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SECTION 1. LIMITS

1.1. Definition of Numerical Sequence

A numerical sequence 1s defined if there is a rule according to which
to every positive integer n corresponds a real number a,,.

In other words, a, 1s a function of natural argument .

The elements of the sequence are called the ferms. The term a, 1s
called n-th term (or general term) of a sequence. The general terms put into
braces denotes a sequence: {a, }, {b, }, {c, }-

Example 1.1. The general term a, = 2" determines an infinite geo-
metric progression with the common ratio 2:

la,}=2,4,8,16,32, ... .
The sequence {bn}z -1,1,-1,1,—1,... can be represented by the
general term b, = (—1)".
The general term of the sequence {c,}=1,—,~, —,...is ¢, =

Graphically, the sequence can be represented by points on the num-
ber line or as a two domain chart. For example, the sequences {a,}, {b, },

{cn} from the example 1.1 can be graphically represented as follows:

'32 -------------------- -
il.cﬂ‘
.l.ba 1}---»
18 .
1 ' v 4+
: ; 7
? : 1] 23 45 » 7
4 3 H I '
| IO O I T T o e
1 2 3 4 5°* 1 2 3 45 «
{a,}=2,4,8,16,32,...  {b,}=-11-11,... 1= 111
n )293’4)’



Bounded Sequences
The sequence {an} is said to be an upper bounded sequence if there

exists a finite number of U such that a, <U for all natural numbers n.
The number U is said to be the upper bound of {a,,}.

The sequence {a,} is said to be a lower bounded sequence if there
exists a finite number of L such that g, > L for all natural numbers n.
The number L is said to be the lower bound of {a, }.

A sequence is called bounded if there are two finite numbers,
L and U, such that L <a, <U for all members of the sequence. Other-

wise the sequence is called unbounded.

The sequences {l} and {(— 1)”} are bounded because
n

0S1<1'

-

n
—1<(=1)" <1.

The sequences {2"} is only lower bounded because 2 < 2”.

The example of unbounded sequence is

{(—2)”}: ~2;4;-8;16;-32;...

Monotone Sequences
A sequence {an} i1s called a monotone increasing sequence, if

a,., > a, for each natural number 7. A sequence {a,} is called a monotone

n+l

decreasing sequence, if a, ., < a, for each natural number n.

n+l

1] . :
The sequence {—; is monotone decreasing because
n



The sequence {2”} 1s monotone increasing, as

a,,=2"">2"=q.
The sequence {(— 1)”} 1s non monotonic.
Exercises

1. Write down a few terms of the following sequences given by gen-
eral terms:

n+2 n+1 2"
a)a, = ; b) ¢, =—:; C) y,=—;
) n+4 ) 3" ) ) n!
(_1)n+1 ; n (_1)n+1
d) b ;e)x,=(-1 ; = .
) bn 2n+1 ) ( )2n2—1 ) (2n—1)!

Which of the given sequences are bounded? Only lower bounded?
Only upper bounded?
2. Find the general terms of the following sequences:

1 2 3 4
=1,3,5,7,9,...; d) fs, V=, 2, -, ~
1 2 3 4 1 1 1 1
b T T A ot 4 :1)_3_7_7_7 )
Vat=35 080 ) tat=12 6 2 o0
1 1 1 1
=1,—-,—,—,—,...; .1=2,0,6,0,10,0,14, ... .
)=l 5 e s )t}

Which of the given sequences are bounded? Only lower bounded?
Only upper bounded?

1.2. Limit of Numerical Sequence

Number a is called the limit of a sequence {a,} if we can make a,

as close to a as we want for all sufficiently large n.
In mathematical terms “a, close to a for all sufficiently large n”

means that the difference between a, and a is getting very small, less than

arbitrary positive number ¢ starting from some number N. So we can give
a formal mathematical definition:

Definition. Number a is called the limit of a sequence {a,} if for
every number € >0 there is an integer N such that ‘an —a‘ <& whenever

n>N.



The fact that the value a is a limit of a sequence {an} is symbolically
denoted as

lima, =a.
n—»o0

Other notations that can be used are a, —a as n— o or {a,}|—>a

as n —» 0.

If the value a is a finite number then the sequence {a,} is called

convergent ({a,} converges to number a). Otherwise, if a is infinite or

n

doesn’t exist, the sequence {a, } is called divergent. The sequence {a,} is
called infinitesimal if lim a, =0. The sequence {M,} is called infinitely

n—>0
large if lim M, = .
n—>0
: 1 1 11 1
tample 1.2.  Consider the sequence <—;=1,—,—,—,...,—,
n 2 3 4 n
.1
Its terms become closer and closer to 0 (see figure), so lim —=0. There
n—o 7]
1s convergent infinitesimal sequence:
X¥e X X X3 X3 s -
— - ——— & & & L
' I T TR T 1
Ozms 5 1 3 7 1

Remark. Geometrically, the inequality |a, — a‘ < ¢ 1s equivalent to the

open interval (a—g;a+g), which is called the s-neighborhood of a.

So we can formulate another definition of the limit:
Number @ is called the limit of a sequence {a,} if every

e-neighborhood of @ contains all but a finite number of the terms of {a, }.
Example 1.3. The terms of a sequence {2”}= 2,4,8,16,32,...,2" ...

get larger and larger with n increasing (see figure ), so lim2" =oo,

n—»o0
One can say that {2"} is divergent infinitely large sequence.
Example 1.4. The sequence {(—1)”}= -1,1,—-1,1,—1, ... has no limit
(see figure ), so it is divergent.



Properties of Sequence limits

Let {a,} and {b,} are both convergent sequences, C is a constant.
Then
* The limit of a constant 1s a constant: lim C =C.
n—»0
» The constant can be taken out of the limit sign: lim(Ca, )= Clima,,.
n—©0 n—>0

e lim(a, +b,)=lima, +limb,.

n—>0 n—>0 N—>0

« lim(a,-b,)=lima, -limb, .
n—>0 n—>®

n—0
q lima,
o lim 2 =22%2—_"if limb, # 0.
nsobh  limb, o0
n—>0
3
Example 1.5. Evaluate the limit: lim L;?S
n—»0 n
Solution
3 B 3

lim "1 lim[n—3+3—’:—i3): lim(1+%—%j =1+0-0=1.
n—>0 n n—o\ n n n n—00 n n

Definition. Two sequences {a,} and {b, } are called the equivalent
(a, ~ b,) if the ratio of there terms tends to 1:

lim %2 =1.
n—o p

For example, n° +3n—5~n’ (see the example 1.5).

b ~B, then lim <2 = lim =,

Theorem 1.1 . If a, ~ a
n—0 bn n—>0 Bn

n°?’

00)
Theorem 1.1 can be used to calculate the uncertainties of the form (—)
o0

n+5
Example 1.6. Evaluate the limit lim ———.
>o3/8n* +10



Solution

If we “plug” infinity into numerator and denominator we get an inde-

: 00 : :
terminate of the form (—j Replace the expressions in the numerator and
o0

denominator with their equivalents:

n+5~n, 80> +10 ~/8n* = 2.
By the theorem 1.1 we have:

fim -2 fim L fim L =L

n—»0%0 3*/8713 +10 now on nsw2 2
Let F,(n) and Qy(n) be the algebraic expressions, where o and f3
(a, B> 0) are the highest powers of F, (n) and Qy(n) correspondently.
One can use the following rule to calculate lim PO‘—(n):
n—e Qg (1)
v'[the limit is zero if the power of the numerator o is less than the
power of the denominator f3;

v'[the limit is infinity if the power of the numerator o is greater than
the power of the denominator [3;

v'[the limit is equal to the ratio of the coefficients at the highest
powers if the powers of the numerator a and the denominator 3 are equal.

Example 1.7. Evaluate each of the following limits:

4 3 4
a) lim " F 2 ENBn + 2 b) lima(Vn+5-+n-2)

9
n—0 n5\/10n6 +n? - 46\/;12 +1 n—

Solution

a) Use the theorem 1.1:
n+5~4n~n''*
nWNnW:anws — 1005,
A8/n? +1~ a8n? = an';
n+5+38n* +2n n'* +3/8n*3 + 21

lim = lim

.0
>0 1000 + 0 —48n® +1 oo Y1020 —4n'?

10



Now let's compare the powers:

4,g,1}=i3n1/4+i/_n4/3+2n~2n4/3;

[
B= maX{ISI,é} 11:> 105 — 453 < 31005

Since the power of the numerator is less than the power of the de-
nominator, the limit is equal to zero:

o= max{

4
. An+5+3Y8n" +2n a=—,p=—,
lim = 3
= 31008 +n? — 440 +1

a<p
b) Here we have an indeterminate of the form (o —o0). Multiply and
divide by conjugate:

hm\/;(WHS_\/n_z):limx/z(%ws—Jn—z)(Jn+5+Jn—2)=

— e (Vn+5++n—2)
{4 _ 2ol (45 - (n-2)) _
—Na-b)a+b)=a b}_’}% N
7n n+5~+n i W7
=2~ | w2

= lim
n—oAln+5+~/n— 2

=3,5.

Exercises
In the exercises 3—16 evaluate each of the following limits:

3 (1+4n)n —n’ 4 Tim 2n° —(3n* +5)(n’ -3)
. n—>00 (n+3)’ +n* "o 3n° +4n* -1 '
 (n+1P —(n—2) (2n +3f
5. lim 5 : 6. lim
n—>o0 n°+1 ”—”0\/417 +ont 41
33 6 2
- lim(2n+l) n 2 lim\/6n +2n” +3

noe \[6n° +1 . o 3\/n6+3n4+1.
Van® —n+5 Rn® —33n*

9. lim 10. Iim

>0 (3 +2)-3/8n° +1 155 A + W 45

11



2
11, ljm Y2 *1=3n 12. lim(\/n2+n—n).

n—o  Tn+3 n—>e0
13. lim¥n(n+5-n-2) 14, tim s/ —/n® +3n |
n—»0 n—»0
ntl _ g qn _ntl n
15, lim 2, > 6. lim> >
n_>oo3n+2+5_2n n_>oo7n+2+5n—l
1.3. Number e
heorem .. The sequence {(1 + —j } 1S monotone increasing
n
bounded sequence. This sequence has a finite limit
: 1Y
11m(1+—j =e, (1.1)
n—»0 n

where e =2,71828... is so-called Euler’s Number (the base of natural loga-

rithm).
Remark. The limit (1.1) is used whenever we are dealing with

uncertainty (loo ) There is a following corollary from formula (1.1):

a cn+p g
lim(1+ j =e?!. (1.2)
n>o\  bn+d

3n-1
Example 1.8. Evaluate the limit lim(n * 5) :
n—o\ 1+ 3

Solution

One have to convert given expression in order to use formula (1.2).
One can add and subtract 3 in the numerator:

3n-1 3n-1
lim(n+5j 1%y = lim(n+3_3+5j _

n—>0 n+3

12



Exercises
In the exercises 17-24 evaluate each of the following limits:

2n+l1 n+5
17 lim| 222 18. lim[ 2272
n—o\ 3n—1 n—o\ 2n+ 2
4—n 3n-7
19. Tim[ %" . 20. lim ”‘8j .
n—o\ 4n+3 n—oo\ n+4
3n—1 3—n
o1 tim[ 22+ ) 2. lim[ 2274
n—o\ 2n+3 n—o\ 2n+1
2+ +5 3n—-1 2+5 _1 n+2
23. lim| 52| 24 lim| 20|
n—o\ n° +3n—1 n—>o\ p” +5n+2

1.4. Definition of Function

A function relates each element of a set X with exactly one element
of another set Y. The set X 1is called the Domain. The actual values
produced by the function is called the Range.

The function can be given in different ways:

1) tabular way;

2) graphical way;

3) analytical way.

Types of analytically defined functions:

» An explicit function, when the function is given by the equation
y = f(x) to be resolved relative to y.

* An implicit function, when the function is given by an implicit
equation as the relation of one of the variables (value) to other variable
(argument): F(x,y)=0.

» Parametric function, when the relationship between x and y is
realized by a third variable ¢, called the parameter:

{x = x(1),

y=y().
The same function can be specified analytically by listed above
methods.

13



Example 1.9. Consider a unit circle centered at the origin:

ar
NP

yzi\/l—xz.

Ny

An explicit function:

An implicit function:

x2+y2:1.

X = COSt,
y =sint.
Parity of Functions
Function is called even if f(—x) = f(x) for all x from the domain of
the function. Function is called odd if f(—x)=—f(x) for all x from the

domain of the function.
Geometrically, the graph of an even function is symmetric with

respect to the y-axis. The graph of an odd function has rotational symmetry
with respect to the origin.
For example function f(x)=| x|—-x” +3 is even because

Parametric function:

S(=x) = =x| ~(=x)* +3 = x| -x" +3 = f(x).
Function f(x)=x—2x’ +3sinx is odd because
£ (=x) = (-x)—2(—x)* +3sin(—x) = —x + 2x° = 3sin x = — £ (x).
Function f(x)=x—23x?+2 is neither even nor odd because
f(=x)=(=x)=3(=x)* +2=—x-3x" +2 = f(x);
£(=x) = (x+3x> = 2) % — f(x).

14



Monotonic Functions
For a given function, y = f(x), if the value of y is increasing on

increasing the value of x then the function is known as an increasing
function, and if the value of y is decreasing on increasing the value of x

then the function is known as a decreasing function.
A monotonic function is a function which is either entirely non
increasing or non decreasing.

1.5. Limit of Function

We say that the limit of f(x) i1s L as x approaches a and write this as
lim f(x)=L

n—a

provided we can make f(x) as close to L as we want for all x sufficiently
close to a from both sides, without actually letting x be a.

2
For example, consider the limit lim > +24x2 12. The function
x=2  x"—=2x
2 J—
f(x)= o J;4x2 12 is not defined at the point x =2. Let’s calculate the
x°—2x
values of the function at points close to x =2
X S (%) X S (x)
2.5 3.4 1.5 5.0
2.1 3.857142857 1.9 4.157894737
2.01 3.985074627 1.99 4.015075377
2.001 3.9985000750 1.999 4.001500750
2.0001 3.999850007 1.9999 4.00015008

So, one can conclude that

L x2+4x-12
Iim =

5 4.
=2 x°=2x

Properties 1-5 (see subsection 1.2), which are valid for the limits of
sequences, also hold for the limits of functions and can be used to calculate
limits. By analogy with the concepts of infinitesimal and infinitely large
sequences, one can define infinitesimal and infinitely large as x tends to a
functions, as well as the concept of equivalent functions.

15



Example 1.10. Evaluate each of the following limits:

2 2
2) lim> +24x 12; b) lim> +24x 12.
=3 x°=2x =0 x°—2x
Solution
; 2 "2 2 r
512 lim(x? + 4x-12)=37 +4.3-12=9 o,
=3 2*-2x  |lim(x? -2x)=3?—2.3=3 3 7
x—3
) lim(x> + 4x—12)=—12
by lim T 12 10 Nt .
=0 x*=2x  |lim(x? - 2x)=0 0

x—0

Remark. First we do to calculate lim f(x) is plugging x =a into
xX—>a
the function. It gives just the answer in some cases (see Example 1.10)

: : : 0 :
but sometimes we get the indeterminate of the form (6] In this case we

have to simplify the function as much as possible by factoring or
conjugation. The following formulas are used:

a’ —b*> =(a—b)(a+b);
a’>—b=(a-b)a*+ab+b?); @’ +b’=(a+b)a*—ab+b?);
(a—b)* =a* —2ab+b?; (a+b)* =a* +2ab+b>.

Square trinomial.:
ax’ +bx+c= a(x—x)(x—x,);

—bh+~JA
2a

where x, , = A=b*—4ac.

