Д. И. СУЯРОВ, Л. Г. ЧУБРИКОВ, М. И. СИРОТИН

НОМОГРАММЫ ДЛЯ РАСЧЕТА ОПТИМАЛЬНЫХ РЕЖИМОВ Обжатий при прокатке толстых листов

Согласно определению В. А. Тягунова [1], оптимальным режимом обжатий является тот, прокатка по которому происходит с полным использованием энергопрочностных возможностей стана. Для расчета оптимального режима обжатий из условия ограничения обжатия прочностными характеристиками стана В. А. Тягуновым предложена номограмма. При расчетах обжатий по ней не учитывается, однако, влияние внешних зон на удельное давление, что ведет к значительному завышению обжатий в некоторых пропусках. Кроме того, номограмма В. А. Тягунова построена для листового стана с определенным диаметром рабочих валков, что делает невозможным применение ее для станов с валками других днаметров. Этот недостаток номограммы можно исправить, приняв в качестве единицы измерения линейных размеров радиус валка, как предложил Б. Н. Бухвалов [4].

Для расчета обжатий по допустимому моменту прокатки В. А. Тягунов предложил две номограммы, которые позволяют по заданным значениям допустимого момента $M_{\rm дn}$ и удельного давления *p* определять обжатие при любых диаметрах рабочих валков и для двигателя любой мощности [3]. В этих номограммах влияние внешних зон также не учитывается.

В основу наших номограмм, свободных от недостатков, положено уравнение связи удельного давления и сопротивления деформации для широкого диапазона значений геометрического фактора формы зоны деформации, встречающихся при прокатке толстых листов, т. е. для

$$0, 1 < \boldsymbol{w} = \sqrt{\frac{1}{\frac{1}{h_{i-1}h_i}}} < 2, 5$$

где r — радиус рабочего валка;

 $\Delta h_i = h_{i-1} - h_i$ — обжатие в *i*-том пропуске;

h_{i-1} — входная толщина раската в *i*-том пропуске;

h_l — выходная толщина раската в этом пропуске. Уравнение связи получено на основании обобщения результатов исследований ряда авторов. В технической литературе имеется несколько предложений, касающихся представления

функции формы зоны деформации (коэффициента напряженного состояния) $\phi(w)$ посредством эмпирических и полуэмпирических формул и графиков¹.

В. А. Тягунов [1] использует формулу А. Ф. Головина [2]

$$\varphi(\omega) = 1 + \frac{1}{3}(\omega - 1)$$

для w > 1; при w < 1 он считает $\varphi(w) = 1$.

А. И. Целиков и В. В. Смирнов [5] на основании опытов сжа-

тия параллелепипедов с жесткими концами и без них предложили для $\omega < 1$ эмпирическую формулу

$$\varphi(w) = w^{-0,4}.$$

Д. И. Пирязев и П. А. Александров [6] нашли следующие эмпирические зависимости:

$$\varphi(w) = 3,3$$
 при $w < 0,167;$
 $\varphi(w) = 0,7 + 0,44 \frac{1}{w}$ при $0,167 \le w \le 0,455;$
 $\varphi(w) = 1 + 1,04w$ при $w \ge 0,455.$

И. Я. Тарновский и В. П. Котельников [7] при помощи ва риационных принципов вывели формулу (для w ≤1)

$$\varphi\left(\omega\right)=1,1\omega^{-0,5},$$

М. Я. Бровман [8], используя метод построения поля линий скольжения, разработанный Хиллом, дал графическое выражение функции $\varphi(w)$ для значений w от 0 до 1.

В работе В. М. Луговского и В. Ф. Потапкина [9] аналогич-

¹ Все формулы даны в наших обозначениях.

Рас. 4. Номограмма для определения величины обжатия из условия нанбольщего допустимого усалия прокатия

-/•

ный расчет выполнен для более широкого диапазона w — от 0,1 до 2,6.

Р. Б. Симс [10], использовав теорию Орована, рассчитал значения функции $\varphi(w)$ для w > 1 при разных отношениях r/h.

Как показано на рис. 1, все предложения, касающиеся функции $\varphi(w)$, за исключением формул Д. И. Пирязева, изображаются сходными графиками.

При факторе формы w < 1 графики М. Я. Бровмана и В. М. Луговского полностью совпадают. Довольно близко к ним расположена кривая, выражающая формулу А. И. Целикова. При w > 1 близко расположены графики А. Ф. Головина, В. М. Луговского и Р. Б. Симса (для r/h > 10).

Исходя из приведенных данных, функцию влияния зоны деформации для интервала от 0,1 до 2,5 можно выразить в виде простой эмпирической формулы

$$\varphi(\omega) = 0.32 \left(1 + \frac{1}{\omega} + 1.25\omega \right).$$
 (1)

Усилие при прокатке толстых листов, когда допустимо пренебречь уширением заготовки и наличием упругого сплющивания валков, равно

$$P = bp \sqrt{r \Delta h}, \tag{2}$$

где *b* — ширина листа;

r — радиус валка;

 Δh — обжатие;

р — удельное давление.

