(z) + \beta^{2} \Theta_{2}(z) + \alpha \beta \psi_{2}(z) + \alpha^{3} T_{3}(z) + \beta^{3} \Theta_{3}(z) + \alpha^{2} \beta \psi_{3}(z) + \alpha \beta^{2} \widetilde{\psi}_{3}(z) + ...;$$

$$(4)$$

$$q = q_{0}(z) + \alpha q_{1}(z) + \alpha^{2} q_{2}(z) + \beta \aleph_{1}(z) + \beta^{2} \aleph_{2}(z) + \alpha \beta \chi_{2}(z) + \alpha^{3} q_{3}(z) + \beta^{3} \aleph_{3}(z) + \alpha^{2} \beta \chi_{3}(z) + \alpha \beta^{2} \widetilde{\chi}_{3}(z) + ...;$$

$$(5)$$

$$N = N_{0} + \alpha N_{1} + \alpha^{2} N_{3} + \beta N_{2} + \beta^{2} N_{4} + \alpha \beta N_{5} + \alpha^{3} N_{6} + \alpha^{2} \beta N_{7} + \alpha \beta^{2} N_{8} + \beta^{3} N_{9} + ....$$

Аналитические выкладки проводим при  $u_* \equiv const, q_* \equiv 0$ . В зоне кристаллизации  $[T_w, T_j]$  берем  $c \equiv const; \gamma \equiv const; \lambda = \lambda_0 + \lambda_1 T; 0 < T_j(t) \le T_{j \max} < T_c$ . Тепловое состояние на левой границе определяем по формулам:

$$T_w = T(z_w, \alpha, \beta); q_w = q(z_w, \alpha, \beta); x_w \equiv const < 0,$$

причем априорное задание констант  $I_i$  опосредованным образом влияет на  $T_w, q_w$  – обратная задача. Начальные значения  $T_{i-1}(0), q_{i-1}(0), i \ge 1$  находим из условий (2) на

 $\Phi\Gamma$  – прямая задача. Приведем здесь формулы для коэффициентов нулевого и первого приближений по  $\alpha$ ,  $\beta$ :

Нулевое приближение:

$$cN_{0}\frac{dT_{0}}{dz} = \frac{dq_{0}}{dz}; \ \gamma N_{0}\frac{dq_{0}}{dz} = q_{0} + \lambda(T_{0})\frac{dT_{0}}{dz}; \\ \lambda(T_{0}) = \lambda_{0} + \lambda_{1}T_{0}; \\ q_{0}(0) + \widetilde{c}N_{0}B_{00} + LN_{0} = 0; \\ B_{00} = 2c_{0}^{*}(T^{*} - T_{c}) + 2c_{0}^{j}B_{0}; \\ B_{0} = (T_{c} - T_{0}(0))^{1/2}; \\ \widetilde{\lambda}[V_{s}^{*} + v_{j}^{0}(T_{c} - T_{0}(0)) + 0.5v_{j}^{1}(T_{c}^{2} - T_{0}^{2}(0))] + N_{0}q_{0}(0) = 0; \\ v_{j}^{0} = \lambda_{j}^{0}/\gamma_{j}; \\ v_{j}^{0} = \widetilde{\lambda}[V_{s}^{*} + v_{j}^{0}(T_{c} - T_{0}(0)) + 0.5v_{j}^{1}(T_{c}^{2} - T_{0}^{2}(0))]/(\widetilde{c}B_{00} + L).$$
 Первое приближение:

$$\begin{aligned} \frac{dq_{1}}{dz} + c \bigg[ \bigg( T_{1} + l_{1} \frac{dT_{0}}{dz} \bigg) (k - n) - N_{0} \frac{dT_{1}}{dz} \bigg] &= 0 \,; \\ \frac{d\aleph_{1}}{dz} - c \bigg[ \bigg( \Theta_{1} + l_{2} \frac{dT_{0}}{dz} \bigg) (k + n) + N_{0} \frac{d\Theta_{1}}{dz} \bigg] &= 0 \,; \\ q_{1} + \lambda (T_{0}) \frac{dT_{1}}{dz} + \gamma \bigg[ \bigg( q_{1} + l_{1} \frac{dq_{0}}{dz} \bigg) (k - n) - N_{0} \frac{dq_{1}}{dz} \bigg] + \lambda_{1} T_{1} \frac{dT_{0}}{dz} = 0 \,; \\ \aleph_{1} + \lambda (T_{0}) \frac{d\Theta_{1}}{dz} + \gamma \bigg[ \bigg( \aleph_{1} + l_{2} \frac{dq_{0}}{dz} \bigg) (k + n) + N_{0} \frac{d\aleph_{1}}{dz} \bigg] + \lambda_{1} \Theta_{1} \frac{dT_{0}}{dz} = 0 \,; \\ N_{0} q_{1}(0) - \tilde{\lambda} T_{1}(0) \bigg( v_{j}^{0} + v_{j}^{1} T_{0}(0) \bigg) + N_{1} q_{0}(0) = 0 \,; B_{1} = -(T_{1}(0)/2B_{0}) \,; \\ N_{0} \aleph_{1}(0) - \tilde{\lambda} \Theta_{1}(0) \bigg( v_{j}^{0} + v_{j}^{1} T_{0}(0) \bigg) + N_{2} q_{0}(0) = 0 \,; B_{3} = -(\Theta_{1}(0)/2B_{0}) \,; \\ q_{1}(0) + \tilde{c} N_{1} B_{00} + 2\tilde{c} N_{0} c_{0}^{j} B_{1} + L N_{1} (1 + \gamma (k - n)) = 0 \,; \\ \aleph_{1}(0) + \tilde{c} N_{2} B_{00} + 2\tilde{c} N_{0} c_{0}^{j} B_{3} + L N_{2} (1 - \gamma (k + n)) = 0 \,. \end{aligned}$$