2 —
Example 1.11. Evaluate the limit: lim > +24x IZ.D
-2 x"—-2x

Solution

: : 0 , :
Here we have an indeterminate of the form (6] Let’s factorize

numerator and denominator:

16



x* +4x-12=0;
A=4>—-4.1-(-12) =16+ 48 = 64;

—4+8

Xjp=—F7—, X =2, x, =—0.

After factoring both numerator and denominator we get:

2 J—
lim ™ +4x—-12 lim (x=2)(x+6) _ limx+6 y 2+6 4
x—2 x2 —2x x—2 x(N) x—2 X Y

3—\4x+5 o

Example 1.12. Evaluate the limit: lim——— F F—.
2x-2

x—1
Solution
. 3—+4x+5 (Oj
Iim————=| — |. [
x>l 2x-=2 0

One have to use the conjugation to get rid of the root in the numerator:

o 3-Axes L (3Anr S )34 A S)
im———— — =lim =
ol x—2 2 (2x-2)(3+4x+5)

:{(a—b)(a+b) pe _bz’}:lim 3 -(Vax+s)
a=3b=4x+5 1 (x—1)(3+/4x+5)

o 9—4x=5 4—4x
1(x—1)(3+4x+5 ) le(x D(3+4x+5 )
~ fim— (=Y lim 2 - =2 _ 21

x—)lz(x\_g(?,_l_M) x—>13+’\/4x+5 3+44+5 6 3

Exercises
In the exercises 25—-34 evaluate each of the following limits:
2 2

25. lim = %= 26. lim X702

>3 x° =27 >3 x"4+x—-6

3 4 1.2

27. lim —> 4x 28. lim )zc 16x

X—— 24x —|—9x—|—2 x4 x —8x+16

17



x> +3x% —10x ) ¥ +1

29 hm 3 . 30 hm 3~ 2 A
—27x° —10x* -16 x—>-1x" —=2x" 43
31, limY2X =272 32, lim——

=2 x2_4 x—>2«/4x+ -3

. Jx+4-1 34olimJ1+3x—\/2x+6.

H3«/3 2x—3 x5 x> —5x

1.6. Special Limits

1.6.1. Trigonometric Limits

Suppose that the functions f(x) and g(x) are infinitely small as
x — 0, the functions f(x) and g(x) contain trigonometric functions.
The indeterminate form

1 -[0)
x>0 g(x) 0

can be calculated by fundamental limit (first notable limit):

. sinx
lim

x>0 Xx

1. (1.3)

The consequences of the formula (1.3):

. . arcte x
1) im——=1; 4) lim g =1;
x—>0SIn X x>0 X
te x . sinmx
2) lim—=— & =1; 5) lim =m;
x>0 x x—=>0 X
. arcsin x . sinmx m
3) lim =1; 6) lim— =—.
x>0 x x=0 SINnx N

These formulas show sin x, tg x, arcsin x, arctg x to be equivalent x

as x — 0, so one can replace this functions by their argument as argument
tends to 0.
One can use the following equivalence relations as x — 0:

sinx ~ x; arcsinx ~ Xx;

tg x ~ x; arctg x ~ x.

18



Example 1.13. Evaluate each of the following limits:

)
2) lim sn; 3x+tg 2x; b)lim 1 cosx
x>0 x° —arctg 5x x>0 x - tg 3x
Solution
sin” 3x ~ (3x)2

.2 2
a) limsm2 3x+tg2x:(9j: tg 2x ~ 2x zlimwz
x>0 x* —arctg Sx x>0 x* —5x

arctg Sx ~ Sx

. 9x+2 9-0+2 2
= lim = =——,
=0 x—5 0-5 5

b) Use the trigonometric formula:

1—cosx=25in2§. (1.4)

Then

2

ind8 2 2|~

. l—cosx (O . 2sin o) sin2 >~ % : (2)

lim =|— |=lim—*= = 2 \2) p=lm———=

»=0x-tg3x \0) x-0x-tg3x x>0 x-3x
tg 3x ~3x

Remark. According to the formula (1.4) one can say that
2

X
l—cosx~7 as x > 0.

Exercises
In the exercises 35—44 evaluate each of the following limits:
. 2 . 3
35, lim S 2. 36, lim—2eSI 3
x>0 tg”3x =0 x(1—cos2x)
y . . 1l—cos4x
37. limsin3x - ctg5x. 38. lim————.
x—0 x=0 sin“ 2x
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limit:

or

hold:

2
39, lim 1 =S98" 3% 40. lim( ! —Lj

x>0 x-tg 2x x>0\ sinx tgx
M. lim—>"2 42. lim(1-x)tg .
x-5sin(x —95) x—l 2
. 2_ i
43. Lin}zls—mxz. 44, lim *+ g
X—T T X gTDC
5

1.6.2. Limits connected with exponents and logarithms

Uncertainty (lw) can be revealed with the help of the second notable

lim(1+a)'* =e,
a—>0
lim (1 + l) =e.
X—>00 X
For example, lim(1 +sinx)""™* = {lim sinx = 0}= e.
X—>T —T
The consequences of the second notable limit:
Jex x
1) lim(1+1J =e*; 4) lim 4 1:lnaz;
X—>00 X x—0 X
2) 1im(1+ﬁj =e™; 5) lim &' = 1.
X—>0 X x>0 X
3) lim log,,(1+x) _ 1 : 6) lim In(1+ x) 1
x—0 X Ina -0 X

By these formulas the following equivalence relations as x — 0 are

log,(1+x) ~ i; a’—1~xlna;
Ina

In(1+x) ~ x; e —1~x.
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Example 1.14. Evaluate each of the following limits:

sin® x
a) limm; b) lim 3 !
x>0  Sx x—0 ln(l arcsin 3x)
Solution
2) lim D430 _ (Qj — {In(1+3x) ~ 3x} = lim>> = 3. -
x—0 S5x 0 x—>05x 5

3sin®x _q 0 sin” x ~ x
b) lim = (_j = =
x—0 ln(l arcsin 3x) 0 arcsin® 3x ~ (3x)2

g 301 3 -1em3 | 3 1
=oIn(1-9x") " |Inf1-9x?)~ —9x2[ =0-9x* 97
Exercises
In the exercises 45—-54 evaluate each of the following limits.
- 2 3sin2x
45 lim ln(sm 2x+1) 46 lim & —1 -1
x>0 In? (1-2x) x—0] — cos\/_
2x
7 tim 2= . lim 0S¥ —C083x.
x—0 5x x—0 etg 2x -1
49 lim ln(cosx). im arcsin2x .
x>0 x-tg 2x -0In(e—x)—1

2 2
51, lim>_— L. 5. limM.

x—1 lnx x—2  sin2mx
53. Iim (3 1)2 54. hmi
x> 1n(2 +cos x)’ x>l sin(x* —1)

1.6.3. Limit of f(x)$™

The following rules should be followed in calculating the limit
lim £ (x)8™:

o If lim f(x)=4, hm g(x) B, where A and B are finite numbers,

x—a

then lim f(x)¢™ =

xX—>a
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« If lim f(x)=A4>1, lim g(x) = +oo then lim f(x)g(x) = o0;

x—a x—a x—a
o If lim f(x) = A <1, lim g(x) = +oo then lim f(x)¢™ =0;
xX—>a xX—>a xX—>a

 If lim f(x)=1, lim g(x) = o then one can use formula:

lim (f (x)-1)g(x)
lim f(x)f®) = (17 )=

xX—a

1

Example 1.15. Evaluate the limit lim( x+2 jm.
x—>-1\2x+3

Solution
By the formula (1.5)

. lim x+2 _—1+2_1

lim x+2 E_4x9—1 2x+3 Ny, e _(100)_
x—>-1\2x+3 , 1

lim —— =

(x—>-1x+1

lim ( x+2 _1) 1 il (x+2—2x—3) 1 lim (—x—l ) 1
:ex—>—l 2x+3 x+1 — ex—)—l 2x+3 x+1 — ex—)—l 2x+3 )x+1 —
im O Ly, L AL
— pi-1 2343 X+l — pr-12x43 — 5243 — 571 ]
(IT1T]

In the exercises 55—60 evaluate each of the following limits.

1 1
7\ 1
55, lim(zx 7j/ . 56. lim(6 — 5x2 Jre—4
-8\ 2x+1 x—1
3x+2 N
57. lim(3e™ 2 = 2) 2. 58, Tim (tg 22" ).
x—2 x—mn/8
1 2,
B o 3x cos (Z+x)
59. lim(z le = 60. the 1] .
x—8 X x—0 X

22
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1.7. One-sided Limits

If x tends to a, remaining all the time /ess than a, then one can say
that x tends to a from the left and write: x >a—0. If x tends to a,
remaining all the time more than a, then one can say that x tends to a from
the right and write: x — a+0.

So we can define left-handed limit f(a—0) = limo f(x) and right-

X—>a—

handed limit f(a+0)= limo f(x). Left-handed limit and right-handed
xX—>a+

limit are called one-sided limits.

Example 1.16. Compute the one-sided limits of the function
1

f(x)=e2 " as x - 2.
Solution

In the case of left-handed limit x <2 then 2— x>0, so
1 1

f(2-0)= lim e** =e*0 =" =0,
x—>2-0

In the case of right-handed limit x > 2 then 2 - x <0, so
1

I
f24+0)= lim e?*=e 0= = =0.
x—=>2+0 e

1.8. Continuity of Functions

Definition. A function f(x) is said to be continuous at x =a if

lim f(x) = £ (a).

x—a

Function is said to be continuous on the interval (a;b) if it is
continuous at each point in the interval.

Let f(x) be defined in some neighborhood of the point x =a except
perhaps the point a itself. The a point is called the break point of f(x)

if the function is either undefined at the a point or is not continuous at that
point.

Let x = a is a break point of f(x). Then it is called:

— the point of discontinuity of the first type (or jump discontinuity)
if there are finite one-sided limits f(a—0) and f(a+0). The value
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‘ f(a-0)- f(a +0)‘ is called the jump of the function f(x) at point a.

If the function jump at a 1s zero, then a point is called the removable dis-

continuity point,
—the point of discontinuity of the second type (or essential
discontinuity) if at least one of the one-sided limits is infinite or does not

exist. _ i —1if x<O0, .
fample 1.17  Function f(x)=signx=1 . is not defined
lif x>0
at the point a =0, so a =0 is breakpoint. Find one-sided limits as x — 0:
lim f(x)=-1;
x—>—0
lim f(x)=-1,
x—>+0
so the point x, =0 is a jump discontinuity point:
y &
1 [¢&——
) %
—3 1

Jump of the function:

f(@a=0)— f(a+0)|=|-1-1=2.

2

Example 1.18. Function f(x)= i is not defined at the point
a =3. Find one-sided limits as x — 3:
2 - p—
TR S BT G i) (C ) SN —(x+3)=6;
x>3-0  x—3  x>3-0 x—3 x—3-0
2 —_— —_—
lim =% 0 = pim =33 —(x+3)=6.
x3+0  x—3  x53+0 x—3 x—3+0

A function jump:
f(a—0)~f(a+0)=0,

so a =3 is a removable discontinuity point (see Fig. 1.1).
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|

0 o] 2;
Fig 1.1 Fig. 1.2
*ample 1.1. Point a =2 is essential discontinuity point for the

1
function f(x)=e?* because f(2—0)=c (see example 1.16). The graph
of this function is shown in Fig. 1.2.

Exercises

In the exercises 61-66 determine the type of breakpoints of the
following functions:

61, y=Snr=2) 62, y=— 2 -

x—2 (x—2)

3

63. y=*| 64, y=" 11

X x+1

x2+1if x <1, e —1 <l
65. y=<2x,1f 1<x <3, 66. y=1 X

1
x+2,if x> 3. e

SECTION 2. DIFFERENTIAL CALCULUS

2.1. Definition of the Derivative

Let the function y = f(x) be defined on the segment [a; b]. Having
fixed a point xe(a;b), one gives the increment Ax and considers
the corresponding increment of the function Ay = f(x + Ax)— f(x).
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J /
Flx+ax) .%\’ = fx)
FE6) i
i
W i
‘o x xHAx X

Fig 2.1

Definition . The derivative of f(x) with respect to x is the
function f'(x) which is defined as

£ = fim &Y = fim JEFA0 =S
A—0AX  Ax—>0 Ax
4 b
dx’ dx
If the limit (2.1) exists, then the function f(x) is called differentiable
at the point x. The function differentiable at each point of the interval
(a; b) 1s called differentiable in this interval.

Let’s compute the derivative of the function f(x)=x" using the
definition:

P00 = tim LEFAD =) _ e (o AD” —x

2.1)

Alternative notations are ', y’,

Ax—0 Ax Ax—0 Ax
L X 2xAx+ AR —xP L 2xAx+AXY . Ax(2x + Ax)
= lim =]lm——=1im =
Ax—0 Ax Ax—0 Ax Ax—0
= lim (2x + Ax) = 2x.
Ax—0

Therefore, (x*)' =2x.

Figure 2.1 shows that tg 3 = % As Ax tends to zero, the secant MN

becomes tangent line to the graph of the function y = f(x) at the point
M (x, f(x)). This implies the geometric meaning of the derivative:
the derivative at the point x is equal to the tangent of the angle a of the slope
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of the tangent line drawn at the point M (x, y) to the graph of the function
y=f(x).

Based on the geometric meaning of the derivative, we can write the
tangent line equation at the point x;:

Y=o+ (x)(x—xp)-
If the function y = f(x) describes any physical process, then the

derivative )’ characterizes the rate of this process — this is the physic

meaning of the derivative. In particular, if the position of an object after ¢
units of time is given by f(¢) then the instantaneous velocity of the object

at t = a is given by f'(a).
If C is a constant, and u(x) and v(x) are some differentiable
functions, then the following differentiation rules are valid:

1) C' =0 (constant rule);
2) x'=1;

!

3) (utv) =u'+v' (sum rule);

4) (Cu)’ =Cu';

5) (u-v) =u'-v+u-v' (product rule);
6) (Ej = w (quotient rule);
% %

it f(x)= f(u(v(x)), then y. = f-u’ (chain rule).

Based on the definition of the derivative and the differentiation rules
it is possible to compile a table of derivatives of the main elementary
functions.

Derivative table

/ SN 1 :
1 (u(x) = o™y 10. (arcsinu) = - ‘U
pA (e“) =e"-u' 11. (arccosu), __ u'
1-u’

I/I' u ! ' 1 !

3. (a ) =a' Ina-u 12. (arctgu) = > u
1+u
4. (lnu)’ :l-u’ 13. (arcctg u), __ >’
u l+u
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' 1 , !
5. (log, u) = —u 14 (l) :_% '
u u
6. (sinu)’:cosu-u’ 15. \/_lz Lo
( “) 2Ju u
7. (cosu) =—sinu -u’ 16. (shu) =chu-u
] (tgu)’: 12 ' 17. (Chu) =shu-u
cos” u
/ 1 / 1
9. (ctgu) =— ‘u' 18. (thu) = -u'
(etgu) sin” u i (th ) ch’u i
' 1
19. (cthu) =— u'
(cthu) L

Example 2.1 . Find derivatives of the following functions:

2
X

N

4
—+

a) y:2x4+5x—%+
3 x

c) y=sin’ 2x;;

Solution
a) Transform the function using the
1 _
—=x", Ax
X

Then y =2x" +5x—§+4x_3 +%x

Now use a table of derivatives, sum

y’:8x3+5—0+4-(—3)x_4+; 3

b) y= (x2 + 1)- arctg x

In(x* +1
@ y=" D
X
formulas
_ xm/n

32

rule and constant rule:
+5— % + 1 X.
X 2

x1/2 — 8x3

b) Use a table of derivatives and product rule:

! !

y'= (<x2 + 1)- arctg x) = (x2 + 1) -arctg x + <x2 + 1)- (arctg x)

=2Xx-arctg x + <x2 + 1)-

28

1+x

4

5 =2x-arctgx+1.
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c) Here we have a composition of three function — power function,
sine and polynomial function 2x, — therefore we use chain rule:

!

y' = (sin3 Zx), = ((sin 2x)3 )’ = 3(sin 2x)2 (sin2x) =

=3sin” 2x-cos2x-(2x) =3sin” 2xcos2x-2 = 6sin” 2xcos 2x.

d) To compute this derivative we use quotient rule:

. (In(x? +1) ’_(1n(x2+1)),-x2—ln(x2+l)-(x2),_
S R ©
Lo In(? +1)-2x 2x°

—2xIn(x* +1)

_x*+1 _x*+1 _
x* x*
2 2In(x’+0)
x(x* +1) X '

Exercises

67. Find the derivatives of the following functions using the
definition:

a) y=+/x; b)y=Inx; ¢)y=sinx.