Момент прокатки, без учета потерь на трение в подшипниках,

$$M = 2rb\,\psi\,p\,\Delta\,h\tag{3}$$

выражается через те же величины, что и усилие прокатки. Кроме того, в выражение момента входит коэффициент ф, опреде-

ляющий точку приложения усилия прокатки на дуге захвата.

По исследованиям Е. С. Рокотяна [11] коэффициент ф, так же как и удельное давление, зависит от геометрического фактора w. Результаты исследований Е. С. Рокотяна, а также Эмике и Лукаш [12] показаны в виде графика (рис. 2). Для интервала w от 0,1 до 2,5, который встречается при прокатке толстых листов, коэффициент ф меняется от 0,60 до

Рис. 2. Зависимость $\phi(Z)$ по давным Е. С. Рокотяна [11]

0,40, а в среднем его принимают обычно равным 0,5. Если такое допущение считают слишком грубый, то поступают следующим образом. Определив величину обжатия при $\psi = 0,5$, находят гео-

метрический фактор w, по которому, согласно графику (см. рис. 2), отыскивают значение ψ (w). Это значение и принимают для окончательного вычисления величины обжатия.

Уравнения (1), (2) и (3) используем для расчета оптимального режима обжатий. Уравнение (2) для некоторого *i*-того пропуска

$$P_{i} = b_{i} \cdot 1,15 \,\overline{\sigma}_{i} \cdot 0,32 \left[1 + \sqrt{\frac{h_{i-1} (h_{i-1} - \Delta h_{i})}{r \,\Delta h_{i}}} + 1,25 \sqrt{\frac{r \,\Delta h_{i}}{h_{i-1} (h_{i-1} - \Delta h_{i})}} \right] \sqrt{r \,\Delta h_{i}}$$

преобразуем так, чтобы правая часть его стала функцией только геометрических размеров зоны деформации, причем в качестве единицы измерения этих размеров примем радиус валка, т. е.

$$Q_{P_i} = \frac{P_i}{1, 15\overline{\sigma}_i br} = 0.32 \left[1 + \sqrt{\frac{\frac{h_{i-1}}{r} \left(\frac{h_{i-1}}{r} - \frac{\Delta h_i}{r}\right)}{\frac{\Delta h_i}{r}}} + 1,25 \sqrt{\frac{\frac{\Delta h_i}{r}}{\frac{h_{i-1}}{r} \left(\frac{h_{i-1}}{r} - \frac{\Delta h_i}{r}\right)}} \right] \sqrt{\frac{\Delta h_i}{r}}.$$
 (4)

Решение уравнения (4) в форме зависимости $\frac{\Delta h_i}{r} = f_1\left(\frac{h_{i-1}}{r}\right)$

для разных значений Q_{P_i} изображено на рис. З семейством кривых, построенных в логарифмической системе координат. Графики рассчитаны для области значений w от 0,1 до 2,5 при условии, что вытяжка за один пропуск $\lambda_i = h_{l-1} : h_l \leq 1,5$.

Левая часть уравнения (4) представляет собой безразмерный параметр. В случае равенства усилия прокатки предельно допустимому усилию $P_t = P_{\pi\pi}$ этот параметр является критерием, определяющим наибольшее обжатие из условия прочности валков.

Подставляя значение $\varphi(w)$, согласно (1), в уравнение (3) и выполняя преобразования, аналогичные тем, которые применялись при выводе уравнения (4), находим

$$Q_{M_{i}} = \frac{M_{i}}{1,15\overline{\sigma}_{i}2\psi_{i}b_{i}r^{2}} = 0,32 \left[1 + \sqrt{\frac{\frac{h_{i-1}}{r} \left(\frac{h_{i-1}}{r} - \frac{\Delta h_{i}}{r}\right)}{\frac{\Delta h_{i}}{r}} + \frac{\Delta h_{i}}{r}}\right]$$

Решение уравнения (5) в форме зависимости $\frac{\Delta h_i}{r} = f_2\left(\frac{h_{l-1}}{r}\right)$ изображено на рис. 4 также в виде семейства кривых в логарифмической системе координат. Эти кривые отличаются друг от друга величиной Q_{M_i} . Графики рассчитаны для значений области w, ограниченной теми же условиями, что и для уравнения (4).

Левая часть уравнения (5) представляет собой безразмерный параметр. Задавая $M_i = M_{gn}$, превращаем этот параметр в критерий, определяющий наибольшее обжатие из условия прочности шпинделей, редуктора и мощности двигателя.