Расчеты были проведены с помощью отрезков рядов (4), (5), включающих члены разложений третьего порядка. Отметим хорошую практическую сходимость рядов. Так, для приведенных здесь вариантов различие в результатах расчета T, q с учетом членов 2-го и 3-го порядков по  $\alpha, \beta$  не превосходит 0,02%.



Результаты расчетов трех типичных вариантов для железа представлены на рисунках 1–3. Номер рисунка соответствует номеру варианта. На рисунках, отмеченных буквами а, б, в, изображены, соответственно,  $T_i(t)$ ,  $q_i(t)$  (сплошная линия),  $q_w(t)$  (пунктирная линия), N(t). Координата левой границы  $x_w = -0.05$ . Температура  $T_* = 1.0001$ . В области перед  $\Phi\Gamma$ :  $c = 6.46 \cdot 10^6$  Дж/м<sup>3</sup>K;  $\lambda_0 = 40.8$  Вт/мК;  $\lambda_1 = -5 \cdot 10^{-4}$  Вт/мК<sup>2</sup>; в области за  $\Phi\Gamma$ :  $c = 6.11 \cdot 10^6$  Дж/м<sup>3</sup>K;  $\lambda_0 = 42.0$  Вт/м K;  $\lambda_1 = -2 \cdot 10^{-3}$  Вт/м K<sup>2</sup>. Применялись следующие масштабы величин:  $T_b = 1810$ K;  $c_b = 6.11 \cdot 10^6$  Дж/м<sup>3</sup>K;  $x_b = 1 \cdot 10^{-3}$  м;  $t_b = 1 \cdot 10^{-5}$  с;  $L_b = 2.11 \cdot 10^9$  Дж/м<sup>3</sup>;  $\lambda_b = 42.0$  Вт/мК;  $q_b = 6 \cdot 10^9$  Вт/м<sup>2</sup>. Остальные входные параметры за-дачи представлены в таблице.

|        | γ.   | Υ <sub>i</sub>     | $N_0$   | $N_1$              | $N_2$              | $N_3$               | $N_4$               | $N_5$               | k   | n   |
|--------|------|--------------------|---------|--------------------|--------------------|---------------------|---------------------|---------------------|-----|-----|
| Bap. 1 | 0,5  | $15 \cdot 10^{-4}$ | 0,0104  | $1 \cdot 10^{-3}$  | $1 \cdot 10^{-3}$  | $25 \cdot 10^{-5}$  | $25 \cdot 10^{-5}$  | 25·10 <sup>-5</sup> | 0,5 | 1,0 |
| Bap. 2 | 0,2  | $4 \cdot 10^{-4}$  | 0,02027 | $-1 \cdot 10^{-3}$ | $-1 \cdot 10^{-3}$ | $-25 \cdot 10^{-5}$ | $-25 \cdot 10^{-5}$ | $-25 \cdot 10^{-5}$ | 0,5 | 1,0 |
| Bap. 3 | 0,05 | $1 \cdot 10^{-4}$  | 0,04055 | $1 \cdot 10^{-3}$  | $1 \cdot 10^{-3}$  | $25 \cdot 10^{-5}$  | $25 \cdot 10^{-5}$  | $25 \cdot 10^{-5}$  | 4,5 | 5,0 |

Литература

- 1. Galenko P., Sobolev S. Local nonequilibrium effect on undercooling in rapid solidification of alloys // Physical Review E. 1997. Vol. 55. №1. P. 343-352
- Шабловский О.Н. Релаксационные тепловые структуры и фазовые границы в нелинейных средах // Труды 2-й Российской национальной конференции по теплообмену. Т. 7. Теплопроводность, теплоизоляция. – М.: МЭИ, 1998. – С. 251–254
- Шабловский О.Н. Нелинейные волновые задачи релаксационного теплопереноса // Газовая динамика. – Томск: Изд-во ун-та, 1991. – С.91–98
- Шабловский О.Н. Некоторые задачи нелинейной динамики локально-неравновесных тепловых полей // Первый междисциплинарный семинар "Фракталы и прикладная синергетика": Сб. тезисов. – М.: Изд-во РАН, 1999. – С. 54–55