In the exercises 68—111 find the derivatives of given functions:

68. y=2x" +3x> —4x+8. 69. y=3x5—§+2x—1.
x? 1
70. y:3x3—?+0,5\/;—1n3. 71. y:(x3+3{4——2j.
X
X 3
72. y=ax’ +bx* —cx+d. 73. y:?+—3+cosl.
X
\/7 ) 3,2
4. y= +———— : 75. y=
23/ x? 2
2 x x*—~/x -1
76. 3\/_+ ————. 77. y=—F—.
RN YTy
3 2 _
72 y:x 4\/;2+x +2. 79. y= x° =3
X X
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3x° —x+5 _ COSX-arccos x

80. yzf. 8l. y= 5
82. y=x(2+x> —x) 83. y=(3x—2)2vx —¥x).
1++/x 2+x
YTV T3y
86. y=x"-3". 87. y=xInx.
88. y=Xx-sinx—cos Xx. 89. y:arcc?sx.
arcsin x
90. y=(3x+1)". 91. y =2sin(3x +5).
92. y =e""** +arcsin3x. 93. y =arctg ¢*'?
4
1 1+x
9. y=|x +—=21. 95. y= .
g ( x j Y T2x
96. y =+/1— x2 97. y=log,(x* +2).
+{/x* +2x -4 99. y=(2+/2x -3)’.
e +1) \/( )3 y=( )
1
100. y=(x+2)"-sin5x. 101, y=——.
y=( y 4 sin(2/x)
102. y =4/In cos3x). 103. y =3/cos”3x.
3x+1 5
104. y =arccos : 105. y= :
Y V2 4 tg?2x
106. y =sin’> 5x. 107. y=logi(1-x°).
3
108, y:th—tgx—irx 109. y = cosx— 5%
110. y =logslog;(2x +1). 111. y=In(x++/x> =1).
112. Prove that the function yzln% satisfies the relation
+ X

xy' +1=¢’.

113. Write the tangent line equations to the hyperbola y 21
X

at the point x = 3.
114. Two points move in a straight line according to the laws

s, =t =3t and s, =1 —5¢t* +17t — 4. When will their speeds be equal?
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2.2. Parametric Functions
Let x and y are given as functions of the variable :
x = x(1),
{y = (0.
Then it is said that the function y= f(x) is set parametrically

(variable ¢ is called a parameter). If x(¢) and y(¢) are differentiable and
x; # 0 then the derivative y can be found by the formula:

WD) (2.2)
tox@)
Example 2.2 . Find the derivative y. of the parametrical function
x =arctg e,
y=e.
Solution
a) Find x; and y;:
' 1 t ¢ 't —t
X, = e = s =e (-1)=—e".
t 1+(et)z 1+82t Vi ( )
b) By formula (2.2) we get
Voo e d e (1+e*) _ e’ +¢é T
* 1+e* e e '
Exercises
In the exercises 115—-118 find the derivatives of parametric functions:
_t+1
sl 16, JFeEe
L t
— 2 x=acos’t,
117, {7 =nd+o0), 118.
y =t—arctgt. y:asinfst.
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2.3. Higher Order Derivatives

A derivative of the second order or second derivative of a function
f(x) is called a derivative of its derivative f'(x):

[0 =(f"(x))

Similarly, derivatives of the third, fourth and, generally, of any n-th
order are defined:

!

7@ = (") S @ =) s S @) = ().

Collectively the second, third, efc. derivatives are called higher

order derivatives.
Example 2.3. Find the first four derivatives for the function

f(x)=5x"-2x" +4x—1.

Solution
1) = (550 - 242 +4x—1)’ =15x" —4x+4;
7700 = (1527 —dx +4) =30x—4;
£7(x) = (30x—4) =30;
F9(x)=(30) =0.

fercises
In the exercises 119—-124 find the second derivative for each of the

following functions:

119. y = xe* . 120. y = In(x + 1+ x2).
1 Jx
121. y= : 122. y=2"".
YA d
123. y=a®, y"™ =2 124. y=xe*, y" -2

2.4. Differentials

For any differentiable function y = f(x) the increment

Ay = f(x+Ax) = f(x)
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can be represented as
Ay = f'(x)Ax + a(x)

where o(x) 1s infinitesimal as Ax — 0.

Definition. The main linear with a respect to Ax part of the function
increment is called the differential.

dy = f'(x)Ax.

As the differential of the independent value x is equal its increment
(dx = Ax) one can write

dy = f'(x)dx. (2.3)

For example, d(In(2x+1))= ﬁ 2-dx = 22dx1 .
X+ X+

To calculate the differential, apply the rules similar to the rules for
calculating derivatives:

d(Cu) = Cdu; d(uxv)=duxdv,
d(uv) =vdu + udv, d (ﬁ) = M
v v

Application of differential to approximate calculations
If we think of Ax as the change in x, then Ay = f(x, + Ax) — f(x,)

is the change in y corresponding to the change in x,. Now, if Ax is small
we can assume that Ay = dy = f"'(x,)Ax, where Ax = x —x,.

So finally we obtain a formula for the approximate calculation of the
value of the function at a point x close to the point x,:

J(x)= f(xo)+ f(x0)Ax. (2.4)
Example 2.4. Calculate approximately 4/85.

Solution

Let’s consider f(x)=%x. One knows the precise value
f(81) = 4/81 =3. So let’s take

x, =81, x=85, Ax=85-81=4.
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As
1

4l 3
x=81 4dx

then by formula (2.4) we finally get:

R
w4l 108

’ 1 -3/4
81)=—
S(81) i

%z3+%-4z3,037.

Exercises
In the exercises 125—-127 find the differential for each of the following

functions:
1

- 1
126. y =2 cosx, 127. y = arccos—.
Y Y Jx
In problems 128-130, calculate approximately using the differential:
128. 4/8,76. 129. sin 35°. 130. In1,1.

2
125, y="*2

2.5. L’Hospital’s Rule

Let f(x) and g(x) are differentiable functions. If both f(x) and
g(x) are infinitesimal or infinitely large as x — a where a can be any real
number, infinity or negative infinity, then

tim 7 _ fim /)

xoa g(x) x—a g'(x) .

This algorithm 1s named the L 'Hospital’s Rule.

Example 2.5. Calculate lim Inx :
x>0 ctg x
Solution
As

lim f(x)=limInx =—-c0 and lim g(x) = limctg x = oo,
x—0 x—0 x—0 x—0
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then one can use L’Hospital’s Rule:

14 . 2
o0
lim () pigy (00 tim YR o SR E
x—0 Ctg X 00 x—0 (Ctg X) x—0 l/sin X x>0 X
Cosinx the first nptable limit
=—lim -limsin x = . SInx =1-0=0
x>0 x  x—0 lim =1
x—>0 x

The L’Hospital’s Rule can also be applied in the case of intermediate
form (0-0).

Let’s lim £(x)=0, lim g(x) = oo, then

xX—>a xX—a

lim £ (x)- g(x) = (0-0) = lim (g{i’g —(%j

or

lim £ (x)- g(x) = (0-e0) = lim (fg(i’;; =(f).

tample 2.6. Calculate lim xInx.

x—0+0
Solution

As lim Inx=-o, then we have uncertainty (0-c0). Transform
x—0+0

function to use L’Hospital’s Rule:

!

lim xlnx=(0-0)= lim X = lim (nx) _ oy 1x
x—0+0 x—=0+01/x x—>0+0 (l/x) x—0+0
xZ
2
=— lim = =— lim x=0.
x—0+0 x x—0+0

The indeterminate forms (ooo), (Ow), (lw) can be reduced to
uncertainty (0- oo) by using logarithm and its properties:

i : =) . lim g(x)In f(x)
Em(f () = lim ™V OF = lim o8O/ @) = groe .

xX—a X—>0 X—>0
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Example 2.7. Calculate lim (tg x)"®".

x— 72
Solution

lim f(x)= lim tg x =o.

x—1/2 x—>/2

We have indeterminate form (oo0 ) Use logarithm properties:

li tg x-In(t
ctg xIn(tg x) — x—1>ra?/2[c ~% n( F x)]

ctg x
) e

lim (tg x)™* = lim ™™ = lim e

x—>m/2 x—>m/2 x—>7/2

Find the limit of exponent:

lin}z[ctg x-In(tg x)]=(0-0)= lim In(tg x) _ (fj =

xon/2  tgXx 00
’ 1 ‘ 1
2
_ i (InCtgD) _ o tex cos’x 1
x—m/2 (tg X) x—m/2 1 xon/2tg X
2
cos” x
Therefore
lim [ctg x-In(tg x)]
lim (tg x)"* = e =e’=1.
x—>7/2
Exercises

In the exercises 138—169 evaluate limits using L’Hospital’s Rule:

3 2 .
131, lim ¥ Y T8r=4 132, lim ™
-2 x7=3x"+4 -1l —Xx
2
133, lim Y FL=NS 134 lim 8%
2 2 +5-3 x=3ntg 6x
135, lim .~ S03% 136. lim—>
x—>01—coshx x=02x° +3x
137, 1im (C0S4X) 138, lim 0N
-0 In(cosbx) x>0 In(sin bx)
) .
139. lim ——22 140, 1im 273
X0 COSX — X x—0 arctg2x

36



CosXx . Xx—arctgx

141. Ilm———"—. 142. lim
x"% (x -1t/ 2)2 x—0 x?
143, limBX =% 144, lim PO+3)
x—0 x —8in x x>+ 3 x+2
145. lim x'°.¢7*. 146. lim xsing.
X—>+00 X—>00 X
147. limetg xIn(x + e*). 148. lim (Inx)"*.
x—0 X—>+00
- 1/(1+1nx) . 2/(x*-9)
149. lim (x+1) . 150. lim(10=3x) .
X—>+00 x—3
151. lim(1—x)<™"?. 152. lim(1 +sin 7o) ™.
x—1 x—l
153. lim A/e” +x. 154, lim%/cos~/x.
x—+0 x—0

2.6. Study of Functions Using Derivatives

I. Monotonicity intervals. Extrema.

A function is said to be monotonic on an interval (a;b) if it does not
increase (decreases) everywhere on the given interval.

Theorem (monotonic sufficient conditions):

1. If a differentiable function y = f(x) has pesitive derivative on the
interval (a; b) then y = f(x) increases on (a; b).

2. If a differentiable function y = f(x) has negative derivative on
the interval (a; b) then y = f(x) decreases on (a; b).

The intervals over which the derivative of the function retains a
certain sign are called the intervals of the monotony of the function.

The function y = f(x) is said to have global maximum global
minimum at a point x =c if f(x)< f(c) ( fx)=f (c)) for every x from
the Domain.

The function y = f(x) is said to have a local maximum (local
minimum at a point x=c if f(x)< f(c) ( f(x)>f (c)) for every x
in some open interval around x = c.

We will collectively call the minimum and maximum points the
extrema of the function.

A necessary condition for the existence of an extremum.  Let
the function y = f(x) be defined in some neighborhood of the point x =c.
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If the function y = f(x) has an extremum at the point x=c, then
f'(c) =0 or doesn’t exist.

Points satisfying the necessary condition are called critical points.

Sufficient conditions for the existence of an extremum at a
critical point.

First Derivative Test . If, when passing through a critical point x =c,
the derivative f'(x) changes sign from «+» to «» then the function has

a local maximum at the point x = c. If, when passing through a critical point
x =c, the derivative f'(x) changes sign from «» to «+» then the function

has a local minimum at the point x=c. If f'(x) is the same sign on both

sides of x = ¢ then it is neither a local maximum nor a local minimum.
High Order Derivative Test . Suppose that x = c1s a critical point of
y = f(x) such that f'(c) =0 and higher order derivatives up to the second

order are continuous in a neighborhood of the point x = ¢ and
[(©=f"()=f"()="=f*""()=0, [ (c) % 0.

Then if f®(c)>0 then f(x) has local minimum at x=c;

if £®"(c)<0 then f(x) has local maximum at x = c.
Example 2.8. Find and classify all the critical points of the function

4 . : o :
y=x"+ — . Give the intervals where the function is monotonic.
X

Solution
1. Calculate the derivative:
1Y 2\ _ 2 2x*-2
y'=(x2 +—2] =(x2 + x 2) =2x—2x"° :2x——:x—,
X

3 3
X X

2. Find the critical points:

2x*-2=0, =1, X, =11,
= =

3. Determine the sign of the derivative:

sign of y’ - + +

’ ~ - 0~

\
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Function decreases with x e (—o0; —1)U(0; 1),
Function decreases with x € (~1; 0)U(1; +)..
Pointsx =1 and x =—1 are local minimums (by the first derivative

: : : : 4 .
test); point x =0 is not local maximum because function y = x* + — 1sn’t

defined at this point.
Example 2.9 . Determine if x =0 is the extrema point of the function
y =cos2x + chx.

Solution
Check at first the necessary condition:
y'=-2sin2x+shx; y'(0)=-2sin0+sh0=0.

So x=0 1is a critical point. However, it is difficult to determine
the sign of the derivative to the right and to the left of the point x = 0.

Use the High Order Derivative Test. Find the second derivative
of the function y"(0):

3"(0) =(~4cos2x+ch x)‘x=0 =—4+1=-3.

Since the second derivative is negative at the point x=0, then
the function has a local maximum at this point.

II. Concavity.
Given the function y = f(x) then

— f(x) 1s concave up on an interval (a;b) if all of the tangents to the
curve on this interval are below the graph of f(x) (see Fig. 2.2);

— f(x) 1s concave down on an interval (a;b) if all of the tangents to
the curve on this interval are above the graph of f(x) (see Fig. 2.3).

Y YA

v
v

Fig. 2.2 Fig. 2.3
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Conditions of conc avity up and down. Given the function f(x) then

—if f"(x)>0 for all x in some interval (a;b) then f(x) is concave
up on this interval;

—if f"(x) <0 for all x in some interval (a;b) then f(x) is concave
down on this interval.

A point x=c 1s called an inflection point if the function is
continuous in it and the concavity of the graph changes at that point.

Sufficient condition for the presence of an inflection point . If
f"(c) =0 or does not exist and when passing through x = ¢ the derivative

f"(x) changes sign then x = ¢ is the inflection point.

Example 2.10. For the function y =x°—6x" +7,5x* +3x find the
inflection points and the intervals of concave up/concave down.

Solution

One have to find the second derivative of given function:
y' = (x6 —6x° +7,5x + 3x) =6x° —30x* +30x° +3;

3= (6~ 30x* 4302 1 3) =30x* ~120x° + 902,
Solve the equation y" =0:
30x* —120x° +90x* =0;
30x°(x—1)(x—3)=0;
x=0,x,=1, x3=3.

All these points belong to the domain of the function.

Investigate the sign of the second derivative on both sides of these
points:

sign 1" + 1 - +

~ 0Tl S~ 3~

Y

The derivative " changes sign passing through the points x, =1 and
x; =3 so they both are inflection points. The derivative y” doesn’t change
sign passing through the point x; = 0 so it is not inflection point.
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Exercises
In the exercises 154—159 determine the intervals of monotonicity

of the function, indicate the type of the extrema points:
2

154. y = x{1+2Vx). 155. y=—> +2x+———+5.
2 x—2
2

156. y=24x* = 5¥x? +3. 157, y=or T4
x +x+1

158. y=(x—-2)"2x+1)". 159. y =2x* —Inx.