Величина обжатия в первых пропусках ограничивается иногда не усилиями и моментами прокатки, а условиями захвата металла валками. При этом решающее значение имеет «удар», который возникает в шпинделе и редукторе в результате мгновенного появления нагрузки при входе металла в валки. На основании практических данных наибольшее обжатие на номограммах (см. рис. 3 и 4) принято равным $\frac{\Delta k_i}{r} = 0,080$, что соответствует углу захвата $\pi/12$ рад. В зависимости от способа прокатки и конструкции стана, наибольшее обжатие может быть другим, меньшей величины. Поэтому безразмерный параметр

$$Q_{\alpha_i} = \frac{\Delta h_{\alpha}}{r},$$

характеризующий величину наибольшего допустимого обжатия по условиям захвата, следует рассматривать в качестве еще одного, третьего критерия, влияющего на выбор оптимального режима обжатий.

Режим обжатий, рассчитанный по приведенной выше методике, является оптимальным, так как соответствует процессу прокатки при полном использовании энергосиловых возможностей стана с учетом условий захвата. Прокатка по такому режиму осуществляется в наименьшее число пропусков.

Для того чтобы рассчитать оптимальный режим обжатий, требуется знать паспортные данные стана, размеры заготовки и готового листа и величину сопротивления металла деформации в каждом пропуске. Порядок проведения расчета показан на следующем примере.

Пример. Рассчитать оптимальный режим обжатий прокатки листа 20×2100 мм (до обрезки кромок) из слитка массой 5,5 Мг стали марки 09Г2 на стане 3500 с диаметром рабочих валков 980 мм. Слиток имеет форму прямоугольной усеченной пирамиды с размерами (410×1000) : (450×1115)×1380 мм.

Найбольшее усилие прокатки из условия прочности валков и деталей клети $P_{\mu\sigma} = 24,50$ Мн, наибольший момент прокатки из условия мощности двигателя, прочности редуктора и шпинделей $M_{\mu\pi} = 2,16$ Мн · м. Допустимый момент деформации (момент на валках)

$$M_{\rm gn} = M'_{\rm gn} - M_{\rm rp},$$

где $M_{1p} = P \mu d_{mx};$ $\mu - \kappa o = \phi \phi$ ициент трения в подшилниках;

*d*_{шк} — диаметр шейки валка.

Примем $M_{\tau p}$ из условия $P = P_{\mu n}$, т. е. $M_{\tau p} = P_{\mu n} \mu d_{\mu \kappa}$. При $d_{\mu \kappa} = 680 \text{ мм}$ и, если принять $\mu = 0.01$, $M_{\mu n} = 2.16 - 24.50 \cdot 0.01 \cdot 0.680 = 1.99 \text{ Мн} \cdot M$. В этом случае допустимый момент деформации получается с некоторым запасом.

Коэффициент жесткости клети с=2,94 Мн/мм.

Сопротивление деформации прокатываемого металла изменяется в процессе прокатки по графику, приведенному на рис. 5.

Рис. 5. Изменение сопротивления деформации стали марки 09Г2 в процессе прокатки листа толщиной 20 мм из слитка Массой 5,3 Мг (по данным прокатки пяти слитков)

В первом пропуске имеем $h_0=450$ мм, $b_1=1115$ мм (для толстого конца слитка), $\overline{\sigma}_1=55,8$ $M\mu/m^2$ (см. рис. 5). Для этих данных по уравнению (4) находим

$$Q_{P_i} = \frac{24,50}{1,15+55,8+1,115+0,490} = 0.7,$$

откуда допустимое обжатие по условию прокатки, согласно номограмме на рис. З (при $\frac{h_0}{r} = \frac{450}{490} = 0.92$), составляет $\left(\frac{\Delta^{h_1}}{r}\right)_{P_1} > > 0.08$ или $\Delta h_{P_1} > 39$ мм. Для тех же данных, полагая $\psi = 0.5$, по уравнению (5) находим

$$Q_{M_1} = \frac{1,99}{2 \cdot 1,15 \cdot 0,5 \cdot 55,8 \cdot 1,115 \cdot 0,490^2} = 0,113$$

откуда допустимое обжатие по моменту прокатки, согласно номограмме на рис. 4 (при $\frac{h_0}{r} = \frac{450}{490} = 0,92$), составляет $\left(\frac{\Delta h_1}{r}\right)_{M_1} = 0,067$ или $\Delta h_{M_1} = 33$ мм. Фактор формы при $\Delta h = 33$ мм имеет величину, равную

$$w = \sqrt{\frac{r \,\Delta \,h_1}{h_0 h_1}} = \sqrt{\frac{490 \cdot 33}{450 \cdot 427}} = 0,29$$

которой на кривой рис. 2 соответствует $\psi = 0.58$, вместо $\psi = 0.5$, принятого первоначально.