In the exercises 160—163, determine the intervals of concavity, find
the inflection points:

160. y =3x" —5x* +3. 161. y=(x+2)° —2x+2.

162. y =In(1+ x?). 163. y=xe™* +1.

In the exercises 164—169, conduct a complete study of functions and
build graphs:

164. y=32x>(x* 1)’ 165. y=— -
2o
2
166, y=* t2x=1 167. y= 2> ~D
2x+1 (x+2)
168. y =x%e". 169. y = (2x+3)e 20D,

SECTION 3. FUNCTIONS OF SEVERAL VARIABLES

3.1. Basic Concepts

Let D be the set of ordered pairs of numbers (x; y). They say that a
function z = f(x,y) of two variables is given on the set D if the law is
known according to which a certain number z is assigned to each pair
(x;y) belonging to D.

The Domain of function of two variables z = f(x,y) is a regions
from two dimensional space, it consists of all the coordinate pairs (x;y)

that we could plug into the function and get back a real number. The set of

the actual values produced by the function is called the Range.

Example 3.1. Find domain and range of a function z = /1—x? — ?.
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Solution

Domain: Range:

1-x*—y*>0. 22 =1-x*—)".

x* + y? <1—circle with radius 1: x* + y* + z* =1 — sphere with radius 1

o -
.‘\\\‘mm&m&

T

T E LA, .‘.‘.1.‘.‘.‘;-.‘.‘.‘.‘.“

Similarly, you can define a function of three or more variables.
Let’s remember the definition of the limit in the case of function
of one variable f(x):
lim f(x)=L < lim f(x)— hm f(x) L.

xX—a x—a—0

In the case of f(x,y) the limit 1s written as

lim f(x,y)=lim f(x y)=L.
x—a (x,y)—>(a,b
y—b

Limit lim f(x,y) exists if L 1s independent on the way
xX—>a
y—b

(x,y) — (a,b).

A function f(x,y) 1s continuous at the point (a, b) if

lim  f(x,y)= f(a,b).

(x,y)—>(a,b)

2x% —xy—y* :
exists

Example 3.2. Determine if the limit  lim
@y)->0L)  x—y

or not. If it does exist give the value of the limit.

Solution

2x% —xy—y* _{2-12—1-1—12 _0}
1

lim =—r.
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Factorize the numerator:
2x? —xy—y2 = x? —xy+x2 —y2 =x(x—-y)+(x—-y)x+y)=
= (x=p)(x+(x+p)=(x—y)(2x+y).

Then
2 2
: —Xxy — . — +
poo 2 —ay-yt o (- p)aty)
xp)>UL)  x—y (x.) (L) X—y
= lim (2x+y)=2+1=3.
(x,y)—>(1,1)( y)

3.2. Partial Derivatives

Let z = f(x,y) and let some arbitrary point (x,,y,) 1s fixed.

The change in the function f(x,y) associated with the change in
the variable x with a fixed value of y is called the partial increment
of the function z = f(x,y) in respect to x:

Az = f(xg +Ax,¥0) = [ (X, ¥0)-
Definition. The partial derivative for function f(x,y) in respect to
x 1s defined to be

J (%o + A%, ¥o) = f (X0, Vo) A,z

li = lim &= = )
lim ~ i, e =S20)
Other notations that can be used are
0 ,
fien =2 =z
ox

The partial increment Az of the function f(x,y) and the partial
derivative f,(x,y) in respect to y are defined in a similar way.

Note that when one takes the partial derivative, e.g., with respect to
x, 1t 1s necessary to hold the other variables as constants. So, partial
derivatives have the same properties as ordinary derivative as well as all
rules of differentiation hold.
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Examples 3.3. Find all of the first order partial derivatives for
the function f(x,y)=2xy" +x*Iny+e™".
Solution

To find partial derivative with respect to x we hold y as a constant:

I/ = (2xy3 +x? Iny+ e>* )x, = y3 (2x)x' +1In y(x2 )x, + (e2x )x' —
=2y’ +2xIn y +2e**.

To find partial derivative with respect to y we hold x as a constant:

fy =l ey e ) <2, 4, 5, -

1 2
=2x-3y2+x2—+0=6xy2+x—.
y

The expression

dz :@d)ﬁ—@dy

ox oy
1s called the total differential of the function z = f(x, y).

Exercises

In the exercises 170, 171 find the domain of given functions:

170. z=\/17+1/x—y. 171. z = arcsin(x — ).
y

X+

In the exercises 172—-179 find all the partial derivatives and total
differential for each of the following functions:

172. z=4x>y* —xy+3x-5. 173. z:x\/;+i.
Jx
174. y:arcsin(ﬁ} 175. z=e* +3xy" + y.
Y
176. z = xsin2y +3y> - 177. z=+x* =2y + 252y + 4.
Y
1 z
178. z=——— —5x%y°. 179. u = x*yz —xy° ++/z.
X" +y
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3.3. Higher Order Partial Derivatives

Consider the case of a function of two variables, z = f(x, ) since
both of the first order partial derivatives are also functions of x and y:

1, —1—f( S —i—f(x 0.

This means that for the case of a function of two variables there will
be a total of four possible second order derivatives:

_, o_ofo oy _ s _o(a) o).
(fx)x_ xx e 8x _ax2> (fx)y_ xy_ay aX' ayaxa

ox
PGl oA _p _o(a) oS
(fy)x_ »ox\oy) oxoy’ (fy)y_ »ooavloy) I

Example 3.4. Find all the second order derivatives for
f(x,y)=cos2x+x%e> —2)°.

Solution

First of all one have to find first partial derivatives:

f.(x,y)= (cos2x+x e’ =2y ) (cos2x)x, (x2e3y) (2y3 )x' -

= 2sin2x ++2xe>”

Sy (x,p) = (cos 2x +x%e — 2y3)y’ = (cos 2x)y’ (x2e3y) (2y3)y, _

=3x’e - 6y°.

Second order partial derivatives:
S = (— 2sin 2x ++2xe>” )x, =—4cos2x +2e>;
S ( 2sin 2x + +2xe’ )y, = 6xe”
Jix= (3x2e3y _6J’2) = 6xe®
S =% —6y7), =92 ~12.

One can note f,, = f,, and this is no accident.
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Clairaut’s Theorem. Suppose that f is defined on a disk D that
contains the point (a,b). If the functions f,, and f,, are continuous on
this disk then, £ (a,b) = f, (D,a).

This statement is true for any high order mixed derivatives.

3.4. The Extrema of Functi on of Several Variables

Definition. A function z = f(x, y) has a local minimum at the point
M(a,b) if f(x,y)= f(a,b) for all points (x,y) in some region around
M(a,b). A function f(x,y) has a local maximum at the point M (a,b) if
f(x,y)< f(a,b) for all points (x, y) in some region around M (a,b).

The Necessary Condition for the Ex tremum of a Function of Two
Variables. If the point M (a,b) is a local extrema of the function f(x,y)
then at this point either both of its partial derivatives f,, and f are equal
to zero, or at least one of them does not exist.

Points satisfying the necessary condition are called critical points.

Note that this does NOT say that all critical points are local extrema!

The Sufficient Condition for the Extremum of a Function of Two
Variables . Suppose that M(a,b) is a critical point of the function

z= f(x,y) and that the second order partial derivatives are continuous in
some region that contains M (a,b). Next define

A=fl(ab). B=fy(ab)., C=filab).

A=AB-C>.
We have the following classifications of the critical points:
— A>0 and 4 >0 then there is a local minimum at M (a,b);

— A >0 and 4 <0 then there is a local maximum at M (a,b);
— A <0 then the point M (a,b) is a saddle point;
— A =0 then the point M (a,b) may be a relative minimum, relative

maximum or a saddle point. Other techniques would need to be used to

classify the critical point.
Example 3.5. Find and classify all the critical points of the function

z=x"+y° —6xy.
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Solution

a) We need all the first order partial derivatives to find the critical
points:

z, = (x3 +y° - 6xy)x’ =3x*—6y;
z, = (x3 +y° - 6xy)y' =3y? —6x.

b) Critical points will be solutions to the following system:

2
3x* -6y =0, x> —=2y=0, .
SN I B
3" —6x=0 y =2x=0

y? —2x=0.
5\2
(X—J —2x=0;
2
4
x——2x=0;
4

xt—8x=0, x(x*-8)=0;
x,=0,x,=2.

2
L : : X
After substitution x; and x, into the equation yz; we get

¥, =0, y, =2. So, we have two critical points: M,(0,0) and M,(2,2).
c) We need all the second order partial derivatives to classify the
critical points:

zr. =(3x> —6y), =6x;
2y, =(3x* —6y), =—6;

zy, = (3y* - 6x), =6y.
For the critical point M (0,0) we have:

A=2"(0,0)=0, B=z"(0,0)=-6, C=2" (a, b)=0;

o w
A=AC-B*=0-(-6)* =36<0,
so critical point M, (0,0) 1s a saddle point.
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For the critical point M, (2,2) we have:
A=127(0,0)=6-2=12; B=z}/(0,0)=-6; C=2) (a,b)=12;
A=AC—-B*=12-12—(-6)* =108 > 0.

A >0, 4> 0 so function has local minimum at a point M, (2,2).

Exercises
In the exercises 180, 181 find the second order derivatives:
180. z=e* . 181. z =sin/xy.

In the exercises 182 — 185 find and classify all the critical points
of given functions:

182. z=x* —xy+ y> +6x—6y+5. 183. z=4(x—y)—x* — %
184. z=x> —xy+y> +6x—6y+5. 185.z:xy(12—x—y).

SECTION 4. INDEFINITE INTEGRAL

4.1. Basic Concepts

Definition. Given a function, f(x), an anti-derivative of f(x) is
any function F'(x) such that

F'(x) = f(x).
Consider the function f(x)=_2x. Obviously, function F,(x)=x> is
anti-derivative of f(x)=2x because F(x)=(x?) =2x=f(x). But F,(x)

is not a unique anti-derivative of f(x). For example, (x2 + 5) =2x= f(x),

so the function Fz(x)zx2 +5 1is also anti-derivative of f(x). We can
conclude that if F(x) is the anti-derivative of a function f(x) on the
interval (a;b) then any function Fj(x)=F(x)+C 1is also the anti-
derivative for f(x) on (a;b).

Definition. If F(x)is any anti-derivative of f(x) then the most
general anti-derivative of f(x) is called an indefinite integral and denoted

[ f(x)ax=Fx)+C,
where C is a constant of integration.
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The process of finding the indefinite integral is called integration or
integrating f(x).
Properties of Indefinite Integral:

1) (] fodx) = o

2) [ f'(x)dx = f(x)+C;

3) d[ f(x)dx = f (x)dx;

4) [df (x)= f(x)+C;

5) [f (x)dx = k[ £ (x)dx;

6) [[/(x)+ g(x)]dx = [ f(x)dx+ [ g(x)dx;
7) [ f(ax+b)dx = %F(ax +b)+C.

According to property 1, the integration operation is inverse to the
differentiation operation. We will use the table to calculate the indefinite
integrals.

List of main indefinite integrals:

1. |dx=x+C.
3 xoc+1

2. | x%dx = +C (a#-1)
. o+1

3. dx =ln‘x—a‘+C.
*TxXxX—a

4. (a¥dx=2—+cC.

Ina
5. |letdx=¢e" +C.
6. [cosxdx=sinx+C.

7. | sinxdx=—-cosx+C.

dx
8. N, =tgx+C.
COS™ X
c dx
< % =—ctgx+C.
sin” x
- dx 1 X 1 X
10. | == =—arctg—+ C = ——arcctg—+ C.
x“+a° a a a a
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1. | de 2=i1n"_x+C:—i1n"+x+c.
‘X" —a 2a |la+x 2a |la—x

12. nx+vVx*+a|+C (a#0)
'\/x +a

13. [ —arcsm +C——arccos—+C
“Nat-x? a

14. [sh xdx=ch x+C.

15. [ch xdx=sh x+C.
o dx

16. > =thx+C.
“ch”x

17. d); =—cthx+C.
“shx

4.2. Direct Integration Method

The method of direct integration consists in reducing a given integral
to the sum or difference of main integrals by means of identical
transformations of the integrand.

Example 4.1. Evaluate each of the following integrals:

a) j(x4+2x2+3x+5)dx; b) J( 3\/7——+6\/;j X;
c) fﬂzﬁ%lidx; d) I(cosx-tgx—Sx)dx.
X

Solution

a) J(x4 +2x% +3x+ S)dx = {properties 6 and 5} =

=Jx4dx+2_[x2dx+3jxdx+5_[dx={1and2fmm }

the list of integrals B

441 241 141 5
X X x” X 2% 3x?

= + +3 +5x+C=—+—+—+5x+C.
4+1 2+1 1+1 5 3 2

b) One have to rewrite the integrand as a sum of power functions:

2 1
3/.2 -
X _—x3; —5 =X 5;




I(SVr_—n——+ j j( 2”-—7x4-+éxf”2de=

= {properties 6 and 5} = 5[ x**dx -7 x'sa'x+l x 2y =
6

. §+1 —5+1 _%+1
_{Zfromthehst }_ X g X +1.x LC=
~ lof integrals )~ _ B

g 2 5+1 6 _1
2
5 1
=3x3+zx_4+lx2+C=3x3\/x2+L4+£+C.
4 3 4x 3

c¢) There is no rule for dealing with quotients. In this case all we need
to do is break up the quotient and then integrate the individual terms:

!2x +1! (a+b) =a*+2ab+b? 4x* +4x* +1
J- dx = = dx =
(222 +1) =4x* + 457 41 Vax

7 3 1
:j[4x4 + 4x° + 1/2de 4Ix2dx+4jx2dx+_[x 24x =

FIFRNTE
z+1 E+1 —1+1
_{Zfromthelist}_ x? +4X2 +x2 L C=
~ lof integrals )~ " 7 3 -
—+1 —+1 —-—+1
2
? oy
2 2 2 4 2
4% 4 L 8x9\/;+8x\/_+2\/_+c—

- %(20;;4 +36x7 +45)+ C.

d) I(cosx tg x—5" )a’x {property6 jcosx de IS dx =

+C.

_ . 4 and 7 from ) 5%
=js1nxdx—j5 dx = , ] =—sinx—
the list of integrals In5
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Example 4.2. Evaluate each of the following integrals:

3 dx
a dx; ; .
) J.xz + J‘cosz(?ax+5)
Solution
dx dx
roperty 5; =3 = =
= {property 5} = '[x2+4 '[x2+22

:3-—arctg£+C.
2 2

dx dx 11 from the list
DY P = 1-
x ( j 2 _(3) of integrals
4 2

_ |10 from the list 1
| of integrals

3
x—"
=l- ! In—2[+C= 11n2x_3+C.D
4 5 3 3 12 |2x+3
-« — x.'_i
2 2
roperty 7;
0 [ 2 PPy R Ligares)+c
cos“(3x+5) | 8from the list of integrals| 3
Exercises
In the exercises 185202 evaluate the following integrals:
185. [(2x° = 7x+4)dx. 186. [(3x° =5} .
2
187, [ HE3 4 188. (i+ﬁ+ijdx
. X "\ 2x 3x
2
189. '(1—3J§j dx. 190. {x(3x+4/x )dx
Iy J
o 3 -
T RALR ERdyM 192, [
’ X Sx° =25
e 4dx - dx
193. : 194. | ——.
"N3-x? "6+ 5x7
195, [ & 196. [~
“8x7 +16 “3x-2
197. [e**dn. 198. [(sin2x — cos2x )dx.
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199. | Si";x. 200. [cos(4 - 7x)dx.
dx dx
201. . 202. .
J.sinz 5x '[2—x

4.3. Substitution Rule

The technique of substitutions helps to reduce integral to common
indefinite integrals, which are given in list of main integrals by means of
introducing new variables in the form u = y(x) or x = (7).

A natural question is how to identify the correct substitution.
Unfortunately, the answer depends on the integral. But there is a set of
standard cases in which such a substitutions are correct and useful.

As a rule, the substitution u =wy(x) is used when a given integral has
the following structure:

[ (w())w'(x) .
Example 4.3. Evaluate each of the following integrals:
a) j xsin x*dyx; b) j ln; * .
Solution
u=x"

.9 |
a) | xsinx“dx = =—|sinu du =
) | 3|

du = 2xdx = xdx = %du

7 from the list 1 1 )
=——cosu+C= —Ecosx +C.

of integrals

X du = - of integrals 4

3 u=Inx - 4
b)Iln xdx:{ dx}:jugdu:{Zfromthehst}:M_+C:

In* x

5 +C.
4
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Exercises
In the exercises 203-220 evaluate the following integrals:

203.

206.

209.

212.

215.

218.

The method of integration by parts is based on the application of the

formula

where u(x) and v(x) are continuously differentiable functions at some

interval.

[ 204. [x*(2x3 +5) ax.
“1+x ’
.x\/x2+8dx. 207. [sin? xcos xdkx.
. 3
SIn3x e 210, [0
Y cos” 3x Yox+2
6 .
X 213 [ g
Y cos” x Y 2+3cosx
jéza%. 216. j
e’ +3 xlnx
J~3_.4C2tgxdx 219-I /arcsm22xdx
sIn” x 1-4x

4.4. Integration by Parts

judv =u -v—jvdu,

To use this formula, we will need:
—to identify u and dv;

— compute du: du=u'(x)dx;

—compute v: v = I dv.

205. jlnx

2xdx
\3x% - 1.

211. | tg xdx.

214.IA%EE§§faw
+x

208. |

217 J-3x 2
220. j x?fl

How do we know if we made the correct choice for u and dv?

We made the correct choices for u and dv if, after using the
integration by parts formula, the new integral (the one on the right of the

formula) 1s one we can actually integrate.

There are a number of standard cases where the integration by parts

formula should be applied:
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a) IPn(x)e“xdx, IPn(x)baxdx, j}’n(x) cos axdx, _[Pn (x) sin axdx,
where P,(x) is a polynomial of the n-th degree of x.
In this case P,(x) should be chosen for u(x) and e“dx

(correspondently, b“*dx, or cosaxdx or sin axdx) for dv.

Example 4.4
u=x, du = dx |
2x 2x 1 2x 1 2x 1 2x
Ixe dx=<3dv=e""dx, y=—e"t=x-—¢e ——Je ~dx =
My o 2 2 2
judv=u-v—fvdu

:x_ler —l-lezx +C:lezx(2x—l)+ C.[]
2 22 4

Note that after applying the formula (4.1), we come to an integral
simpler in relation to the original. Formula of integration by parts can be
applied several times, until we come to an integral that can be computed in
elementary functions:

b) an (x)Inxdx, _[Pn (x)arccosaxdx, .[Pn (x)arcsin axdx,

I P (x)arctg axdx, J.Pn (x)arcctgaxdx.
In this case, for dv you should choose P,(x)dx.

Example 4.5
u=Inx, duz(lnx),dx=ldx
X
2
lenxdx=<dv=xdx, v=7 =
Iudv=u-v—jvdu
2 2 2 2 2
:lnx-x—— x—-ldx:x—lnx—ljxdx:x—lnx—l-X—+C:
2 2 x 2 2 2

2
:%(2lnx—l)+C.D
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Exercises
In the exercises 221-228 evaluate the following integrals:

221. [ xsin2xdx. 222. [(Bx+1)e*dn.
223. [(x+1)cos(4x —1)dx. 224. [In(2x—1)dx.
. e Inx
225. [ (x* +1)In xdkx. 226. | —=dx.
- e
227. [arcsin xdx. 228. [cos~/xdx.

4.5. Integrals Involving Quadratics

Type 1. The evaluation of integrals of the form

ljz

X +px+q

consists in reducing this integral to one of the tabular integrals of type 2,
10, and 11.

One have to complete the square on the denominator of the
integrand:

2 2 2 2 4
x>+ px+q= R, PR (V) B I Y 4 +qg= x+ 2] P q.
2 2 2 2 4

Given integral can be simplified by substitution:

x+§=t, dx =dt.

dx

Example 4.6. Evaluate integral ITS
x°+4x+

Solution

Let's complete the full square in the denominator of the integrand
using formula:

a*+2ab+b* =(a J_rb)z.
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We get
x2+4x+5=(x2+2x-2+22)—22+5=(x+2)2+1.
Then

Cx+2=t| o odx
'[x +4x+5 Jx+2 +1_{dx=df }_szﬂ_

~ { 10 from the list

, }:arctgt+C:arctg(x+2)+C.
of integrals

Type 2. To evaluate the integral of the form
] = J' L‘mdx
X+ px+gq
one have to complete the square in the denominator of the integrand, do

standard substitution x +§ =t and separate the integral into a sum of two,

one of which is calculated by the formula (3) and the second by formula
(10) or 11 from the list of integrals.

Example 4.6. Evaluate integral J.Z4x—+1dx.

x°—2x-3
Solution

Complete the full square in the denominator:

W= 2x-3= (2 —2x- 1412 )-12 = 3= (x— 1) - 4.

Then
—1=t
J‘%dxzjétx—tldx: x=t+1 =J4(tz+—1)4+1dt=
x°—=2x— (x—1)" -4 dr = dt -
=I4t+5d 4[ fdt 5.'t2d_t4=411+512.

Note that the integral /, can be calculated by substitution y = t* -4,
integral 7, one can find in a table of integrals (formula number 11).
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/ _I tdt y=12_4 _1J.dy_ 10 from the list B
R dy = 2tdt 27y | of integrals -
2 2 2
dt dt 11 from the list } 1
B

B 0 £
12— /2 22 lof integrals

r+2

2.2

(x—-1)-2
(x—-1)+2

1ln
4

x—3
x+1

=lln
4

Finally obtain:

x—3

4x+1
o o

§u=45+51=m4f-ax—j+§m +C.

x°=2x—

Remark. This method can be also used for evaluating integrals of the
form

dx mx+n
I , Or dx.
\/ix2+px+q \/ix2+px+q

Exercises
In the exercises 229-236 evaluate the following integrals:
29, [ % 230, 2%

S —x"—4x+1 " XT+6x
231 [ 23, [— B

'\/x2+2x+2 '\/3+2x—x2
233, [ g 234, [ 22

"x°+6x-8 “2x"+2x+9
235, [ g 236. [ "2 4

® V4x—x* '\/x2+3x—5

4.6. Integration of Rational Functions

A rational function is a function that can be expressed as the ratio of
two polynomials:
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P (x ax"+ax" +.+a _x+a
R(x)= ”(): Om 1m_1 n-l . a,#0, by #0.
0, (m) byx" +bx™" +..+a, x+b,

£,(x)

(x)

A rational function is said to be a proper fraction if the

degree of the polynomial in the numerator n is less than that in the
denominator m.

Fractions of the following forms:

A

1. :
X—a
_B
(x—b)"

3. MEN ith D = p? —4g <0,
X +px+q

4. Rxv L with D= p* —4¢g <0

(x2 + px + qy
are called the partial fractions.

2.

Let R(x)= % be a proper fraction. The procedure of integration

m
R(x)consists of following steps:
— factorize denominator Q, (x) into irreducible polynomials, that are,
linear and irreducible quadratic polynomials.
— for each factor in the denominator we can use the following table to
determine the term(s) we pick up in the partial fraction decomposition:

. Fact(?r Term in the partial fraction decomposition
in denominator
A
X—a
X—d
B B B
(x—a)k o+ : g oo . k
x—b (x-b) (x—5)
. Mx+ N
E +px+q x2+px+q
Kix+L K,x+L K, x+L
(2 y 1 1 2 2 .4 ! !
X+ px+ 2
pxTq X +px+q (x2+px+q)2 (x2+px+qy
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Thus the rational function R(x) can be represent as a sum of partial

fractions with unknown coefficients which can be found using the
undeterminel coefficient method. To do this, it is necessary to:

Step 1: bring to a common denominator the sum of partial fractions.

Step 2: equate the numerator of the resulting fraction to P, (x).

Step 3: equate the coefficients at the same degrees x in the equality
obtained in a Step 2.

Step 4: solve the resulting system of linear equations with respect
to unknown 4, B,,..., B, M, N, K, ..., K,, L, ..., L, ....

Partial fractions (1)—(3) are easily integrated (see subsection 4.5).
To calculate the fourth integral, the following recursive formula is useful:

dx
J = =

l I(x2+px+q)l
2x+p 2[-3 2

(-1ag-p*)(+ pr+g)” T

J
Remark. 1f R(x) 1s improper fraction it is necessary at first to

perform the polynomial long division in order to represent the function
R(x) as a sum of some polynomial and the remainder term (which is a

proper fraction).
Tx—11

x=2)(x*—x-2)

Example 4.7 . Evaluate the integral J.( x.

Solution

Integrand is a proper rational function so we have to factorize
the denominator into irreducible factors. For

xtP—x-2
D=(-1)>-4-(-2)=9>0, so it can be factorized as
xP—x=2=(x+1)(x-2).
So the partial fraction decomposition of integrand is

2 - 2= + + 2"
(x=2)(x"—x=2) (x+D(x-2)" x+1 x-2 (x-2)
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Find undetermined coefficients A4, B,, B,. Bring the sum of partial
fractions to a common denominator:
> = —+ —+ > =
(x+D(x-2)* x+1 x-2 (x-2)

CA(x=2) +B(x+1)(x—2)+ By(x+1)
- (x+1)(x—2) '

Let's equate the numerators of the resulting and the original fractions:

A(x =2 +B(x +1)(x=2)+ B, (x +1) = Tx —11;
A(x—4x+4)+ B (x> —x=2)+ B, (x +1) = Tx —11;
x*(A+B,)+x(-44-B,+B,)+(44-2B,+ B,)=Tx~11.
Let's equate the coefficients at the same degrees x:
x*: A+B, =0,
x': ~44-B +B,=1,
x*: 44-2B + B, =-11.

System solution: 4=-2, B, =2, B, =1.
Substitute the resulting decomposition into an integral:

Tx—11 -2 2 1
I(x—zxxz—x—2>dx_j(x+1+x—2+(x—z)Z]dx_

dx +,[( dx {2, 3 from the list }:

x—2 *(x— 2)2 ~ lof integrals

d
:—2jxj_cl+2j

+C.

=—2Infx+1/+21n[x - 2|- 5
X—

5 3 _
2x +fx +§x 6dx.D
X +3x

Example 4.8. Evaluate the integral I

Solution

Integrand is not a proper rational function so one has to perform the
polynomial long division in order to represent integrand as a sum of some

polynomial and the proper rational function:
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2x° +6x° +3x—6
~ 2x° +6x°
3x—6

xt +3x?
2x

then

5 3 _
J-2x +6x” +3x— 6d I( jd B 3x—-6 dx=x2+11.
x* +3x2

xt+3x2 x4 +3x?

The remaining integral contains the proper rational function, so we
have to factorize denominator and represent integrand as a sum of partial
fractions:

3x-6  3x-6 4 4

2
2

Mx+ N | bring toa common|
x4+3x2_x2(x2+3)_ X X 243 -

denominator
CAX(X +3)+ Ay (x° +3) + (Mx + N)x®
x*(x* +3) .

Equate the numerators of the resulting and the original fractions:
A (X +3x)+ Ay (x* +3) + (Mx + N)x* =3x—6;
(A + M)+ x°(4y + N)+34x+34, =3x—6.

Equate the coefficients at the same degrees x:

X A4 +M=0,
x*: A, +N=0,
x': 34,=3, (
x": 34, =-6. |

System solution: 4, =1, 4, =-2, M =—-1, N =2. So

]1 I 3x — 62dx J‘(1+—2+—x+2jdx:]~ I J- x+2dx:

x* +3x x x> x*+3

o [ 2 o

x2+3

x+3

_mM+——lmh43\
x 2

\/_ arctg— \/_
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Here we used formulas 3, 2 and 10 from the list of integrals to find
the first, the second and the last integral. To evaluate the third integral we

did substitution x> +3=1¢, 2xdx=dt:

e 1 ﬂzlln\xzw\.
x“+3 27t 2
Finally get:
5 3 _
sz +Sx +2x 6dx=x2+11=
X +3x
2 2 1 2 2 X
=x" +Inlx|+ ———In|x" + 3|+ —arctg—+ C.
H x 2 ‘ ‘ V3 g\@
Exercises
In the exercises 237-242 evaluate the following integrals:
~ 2x* +1 - 4-3x
237. 5 dx. 238. 5 dx.
T(x*+8x-9)(x-2) “(x+2)(x-1)
2
239, [ X gy 240, [ gy
T(xT+2)(x+2) X 4x
_ ) 5
a1 [ Y g 242, [ ——adx.
X +6x°+12x+8 X H+2x7+2x

4.7. Integration of ~ Trigonometric Functions
Type 1. Integrals of the form
W= jsin’" xcos” xdx

are found by applying different techniques depending on the values of m and n:
1. At least one of the numbers m or n is odd.
Let n=2/+1. Then

21+1 /

I = J.sin’" xcos™ " xdx = Isinm xcos® xcosxdx =
t =sinx, dt =cosxdx
= Isinm x(cos2 x)l cosxdx=<sin’x+cos’x=1= = It’" (1 — tz)l dt.
cos’x=1-sin*x=1-¢
The same is done in the case when m is odd.
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Example 4.9. Evaluate the integral jsin3 xcos” xdbx.

Solution

t =cosx, dt =—sinxdx
sinx=1-cos’ x=1-1¢>

J.sin3 xcos’ xdx = Isinz xcos? xsin xdx = {

3

:—I(l—tz)tzdtz—j(tz—t4)dt=—(%—§J+C=—CO§3X+COZSX+C.

2. Both numbers m and n are even. Then one have to use formulas:

»  1—cos2x

sin“ x=———; 4.2
5 (4.2)
cos? x = LTS3, (43)
2
SIN XCOS X = %sin 253 (4.4)

Example 4.10. Evaluate the integral .[ sin® x cos” xdbx.

Solution

Transform integrand by formulas (4.4) and (4.2):
2
Jsinz xcos” xdx = J(sin xcos)2 dx = j[l sin 2x} dx = l_[sin2 2xdx =
2 4

:l 1_0054xdx
4 2

:l(x—lsin4xj+(7:z—isin4x+C.
8 4 8 32

:%j(l—cos4x)dx :é(_[dx—jcos4xdx):

Type 2. Integrals of the type
J tg” xdx, J ctg” xdx,

where m 1s integer, can be evaluated by means of trigonometric formulas:
1

——1, ctg?x = — 5
cos” x sin” x

-1.

tgzx =

The degree of tangent or cotangent is consistently reduced by using
these formulas.

64



Type 3. Rational expressions of trigonometric functions
j R(cos x, sin x)dx

i1s reduced to an integral of the rational function of the argument ¢ by
substitution

Then

1-¢° o 2t
1+

So

2
IR(Cosx,sinx)dx:‘[R( 2t 1-t ) 2dt

: = R (1)dt.
1+62 7 1+22 J1+¢° j 1(0)

dx
—4sinx+7cosx

Example 4.11 . Evaluate the integral I -

Solution

I dx 2 1+17°

=N &:
8—4sinx+7cosx 2t 1-¢°

2dt

:J' 1+ ¢2 Zj 2dt _
2 2 2
84 2t +7.1 t 81+¢7)-8t+7(1—1)

141 1+1¢

ZQIL:
2 =8+15 |2 —8+15=(2-2r-4+42)-1=(r—4) -1

complete the full square }

(t-4)-1

S {llfromthelist }22.1
(t—4y -1

of integrals 9 In
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Type 4. Integrals of the form

I sin ax cos bxdlx, I cos ax cos bxdx, I sin ax sin bxdx .

One have to use formulas:

I sin ax cosbxdx = %J. (sin(a +b)x +sin(a — b)x)dx;
Icos axcosbxdx = % I (cos(a +b)x + cos(a — b)x)dx;

I sin axsin bxdx = %J‘ (cos(a —b)x +cos(a + b)x )dx.

Example 4.12 . Evaluate the integral I sin 2x cos4xdx.

Solution
j sin 2x cos 4xdx = 1 I (sin 6x — sin 2x)dx = ) I sin 6xdx — 1 j sin 2xdx =
2 2 2

:—l-lcos6x+—-—0052x+C=—Lcos6x+lcos2x+C.
2 6 2 2 12 4

Fercises

In the exercises 243-252 evaluate the following integrals:
3

243. [sin® 2xdx. 244 [£22 X gy
R * Sinx
245. [3/sin’ x cos® xdbx. 246. [cos?3xdx.
247. [sin® xdx. 248. [ tg xdx.
249. [tg’xdx. 250. [ dx .
J S5sinx+12cosx
251. I _ dx . 252. Icos3xcosxdx.
Tsinx+4cosx—7

4.8. Integrals with Radicals

Type 1. Integral

I = IR(x,W, Nxm Lk X )dx
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is reduced to integral of a rational function by substitution
x=t

where s is the smallest common multiple of n,,n,, ..., n,.

Example 4.13 . Evaluate the integral j %dx
x—3/x

Solution
Since n;,=2,n, =3 then s =6. Then
3 .5
6> dt = 6jg—tdt =

312

I%dx {dx 61° dt} If ye®

t i~
:6j . dt =6[——d.
(t-1) t—1

It is improper rational fraction so we have to divide numerator by
denominator (see subsection 4.6). Doing this we get:

—dt—6_[(t5+t4+t3+t2+t+1+t—lljdx:

6 5 4 3 2
=6[%+%+%+%+%+t+ln\t—lg+€={tz?/;}=

=x+g§/§+%%/x7+2\/;+33 x+61n‘§/§—1‘+€.

Remark. This method can be used for evaluating integrals of the type

IZ_[R x,?/ax+b’n2\l/ax+b,m,nk ax+b dr.
cx+d cx+d cx+d

In this case we should use the substitution

ax+b s
cx+d

where s is the smallest common multiple of n,n,, ...,n, .
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Type 2. Integrals involving radicals \/ a’*—x*, \/ x*+a’.
Integrals of this type can be evaluated using trigonometric
substitutions:

Integral Substitution

x=asint, dx =acostdt,
_[R(x,\/a2 —x%)dx

\/a2 —x? =\/c12(1—sin2 X) =acost

xX=atgt, dx= dt,

_[R(x, Vx? +d? )dx cos” ¢

\/x2+a \/a (1+tg’t) =——
co

oSt
a asint
xX=——,dx= 5 dt,
COSt CcoS ¢
IR(x, \x? —a?)dx
2 7 2( 1 j asint
X" —a° = _|a 3 1=
cos“t cost

The integrals take the form:
I R,(sint,cost)dlt..
Evaluation of this type of integrals 1s discussed in subsection 4.7.

Exercises
In the exercises 253-260 evaluate the following integrals:

253, [ & 254 *[_+*f_

Iax-3+1 K J_+1

. . 3 —
)55 dx . 256 23/ x 1+1dx.

Jx-3-+/x-3 o Qx-1+1

e 3x— +2 253 | x+1
Y4-3x-1 .'\/_+2\/_

2&1jﬂii}§31dx
X

257.

dx
2a1j;aﬁ?iT
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SECTION 5. DEFINITE INTEGRAL

5.1. Basic Concepts

Given a function y = f(x) that is continuous on the interval [a;b].

Let’s divide up [a;b] into n arbitrary intervals by points:
a=Xxy<X <Xy<--<Xx,=b.
The length of each interval is denoted as Ax; = x,,, —x;.
Select the point §;, x; ;| <& <x; within each partial interval (see
Fig. 5.1.) and find the values of the function y = f(x) at points &.

4
A R_
i PR
v /
R, f"
0 .

The sum
S, = f(E)AG + f(Ex)Ax + -+ f(E,)AY, = £(E)AX,
=1

1s called a Riemann Sum.
Definition. Let n—> o and Ax; tends to 0 for i=L2,..., n

If the limit of the Riemann Sum exists and does not depend on a choice
of the points x; and &, then it is called a definite integral of the function

£(x) over the interval |a;b]:

b n
[ f(x)dx=1im Y f(€)Ax,.
Y n—>o0 -1
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Numbers a and b that are at the bottom and at the top of the integral
sign are called the lower and the upper limits of the integral respectively.
Geometrically, the sum S, is the algebraic sum of the areas of

rectangles at the bases of which lie partial segments of Ax;, and the heights

are f(&)).

Properties of definite integral:

1. a f(x)dx.
: a

2. [ f(x)dx=—[ f(x)dx.
a b
b c b

3. [ f0)dx = [ f(x)dx+ [ f(x)dx.
Z a . C

4. [ Af (x)dx = A[ f (x)dx.

b

b b
5. [(f(x) % g(x))dx = [ f(x)dx [ g(x)dx.

a
b

6. [ Cdx = C(b — a) for any number C.

a

b
7.If f(x)20 for a < x <b then [ f(x)dx>0.

b b
8.If f(x)> g(x) for a < x <b then [ f(x)dx> [ g(x)dx.

9.If m< f(x)<M for a<x<b then
b
mb—a)< [ f(x)dx < M(b-a).
10. If f(x) is continuous function, m < f(x) < M for a < x <b then

b
[ fx)dx = f(e)b-a)

for some number c € (a; b).
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11. If f(x) is even, then f(x)= f(—x) and _T f(x)dx = 2]1‘ f(x)dx.
—a 0

12.1f f(x) is even, then f(x)=—/(-x) and | f(x)dx=0.
Newton—Leibniz axiom
Suppose f(x) is a continuous function on [a; b] and also suppose

that F(x) 1s any anti-derivative for f(x). Then

b
[ f)dx=F(x)) = F(b)- F(a). (5.1)

2
Example 5.1. Calculate the integral J‘(x2 + 3)dx.

Solution

Let’s find anti-derivative and use Newton-Leibniz axiom:

2 b 32

j‘(x +3 . 2dX+3IdX2x—
1 1 3

+ 3x‘12 =

|
substitute » =2 and |
a =1 instead of x
by formula (5.1)

~

3 3
|2 L +(3-2—3-1)=Z+3=51.
3 3 3 3

When calculating a definite integral, the same techniques are used as
when finding an indefinite integral, namely, substitution and the
integration by parts formula.

Example 5.2 . Calculate the following integrals:

a) Ix-cosxdx; b) '[“_\/_

Solution

a) To calculate the antiderivative, we apply the method of integration
by parts. For a definite integral, the formula for integration by parts takes
a form:

b b
judv = uv‘a — Ivdu.
a a
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Then

Y u:x’ dl/l:dx
jxsin2xdx: _ 1 =
dv = sin 2xdx, Vv=——C082Xx
"o 1 .
=——XxC0s2x| + —Jcostdx:——(Tc-cosZn—O-cosO)+—sm2x =
2 0o 2% 2

0

= —E+l(sin2n—sin0): I
2 4 2

b) Let's change the variable: ¢ = Jx. Then
= X,
2tdt = dx.

Since the integration limits — 4 and 9 — are given for the variable x,

and we are moving to a new variable ¢, we need to change them according
to the formula ¢ =/x:

Z‘1=\/Z=2, t2:\/§=3.

Then

3 21dt tdt  (t+1)-1
J.1+\/_ J.1+t '[1+t_2J 1+¢

t+1
dtzzjmdt— j1+t—

dt 3 3 4
= _z[dt—2£1—+t =i, —2Infl+1], = (3—2)—2(1n4—1n3):1—21n§.

5.2. Geometric Applications of Definite Integrals

Type 1. The area of a region.

The application of definite integral to calculate the area of a flat
figure is based on the geometric sense of a definite integral.

If y = f(x) is positive on the interval [a; b] then the definite integral
b

I 0 (x)dx 1s equal to the area of a curvilinear trapezoid, bounded from
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above by the graph of function y= f(x), from below — by a segment
of the axis Ox, on the left and right — by straight lines x =a and x =5.

If figure 1s bounded by lines y = f,(x), y = f,(x) and two vertical
lines x=a and x=>5b, f,(x)< f,(x) on the interval [a;b], the area can be
calculated by the following formula:

b
S =[(f,(x)— £(x))dx. (5.2)

If figure 1s bounded by the curve given by the parametric equations
x=x(t), y=y(t), the area of the curvilinear trapezoid can be calculated

by the formula:

S = f Y(O)X'(2)dt.

4

Example 5.3. Find the area of the region bounded by the graphs
of the functions y* =9x, y =3x.

Solution

a) Let's draw a given region:

b) To use the formula (5.2) we need to know limits of integration a
and b. This numbers are the abscissas of the intersection points
of the given curves:

2 _
YEEI% L 3y —9x = 9x? —9x =0;
y=3x
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Ox(x—-1)=0;
x =0, x,=1.

c) Taking as f,(x) function y = \J9x =3+/x and as f>(x) function
y =3x find the area of the shaded figure:

3/21 21 1

1
S=£@J§ 3 )dx = %550_}5Q

L3,

——X

31
= 2/x’ —
Vi ~=>

0 0

Type 2. The arc length of a curve.
Let the curve be given by the equation y = f(x), where f(x) is

a continuously differentiable function, with the abscissas of points 4 and
B equal to x=a and x =b, respectively. Then the arc length AF can be

found by the formula:
b
L= [1+(f'(x)) dx

If the curve is given by the parametric equations x = x(¢), y = y(¢)
then the arc length AB of the curve is calculated by the formula:

L= Nx(t) +( (O

Exercises
In the exercises 261-263 calculate the following definite integrals:

261.fxvx2—1dm 262. j

1
In the exercises 264-269 ﬁnd the area bounded by the following
curves:

51t
263.jx-gniia&.
L X Inx 10

264. y=x*>—4, y=3x. 265. y=+/x, x+y=2, x=0.
266. y=3x—x>, y=—x. 267. xy=2,x=1, x=2, y=4.
=3cos’ t,
268. y=x°, y=+/x. 269. 1"
y =3sin’¢.
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270. Find the arc length of a curve y = %w/(2x—1)3 between points

x=2 and x=8.
x =4(t—sint)

, 0<¢r<2m.
vy =4(1—cost)

271. Find the arc length of a curve {

5.3. Improper Integrals

Introducing the concept of a definite integral, we assumed that two
conditions are satisfied: (1) the interval of integration is finite and (i1) the
function 1s continuous on it. If at least one of these conditions is violated,
then the integral is called improper.

Type 1. Infinite interval.

In this type of integral one or both of the limits of integration are
infinity.

If y= f(x) exists for every x > a then

T f(x)dx = thmj f(x)dx.

b
In a similar way one can define improper integrals I f(x)dx and

—0o0

+00

[ f(x)dx.

We call improper integral convergent if the associated limit exists
and 1s a finite number (i. e. it’s not plus or minus infinity) and divergent if
the associated limit either doesn’t exist or is (plus or minus) infinity.

~+00
Example 5.4. Determine if the integral I% 1s convergent or
L VX

divergent.

Solution
1 t
| 1

Tde .t — . x?2 .
—=1 2dx = lim — = lim {24/t =241 )=
!\/} tfﬁo!x T2 Jlim (21 = 241)= oo,

1

hence integral 1s divergent.
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Type 2. Discontinuous integrand.
If y= f(x) 1s continuous on the interval [a;b) and not continuous

at a point x = b, then
b t
[ f(x)dx= lim [ f(x)dx.
g t—b—0 ,

We do need to use a left-hand limit here since the interval of
integration is entirely on the left side of the upper limit.
In a similar way one can define improper integral if y= f(x) is

continuous on the interval (a;b] and not continuous at a point x = a:

b b
JfGodx = tim j f(x)dx.

1
Example 5.5. Determine if the integral J‘% is convergent or divergent.
VX

Solution

The integrand is not continuous at the point x =0, so

B

] 11
dx . - . x? .
& 2dx = lim 2| = lim (21 =2/ )=2
J = fim [ 2= lim ) = lim Vi -247)=2,

t

hence integral is convergent.

Exercises
In the exercises 272-277 determine if the following integrals are

convergent or divergent:

+00 +00 5

. [ H 273, [ 274, [P
° xIn”x , XInx > (x-2)
+00 5 1

275, [ & 276, [ 277, [
3 X —4 2(x—2) 1= x?
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SECTION 6. ORDINARY DIFFERENCIAL EQUATIONS

6.1. Basic Concepts

Definition. A differential equation is any equation which contains
derivatives, either ordinary derivatives or partial derivatives. A differential
equation is called an ordinary differential equation, if it contains ordinary
derivatives. Ordinary differential equation (ODE) has a single independent
variable.

The order of a differential equation is the largest derivative present
in the differential equation.

A solution of a differential equation is any function y(x) which

satisfies the given differential equation.

Initial conditions (often abbreviated i. c.) are values of the solution
and/or its derivative(s) at specific point. For an n-th order equation i. c.
have a form

ry(xO) =y09
y,(xO):yla

"D (%) = vt

The general solution to a differential equation is the most general
form that the solution can take and doesn’t take any initial conditions into
account.

The general solution for an n-th order equation is usually written as

y=0(x,C,...,C,), or D(x,y,C,,...,C,)=0,

where C,, ..., C, are arbitrary constants.

The actual solution to a differential equation is the specific solution
that not only satisfies the differential equation, but also satisfies the given
initial condition(s).

An [Initial Value Problem (or IVP) is a differential equation along
with an appropriate number of initial conditions.

In the case of n-th order DE IVP can be written as:
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F(X,y,y',y", .“,y(n)) = 09
Y(x0) = Vo>
3 y'(xo) =)s

V() = vt

The solution of IVP is the actual solution.

6.2. First Order Differential Equations

The first order differential equation is a relation of the form
F(x,y,5) =0,
or in deferential form:
M, (x)- N, (y)dx+M,(x)- N,(y)dy =0.

One can find a general solution of differential equation in a form
y=0(x,C) (or ®(x,y, C)=0) where C is arbitrary constant. In the case

of first order differential equation IVP can be written as:
{F (x,»,5)=0;
y(x) = Yy

Consider some types of first-order differential equations.

6.2.1. Separable Differential Equations

A separable differential equation is any differential equation that we
can write in the following form

V'=7)-g), (6.1)
or
M, (x)- N,(y)dx+M,(x)-N,(y)dy = 0.
To solve the equation (6.1) you need to do the following steps:

Step 1: write y' = %,

X

%#(x)-g(y).
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Step 2: multiply both parts by dx:

dy = f(x)-g(y)dx.
Step 3: divide both parts by g(y):

@ _ £ (x)dx. (6.2)
g(y)

Equation (6.2) is a differential equation with separated variables.
Step 4: integrate one side with respect to y and the other side with

respect to x:

Ay .
| ) [ f(x)ax;

I% =G(»)+C,, [ f(x)dx=F(x)+C,.

Step 5: substitute the results of integration and simplify:
G(y)+C =F(x)+C,,
Gy)-Fx)=C,-C.
Implicit solution for separable differential equation is:
G(y)-F(x)=C,whereC=0C, -C,.
Example 6.1. Solve the following IVP: y'=(2y+1)cos4x, y(wn)=0.

Solution

Step I: @ =(2y+1)cos4x.
dx
Step 2: multiply both parts by dx:
dy =2y +1)cos4dxdx.
Step 3: divide both parts by (2y +1):

dy
2y+1

=cos4xdx.
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Step 4: integrate both sides:

dy
'[2y+1

= l1n\2y+1\ +C;
2
1 .
_[cos 4xdx = Zsm 4x + C,.
Step 5: substitute the results of integration and simplify:
l1n\2y +1|+C, = Lsindx+ C,.
2 4
Thus, the implicit solution for given differential equation is:
lln‘2y + l‘ —lsin4x =C.
2 4
The solution of IVP is the actual solution when y(w)=0:
1 1.
—ln‘2-0+1‘ ——smm4d4n=C, C=0.
2 4
The solution of IVP is

%ln‘2y+1‘—%sin4x =0 or 2ln‘2y+1‘—sin4x=0.

Exercises
In the exercises 278-283 find a general solutions of ODE:

278. 3 = (2x—1)ctey. 279. y' =e* x{1+y?)
280. ctg xcos” y+sin” xtg y = 0. 281. xydx + (x2 + l)dy =0.

282. y'=ylny. 283. y'=2"".
In the exercises 284-287 solve the following [VP:

284. (x+4)dy —xydx=0, y(-3)=1. 285. y'=2xy+x, y(0)=0.

286. y* Inxdx—(y—1)xdy =0, 287. y'\1-x* —cos® y =0,
y(H)=L ¥(0)=0.
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6.2.2. Homogeneous Differential Equations

A function f(x,y) 1s called homogeneous of degree n if, for any A,
the following condition is satisfied:

S x,hy) =L f(x, ).
A first order differential equation
V'=f(x) (6.3)

1s homogeneous when f(x,y) 1s homogeneous function of zero degree,
that 1s

SOx,hy) = f(x,p).

To solve the homogeneous DE is necessary to create a new variable

u(x) = 2y (x).
X
After substitution
Y =ux,

!

y' =(ux) =ux+ux"=u'x+u
into the equation (6.3) we obtain separable differential equation (see 6.2.1).

Example 6.2. Find the general solution of the DE x*y' = y(x + y).

Solution

Let’s express y':

, X+
’ _ X Zy).
X

Let's check whether the function f(x,y)=

+7y) .
y(x—zy) 1s homogeneous:
X

2
O Ay) = Ky((t;rzky) _A y}f;;;r y) _ y();;r y) _ F(x).

hence, given equation is the homogeneous differential equation.
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Step 1: we create a new variable u(x) = M,
X

Y =ux;
V' =u'x+u.
Step 2: substitute into a given equation:
ux(x +ux)

2 ’
X

u'x+u=

ux2(1+u).

2 b
X

ux+u=

u(l+u)

2
u'x+u= =Sux+tu=utu’;

u'x =u’.

Step 3: solve the resulting separable equation:

cout du o ut du dx
X dcx Xx u X
-
d—lg:ju_zdu:u—:—l, ﬁzln‘x‘.
u -1 u X

Thus

n = ln‘x‘+lnC or —l:Ian.
u u
Note that here we have used the constant InC instead of C. It is
convenient to do this when one of the integrals (or both) contains
the logarithm.
Step 4: return to the initial variable y = ux:

—Lzlan.

y/x

X

So the general solution is y = — :
In Cx
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Exercises
In the exercises 288-293 solve the following DE:

2
288. y'=2+2 289. y'=4+1+(1j .
y X x \x
290. (x—y)dx+xdy =0. 291. (xz +y° )dy—2xydx =0.
292. xy' = xsin1+y. 293. xy'—y= xtg(lj.
x X

6.2.3. First Order Linear Differential Equations

A first order differential equation is linear when it can be made to
look like this:

'+ p(x)y=q(x), (6.4)

where p(x) and g(x) are both continuous functions.

To solve it there is a special method:
Step I: find a solution in a form y =u(x)-v(x) where u and v are

functions of x. Then

!

V=) =u"-v+u-v.
Step 2: substitute y and y' into a given equation (6.4):
u'v+uv' + p(x)uv = q(x).
Step 3: factor the parts involving u:
u'v+u(Vv' + p(x)v)=q(x).
Step 4: put expression in brackets equal zero. So, we get a system:
v+ p(x)v=0,
{u'v = g(x).

Step 5: the first equation is separable DE. Solve the first, and after
the second equation, find u and v.
Step 6: finally, substitute ¥ and v into y =u-v to get solution.
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3y

NS}

Example 6.3. Find the general solution of the DE '+ == =x".

X
Solution

It is Linear Differential Equation in a form (6.4).

Find a solution as y =uv, then y' =u'v+uy'.

Substitute y and ' into equation:

2
u'v+uv' +=uv=x°;

X

3v
u'v+u(v' + 270 = %2

X

Put expression in brackets equal zero and obtain a system:

3y
Vi+—=0,
X

u'v=x>

Solve separable differential equation v' + 3v =0:
X

dv 3v. dv 3dx dv dx
— = — —:—3_[—.
dx X v X v X
Since
Inv=-3lnx=Inx"",
3 1
Then v=x"=—.
X
: o :
Substitute v = — into the second equation of a system:
X
u' ,
3 = X2 - u = XS
X

Integrating the last expression, we get

6
uzjxsdx=X—+C.
6
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Finally, substitutex and v into y =u - v to get general solution:
6 3
X 1 x C
=u-v=|—+C | w=—+—.
Y [ 6 Jx3 6 x°
Remark. This method can be used to solve the DE of the form
y'+p(x)y=q(x)y*,

where a 1s any rational number except 0 and 1 (Bernoulli equation).

Exercises
In the exercises 294-299 solve the following DE:
294, y'—2—y=x2+1. 295. xy' =2y =2x"
X
296. y' — ytgx =—y* cosx. 297. y' +2xy = xe ™
r Y 5

Y+2=x' -2, 4
2984 T . 299 {xy 2y1 R

y=>. ym =t

6.3. Second Order Linear Differential Equations

The second order linear differential equation is
V'tay' +ayy = f(x), (6.5)

where a,(x), a,(x), f(x) are known functions.
If f(x)=0, then we get a homogeneous linear equation

y'+ay +a,y=0. (6.6)

Principle of Superposition . If y, and y, are any two solutions of
the homogeneous equation (6.6) then any function of the form

y=Cn+GCy,
is also a solution of the equation, for any pair of constants C; and C,.

Given two non-zero functions f(x) and g(x) are called linearly
independent 1f the only two constants for which equation

G f(x)+Cg(x)=0

is true are C; =0 and C, =0.

85



Theorem 6.1. If y, and y, are two linearly independent solutions of
the homogeneous equation (6.6) then function

y=Cy +Cy,

is a general solution of the equation (6.6).
Theorem 6.2. The general solution of linear inhomogeneous
equation (6.5) can be written as

yZyO(X)+Y(X),

where y,(x) is the general solution to the corresponding homogeneous
equation, also called the complementary solution, Y(x) is any particular
solution for given equation.

6.3.1. Second Order Linear Homogeneous Differential
Equations with Constant Coefficients

Consider homogeneous linear differential equation
y'+py'+qy=0 (6.7)
where p and g are known numbers.

Let y=¢™ be a solution of equation, for some as-yet-unknown

constant k. Then y' = ke®™, " =k?e™.
Substitute y, y' and y"into equation (6.7):
k*e™ + pke™ + ge™ = 0;
k*+ pk+q=0. (6.8)

It is the characteristic equation of (6.7).
Solve characteristic equation:

—pi\/B
2a

Depending on the discriminant of the characteristic equation, we
obtain the general solution of equation (6.7) in one of three following
forms:

D :p2 _4q, xl’z -
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Discriminant eneral solution

D >0,

— k]x k2X
k, # k, are two distinct real roots y=Ce" +Ce
D=0
s e |
k, =k, =k is one repeated real root y=e (Cl +C, x)
D=0,

ki,=otPi are two complex| y=¢"(C cosPx+C,sinpx)

conjugate roots

Example 6.4 . Find the general solution of the following equation:
a) y'=3y'=0;  b) y'+6y'+9y=0; ¢) y"+6y'+13y=0.

Solution

a) Solve the characteristic equation:

k* =3k =0;

k(k—3)=0.
So k, =0, k, =3are two distinct real roots. The general solution is

y=Ce" + e =C, + Ce’,
b) Characteristic equation is
K +6k+9=0;
2-1

We get one repeated real root, so the general solution is

y=e"(C, +C,x).

D=6>-4-19=0=k, =

c¢) Characteristic equation is
k> +6k+13=0,
D=6-4-1-13=-16;

_—6%+-16 _-6+4i -6 4i _
2.1 2 2 72

1’2 _3 i 21
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We get two complex conjugate roots, o =-3, =2 so the general

solution is

yo =€ ¥ (C, cos2x + C, sin2x).
Example 6.5 . Solve the following [VP:
T T
"+49y =0, y| = |=2,)| = |=T7.
y+a9y=0.5{ 5 ]=20(])

Solution
The characteristic equation is
k*+49=0,
kK =-49 = k=1-49 =k, =%7i.
We get two complex conjugate roots, a =0, B=7, so the general

solution 1s

y =e"(C, cos7x+ C,sin7x)=C, cos7x + C,sin7x.
Let’s find actual solution using initial conditions. Find the derivative:

y' ==7C,sin7x+7C, cos7x.

Plugging in the initial conditions gives the following system:

m . In
Clcos7+C2sm7:2, {CI-O—C2-1=2,
7

-7C, sin7—n +7C,cos—=
2 2

The solution of a system 1s C, = -2, C, =1.
The actual solution of differential equation is

y=cos7x—2sin7x.

Exercises

In the exercises 300-307 solve the following homogeneous DE:
300. y"+y' =6y =0. 301. y"+4y'=0.

302. y"-8y' +16y =0. 303. y"—16y=0.
304. y"+16y =0. 305. y"+4y'+5y=0.
306. y"+2y' +5y=0. 307. y"+2y'+y=0.
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6.3.2. Second Order Linear Nonhomogeneous Differential
Equations with Constant Coefficients

In some special cases the particular solution Y(x) can be found by
Undetermined Coefficients Method.

1. Let DE has a form
y'+py'+qy =P, (x)e”,

1

where P, (x)=a,x" +a, x"" +--+a,, and let k , are the roots of

characteristic equation k* + pk +¢ =0. Then
—if a # k; , then Y(x) has to be taken in a form
Y(x)=e" (Ax" +Bx" 4. -);
—1f a=k,, a # k, then Y(x) has to be taken in a form
Y (x)=xe™ (Ax” +Bx" 4 -);
—1f a =k, =k, =k then Y(x) has to be taken in a form
Y(x)=x%e™ (Ax” +Bx" +-. -),

where A, B, ... are undefined coefficients.
One have to calculate Y'(x) and Y"(x), plug Y(x), Y'(x) and Y"(x)

into given equation and collect the like terms. We will need to choose
numbers 4, B, ... so that the coefficients of the exponentials on either side

of the equal sign are the same.
Example 6.6. Find the general solution to y"—4y'—12y =3¢,

Solution
a) Firstly one should solve corresponding homogeneous equation
y'—4y' =12y =0.
The characteristic equation is
k> —4k-12=0,
D=(-4Y —4-(-12)=64>0;

_|_
kLZZ%, k1:6, k :_2.
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So the complementary solution is
yo = Cie®* +Cre ™.
b) Find particular solution Y (x). The right side of equation
f(x)=3e"
has a form f(x)=P,(x)e” where n=0 and a=5#k, Thus the

particular solution Y (x) has to be taken in a form
Y(x)=Ae™.

Find Y'(x) and Y"(x), and plug Y(x), Y'(x) and Y"(x) into a given
equation:

Y'(x)= SAesx, Y'(x)= 25Aesx;
254> —4-54™ =124 =3e>;

— T4’ =3 = —TA=3= A:—%.

Thus Y(x) = —ges *. By the theorem 6.2 the general solution is

y =y, +Y(x)=Ce™ + Cre™™ —%e”.

II. Let DE has a form
V' + py'+qy=e* (M, (x)coshx + N, (x)sinbx),
where are M, (x) and N, (x) are polynomials of degrees n and m, and let

k , are the roots of characteristic equation k* + pk+q=0. Then
—if a+bi#k;, then Y(x) has to be taken in a form

Y(x) = e"*(4, (x)cosbx + B, (x)sinbx);
—if atbi =k, then Y(x) has to be taken in a form

Y(x) = xe® (4, (x)coshx + B, (x)sinbx),

where L = max{m,n},
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A4, (x) = Ale + AzxL_1 ++ AL,

B, (x)=Bx"+ Ax" " +.--+B, ..
Example 6.7. Find the general solution to y"+4y"+13y =29sin2x.

Solution
a) At first one should solve corresponding homogeneous equation
y'+4y +13y=0.
The characteristic equation is
k* +4k+13=0;
D=4"-4.13=-36<0;

—A+6i
PR, £ S
’ 2

So the complementary solution is

y, =€ >*(C, cos3x + C, sin 3x).
b) Find particular solution Y (x). The right side of equation

£(x)=29sin2x = €"*(0- cos2x +29sin 2x)

has a form f(x)=e"" (M, (x)cosbx+ N, (x)sinbx) where m=n=0,
a*bi=012i+#-2+3i. Thus the particular solution Y(x) has to be taken
in a form

Y(x)= Acos2x+ Bsin2x.
Find Y'(x) and Y"(x), and plug Y(x), Y'(x) and Y"(x) into a given

equation:

Y'(x)=-2Asin2x+2Bcos2x;
Y"(x)=—-4Acos2x—4Bsin2x;
—4Acos2x —4Bsin2x +4(—2Asin2x +2Bcos2x)+
+13(Acos2x + Bsin 2x) = 29sin 2x.
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Open brackets and equate the coefficients near the functions sin2x
and cos2x:

cos2x(—4A4+8B+13A4)+sin2x(-4B—-8A+13B)=29sin2x;
cos2x(9A4+8B)+sin2x(—8A4+9B)=0cos2x+29sin2x;

cos2x: 94+8B =0,
sin2x: —8A4+9B=29.

Solve a system (we can use Cramer’s formulas):

9 8
A= = 81— (—64) =145;
8 9
0 8 y
A, = _0-8.29=-232,, 4=—22__8__16
29 9 145 5
0
A, = _9.29-0=261, B=21_2 _1¢
-8 145 5

Thus Y(x)=-1,6cos2x+1,8sin2x..
By the theorem 6.2 the general solution is

y =y, +Y(x)=e**(C, cos3x+ C,sin3x)—1,6cos 2x +1,8sin 2x.

Exercises
In the exercises 308—315 solve the following inhomogeneous DE:

308. y'—4) +4y =6e*", 309. y" -9y =10,
310. y"—6y"+9y =9x* —39x + 65. 311. y"=2y"'=x+3.
312. y"=2y'+ y=(x+1)e". 313. y"+4y=sinx.
314. y"=T7y'+6y =—Tsinx—5cosx. 315. y"+4y'+8y =5sinx.
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SECTION 7. SERIES

7.1. Numerical Series: Basic Concepts

Consider a numeric sequence {a, }. Sums of first » terms:
S1=4d

Sn =Cl1+a2 +...+an

are called partial sums.
Partial sums will form a sequence {s,}. The limit of the sequence

of partial sums s,

n o0
lims = lim E a. = E a.=a,+a,+-+a, +---.
n i i 1 2 n
n—»o0 I’l—)OOl.Zl i=1

1s called an infinite series. Element a; 1s called n-th term of series, number

i 1s called the index of summation or just the index.
If the sequence of partial sums {s, } is convergent and its limit is

finite then we also call the infinite series » a, convergent. The finite limit
i=1
of the sequence of partial sums {s, }

S =lims,
n—»o0

is called the value of the infinite series iai. If the sequence of partial
=1
sums, {s,} is divergent and its limit is inﬁtllite or doesn’t exist then we also
call the infinite series iai divergent.
Examples of seril;:
1. Geometric Series

Yd"=q+q’+q +--.
i=1
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Geometric series is convergent if ‘q‘ <1 and Zq" = IL
i=1 —q

2. Harmonic Series

= 1 I 1
D—=l+—F—+--
on 2 3

Harmonic Series is divergent
3. p-Series (Hyperharmonic Series)

1 1 1
+

The plIT111] : p-Series converges if p >1 and diverges if p <1.

7.2. Convergence Tests

I. Necessary Condition of Convergence : if Zan converges then
n=1
lima, =0.
n—>0
The converse is NOT true.

o0

: : : . 1 .1
For instant, consider Harmonic Series: Z—. lim—=0 but
n=11 n—on

Harmonic Series is known to be divergent.

II. Divergence Test: if lim a, # 0 then ) a, diverges.

n—»0 n=1
. . = 2n+3 .
Example 7.1. Determine if the series Z 1S convergent or
n=1 3n+2
divergent.
Solution
. : . 2n+3 2 C
Since lim g, = lim =—#0 then the series i1s divergent
n—>o0 n—» 3pn + 2

according to Divergence Test.

94



III. Comparison Test: suppose that we have two series with positive

terms Y a, and Y b,. If a, <b, forall n>n,, then

n=1 n=l1

—if ) b, is convergent then so is ) a,;

n=1 n=l1

—if ) a, is divergent then sois ) b,.

Example 7.2. Determine if the series Z Ton 1s convergent or divergent.
n=211N

Solution

: 1 1 :
Since Inn <n for all natural numbers », then nn > —. Harmonic
nn n

: -1 . . < ; :
series Z— is divergent, then Z— i1s also divergent according to
n=1 N o nn

Comparison Test.

IV. Limit Comparison Test: suppose that we have two series with

" - — . a : . :

positive term » a, and Y b, define 11mb—”:c. If ¢ is positive and is

n=1 n=1 e Dy,

finite then either both series converge or both series diverge.

w2
Example 7.3. Determine if the series Zn—H

1 1s convergent or
14n” +2n

divergent.

Solution

0
To use Comparison Test we have to choose series Y b, to compare.

n=l1

Note that n”> +1~n*, 4n* +2n ~ 4n* then consider Hyperharmonic series

oob_oonZ_ool
Zn_ 4 T La 20
n=l1 n=11 n=11
n? +1
. 4 ) n?+1 n? . ont+n? 1
c:hm—”:hmwz11m4—-—=11m4—:—<oo.
nsob onoe 1 nsodp” +2n 1 nowdn”+2n 4
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Hyperharmonic Series ZLz 1s convergent by p-Test (p=2>1),

n=11
0 2
n+1 . : . :
thus ZW is also convergent according to the Limit Comparison
n=194n +4in

Test.

V. Ratio Test: suppose we have the series Za Define / = lim 2L,

n=1 - an

Then
—if [/ <1 then the series is convergent;
—1f / > 1 then the series is divergent;
— If [ =1 then the series may be convergent or divergent.
This test is useful when the expression for n-th term contains factorials.

o0 n

Example 7.4 . Determine if the series Z— is convergent or divergent.
n=l n!

Solution

The n-th and n + 1-th terms of the series are written as

3]’1 3n+1
a,=—, oy, = :
"on v (n+1)!
Calculate the limit
3n+1
llm n+1 (n+1)' m 3n+1 3n+1 _3 3m
n—w q, n—)oo ﬁ n—»00 3n(n+1)' (n_|_1)|— n'(n+1)
n!
n 2. pl
fim o fim S g«

n>03"pl(n+1) n>o(n+1)
Thus, given series converges according to the Ratio Test.

VI. Root Test: suppose we have the series Zan. Define

n=1

[ =lim#/a,. Then

n—0
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—1f [/ <1 then the series is convergent;

—1f [ > 1 then the series is divergent;

— If [ =1 then the series may be convergent or divergent.

This test is used when the index n is both at the base and in the
exponent.

2n+4
3n+5

Example 7.5. Determine if the series Z( ] 1s convergent or

divergent.
Solution

Calculate the limit

2n 2 2
1im@:nmn(2”+4j :lim(2n+4j :(Ej _to,
n—»o n—>o0 3n+5 n—o\ 3n+95 3 9

hence given series is divergent according to the Root Test.
VIL. Integral Test: suppose that f(x) is a continuous, positive and

decreasing function on the interval [k;o0) and f(n) =a, then

—if I f(x)dx 1s convergent so is Za
n=k

—if I f(x)dx is divergent so is Za
n=k

Example 7.6. Determine if the series Z

is convergent or
onlnn

divergent.

Solution

. This function is

In this case the function we’ll use is f(x) =
xlnx

positive and decreasing on the interval [2; + ). Therefore we need to
determine convergence or divergence of the corresponding integral:

+o _ . _@ o g
If(x)dx .[xh):x [u Inx; du } I_ ln“‘lz

2 u; =In2, uz—oo In2

The integral 1s divergent so the series is also divergent by the Integral
Test.
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Exercises
In the exercises 316-333 determine if the following series are
convergent or divergent:

= n = 1+n = 2n+3
316. . 317. 318.

;n2+1 Z\/_—lrn ;n2+5n+3

2

= n 2 2n+3
319. . 320. 321. .

;3n3+2 Z\/n +ont +n E n+l

o 5 © '
32. 32 323, 32 324, 3 DL

n:15 n=1 n! n=1 10

2, 2" (n+2 Y 2, 5"
325. . 326. . 327. .

nZ:;(n+l)! § 3n+2) 23 2

2 n

“(2n-3Y “( n*=3n+2 © 2"
328. . 329. . 330.

;(4%10) Z:; 2n2—4n—5J ;2”+8”
331. 2(3’1_2]- CEP T 333, Ysin L,

o\ 3n+1 o hnin’n - n

7.3. Alternating Series

Definition. An alternating series is any series, an for which the
n=I
series terms can be written in one of the following two forms:

b, =(-1)"a, or b, =(-1)""a, (a, >0).

An alternating series are:

0

o0
> (-D)'a, =—a,+a, —ay+--- or Z(—l)"“an =a,—a,+ay—

n=1

Like any series, an alternating series converges if and only if the
associated sequence of partial sums converges.
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Definition. A series »_a, is called absolutely convergent if ) |a,|

n=1 n=1

o0
is convergent. If > a,
n=1 n=1

ries conditionally convergent.
Alternating Series Test (Leibniz Test).

Let we have a series Z (-1)"a, where a, >0 for all #n. Then if
n=1

1) lima, =0;

n—»o0
2) an >an+l >an+2 >

the series Z (=1)"a, is convergent.
n=1
Example 7.7. Determine if the following series are absolute
convergent, conditionally convergent or divergent:

&’ (=1)" 2 2n+1
a) nZ:;(_l) 6_ns )Z\/nT C) Z(_l) 5n+2-

n=1

Solution

a) Let’s see if it is an absolutely convergent series:

>

n=l1

6

nh |
(=1) p

© n6
= —
n=l1 6

Let’s use Root Test:

note that 1
JE?OW_,}E?O"_ lim 6 “Vim4n=1[ " "

n—>0

Hence, by the Ratio Test this series converges. Thus, given series
converges absolutely.
b) Let’s see if it is an absolutely convergent series:

1
Z()

n=l1

o0
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: : : 1 o :
Hyperharmonic Series with p = 5 <1 1s divergent by p-test, so given

series diverges absolutely.
Let’s check the conditions of Leibniz Test:

1) lima, = lim ! =0;

n—>00 n ”_”04/71-}-5
2) a, = U
Jn+5 Vn+6'

As n+5<n+6 then a, for all natural n.

1
x/n+ x/n+6 N

Both conditions are fulfilled, so given series is conditionally
convergent.
c¢) Let’s find lima,:

n—»o0

2n+1 2

lima, = lim
n—o ns>oSp+2 5
So, the Necessary Condition of Convergence is not fulfilled then this
series diverges.

Exercises
In the exercises 334-342 determine if the following series are
absolute convergent conditionally convergent or divergent:

5n+3 = (1) o (=1)"
334. Z( by WS X 363

5043 (=1)" > (<1)"
337, z( 1y ( n+2) 338, z‘;n s39. 3 L0

340.2;(—1Ytg£;5j. 341. }: S ) 342.§i(—1)"cos(—).

7.4. Functional Series

Suppose {un (x):n=0,1,2, } is a sequence of functions defined on
an interval /. By a functional series we mean the symbol

iun(x):uo(x)+u1(x)+u2(x)+...+un(x)+...
n=0
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Examples of functional series:
o0
Sa"=l+x+x+x0 400
n=0

n=1 nx

— 1 1 1
D —=l+—+—+-.
2% 3"

Definition The point x, is called the convergence point of the

o0
functional series ) u,(x) if the numerical series
n=0

iun(x) =uy(xg) +uy(xg) +uy(xp) + ...
n=0

is convergent. The set of all its points of convergence is called the domain
of convergence of a functional series.
For example, we know that geometrical series

X' =l4x+x+x 4 (7.1)
n=0
is convergent if [x| <1 and it is divergent if |x/>1. Then, the domain of
converges is x € (—1; 1).
Definition. Sum of first n terms of the series is called the 7n-th partial

sum of the functional series. We say that the sequence of the partial sum
{S ) (x)} converges pointwise to the function {S (x)} on the interval 7 if

S(x)=1lim S, (x) = lim (g (x) + 1, () + -+, (x)).

For example the 7-th partial sum of the geometric series (7.1) is

n
x -1
S (X)=l+x+x>+x" +-+x" =

x—1
The limit of {Sn (x)} (in the domain of converges) is
x"-1 1

lim S, (x) = lim = .
n—»o nso x—1 1-—x

: . : o : 1
Thus, given functional series converges pointwise to function P
—X
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7.5. Power Series

Definition A power series in the variable x is a series of the form

o0
e, X" =cotex+oxt e
n=0
Numbers C,, C,, C, are called the coefficients of series.

A power series about a or a general power series is any series that
can be written in the form:

o0
Y e,(x—a)" =cy+c(x—a) +e,(x—a)’ +--.
n=0
A general power series always converges at x = a. The number a i1s
called the center of convergence.

e}
Theorem. For a power series Y ¢,x" there are three possibilities:
n=0
— the power series diverges for all x #0;
— the power series converges for all values of x;

—there is a positive number R such that power series converges
for all values of x with ‘x‘ < R and diverges for all values of x with ‘x‘ > R.

Number R is called the radius of convergence of the power series.
If among the coefficients ¢, there are no equal to zero, then the

radius of convergence can be found using one of the formulas:

R=lim -5 (7.2)
=0 Chypn

R=lim——, (7.3)
n—o _[c

The interval of convergence is: x € (—R;R). One have to investigate

the cases x = £R separately.
In the case of a power series about a the interval of convergence is
xe(a—R;a+R) and one should investigate the cases x=a=xR

separately.
Example 7.8. Determine the radius of convergence and interval
S (x=2)"
of convergence for the power series u
n=0 4n (l’l + 3)
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Solution

. o 1
The coefficient of series 1s ¢, =———, a=2.

4"(n+3)
By formula (7.3)

= lim — \/7 = lim%/4"(n+3) =4 lim &/n + 3.

Remained that lim %/n = 1, then lim%/n+3 =1 to. So, R=4-1=4.

n—>0 n—0
The interval of convergence is (a—R;a+ R)=(2—-4;2+4)=(-2;6).
Let’s investigate series behavior with x = -2 and x =6.
For x =6 we get
[e0] 4}’1 0 1

2(6( 2)) )3 -y

=4"(n+3) Sn+3

1
Let’s compare this series with Harmonic series Z which is divergent:

nln
1
c—hmn+3—1<oo, c#0.
1
n

0

So >

ioh+3
For x =-2 we get

(=2-2) (4" (=D"4" =D"
D e T

04" (n+3) 4" (n+ n+3

is divergent by the Limit Comparison Test.

It is alternating series. It diverges absolutely by the Limit
Comparison Test. Let’s use Leibniz Test:

1) lima, = lim—— =0;

n—>00 n—o 1+ 3

2) a, = 1 > :
n+3 n+4

Both conditions are fulfilled, so given series is conditionally convergent.
Thus, the domain of convergence is x €[-2; 6).

=a, ., for all natural n.
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Exercises
In the exercises 343-351 determine if the following series are
absolutely convergent, conditionally convergent or divergent:

343. 3% 344, 23 (x“) 345, 5 073
n=11 n=1 5
(x+2)" 2" x" 2 n(x—4)"
346. 347. 348. ) ———.
,;) n+7 Z ! z; 10"
(x+2)" 2" x" Zon(x—4)"
349. 350. : 351. ) ———.
nZ(:) 3n+7 % n! ; 10"

7.6. Taylor and Maclaurin Series

Let the function f(x) has derivatives of every order at the point
x = a. Power series

f() f(")()

(x—a) +..+7—~

@)+

(x—a)+

(x—a)" +...

S (a)
o)

© (n)

— Z f a) (x _d a)n
n=0 n!

1s called the Taylor Series for f(x) about x =a.

The n-th partial sum for the Taylor Series is caller the n-th degree
Taylor polynomial of f(x):

f() f(")()

T, (x)= f(a)+

(x—a)+

(x— a)+ .+

r'@ (r—ay
The remainder is defined to be
R,(x)=f(x)=T,(x).
Thus the function f(x) can be written as
J(xX)=T,(x) + R, (x).
Theorem. Suppose that f(x)=7,(x)+ R, (x). Then if lim R, (x)=0
for x e (a—R;a+ R), then "—>°0
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© (n)
f@ =3 Dy
n=0 n:

forall xe(a—R;a+R).
If we are talking about the Taylor Series about a =0, we call the se-
ries a Maclaurin Series for f(x):

f'(o)x+f”(0)x2+...+—f(n)(0)x"+...=i—f(n)(0)x”.
I! 2! n! o M

J(x)=1(0)+

Maclaurin Series for main elementary functions

2 3 o .n
e =l+x++™ o= x—, x € (—00;+ ).
21 3 o n!
RN o 20
2.cosx=1-"—+"——"v-o= ) (-1)" , X € (—00;+ o).
214 6 ,;0( ) (2m)! ( )
305 7 % 2n+1
3. sinx=x—x—+x——x—+-~=2(—1)” a , X € (—00;+ ).
3 s 7 0 (2n+1)!

4, %:1+x+x2+x3+---22x", xe(=11).
- X n=0

2 3
X

5. In(l+x)=x—2 42 . =S )y xe-11].
b/ N prt n

mm=1) o mm=-Dm=2) 5, _
3!

6. 1+x)" =1+mx+

m(m—l)(m—2)---(m—n+l)xn
n!

, xe(=11].

=1+i
n=l1

Example 7.9. Find the Maclaurin Series for f(x) = xe**.

Solution
We already have a Maclaurin Series for e*. For ¢** we have:
2 3 o0 n [e'e} n
e2x=1+2x+(2x) +(2x) +-~~=Z@= m—
! 3! - n on!
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So

o] n

0 2”
fx)=xe=xY =x"=> ="
n=0 n! n=0 n!

The domain of convergence is x € (—o0;+ ).

tercises
In the exercises 352-357 find the Maclaurin Series for each of the
following functions. Determine the domain of convergence:

. 2
350, S0X 353, 1. 354, X
X 1+x 2—-3x
355. In(2 + x2). 356. cos? 2x. 357. xe?™.

In the exercises 358-360 find the Taylor Series for each of the fol-
lowing functions about given point. Determine the domain of convergence:

358. %, x=3. 359. 1

X N2+ Xx

0.2
361. Calculate the integral jx cos xdx with precision o =0,001.
0

Cx=-1. 360. sin2x, ng.

s
362. Calculate the integral - x2 al
X

0

dx with precision a =0,001.
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