При $\psi = 0.58$ по уравнению (5) находим

$$Q_{M_i} = \frac{1,99}{2 \cdot 1,15 \cdot 0,58 \cdot 55.8 \cdot 1,115 \cdot 0,490^2} = 0,097.$$

откуда допустимое обжатие по моменту прокатки (при более точном значении ф), согласно номограмме на рис. 4 (при $\frac{h_0}{r} = \frac{450}{490} = 0.92$), составляет $\left(\frac{\Delta h_1}{r}\right)_{M_1} = 0.057$ или $\Delta h_{M_1} = 28$ мм. Эта величина обжатия, как показывают дополнительные расчеты, является уже достаточно точной.

Безразмерный параметр, характеризующий величину наибольшего возможного обжатия по условиям захвата, для рассматриваемого стана, по данным производственного опыта, равен 0,043. В соответствии с уравнением (6) $\Delta h_{\alpha} = Q_{\alpha} \cdot r = 0,043 \times$ $\times 490 = 21$ мм (для всех пропусков).

В результате расчетов для первого пропуска получены следующие обжатия: $\Delta h_{P_1} = 39$ мм по условию прокатки; $\Delta h_{M_1} = 28$ мм по моменту прокатки; $\Delta h_a = 21$ мм по условию захвата. Из этих обжатий возможным обжатием является наименьшее, т. е. $\Delta h_a = 21$ мм. Однако практика производства на рассматриваемом стане показала, что величина обжатия для первых пропусков должна быть значительно меньше, чтобы избежать «вкатывания» окалины, так как на стане отсутствует гидросбив. Поэтому выберем для первого пропуска обжатие $\Delta h_1 = 10$ мм. При таком обжатии энергопрочностные возможности стана используются, конечно, неполностью, так как возникающие в этом случае усилие и момент прокатки меньше допустимых.

Найдем величину усилия прокатки при обжатии $\Delta h = 10$ мм, так как она требуется для определения раствора валков с учетом упругой деформации клети. Имеем следующие исходные данные: $\frac{h_0}{r} = \frac{450}{490} = 0.92$; $\frac{\Delta h_1}{r} = \frac{10}{490} = 0.02$; $\overline{\sigma}_1 = 55.8$ Мн/м²;

1

	Рациональный режим о
Входная	бжатий для пр
Сопротив-	рокатки лис
Заданное	.ra 20×210
Возможное обжатие1	0 (из слитка весом 5,
Выбранное	5 <i>т</i> марки стал
Выходная	1 09F2 на стан
	ae 3500 HT
Pį	MK)

88

$113 \\ 123 \\ 122 \\ 123 \\ 124 \\ 123 \\ 124 \\ 123 \\ 124 \\ 124 \\ 125 \\ 124 \\ 125 $	1211068765	4.08H	ilomen npo- nyeka i
	На угол	Вдол⊧	Способ прокатки
2420	1790	1115	Шири- на, мм b _i
282 282 282 282 282 282 282 282 282 285 217 217 217 217 217 217 217 217 217 217	410 385,3 364,9 316,8 304,8	460 430 420	Вхо, толщи ћ_–1
00000000000000000000000000000000000000	0,68 0,68 0,68 0,68	0,92 0,90 0,88 0,86	дная на. мм <u>ћ;1</u>
7377288988888 73772889888888 79777	53, 7 53, 8 53, 8 53, 8 53, 8 53, 7 53, 8 53, 7 53, 8 53, 7 53, 8 54, 8 55, 8	55,8 55,8 57,8	Сопротив- ление деформа- ции с Мн/м ²
6 ,77,7 8,99,0		5666	3зд; обжат А ћ
0,0184 0,0184 0,0184 0,0144	0,025	0,02 0,02 02 02	He, MM $\frac{\Delta h_{j}}{r}$
0,027 0,027 0,027 0,036 0,040 0,041 0,041 0,041 0,041 0,042	00000000000000000000000000000000000000	8888 0000	Возможное $\left(\frac{\Delta h_j}{r}\right)_p$
0,022 0,022 0,022 0,024 0,026 0,028 0,028 0,028	0,033 0,031 0,032 0,033 0,033 0,033 0,033 0,034	0,057 0,057 0,057	обжатие ¹ $\left(\frac{\Delta h_i}{r}\right)_M$
0,022 0,022 0,022 0,022 0,024 0,024 0,024 0,024 0,024 0,024 0,0184 0,0184 0,0184 0,0177 0,0197 0,0144 0,0144	0,025 0,0000000000	0,02 0,02 02 02	Выбра обжати Г
6,800,770,800,770,800,800,770,000,800,800	11266512512 ,801912712127	5555	HHOE Ie, MM A h
2260,14 2260,14 2260,14 2260,14 2260,14 2235,7 209,0 209,0 194,8 187,8 187,8	293,08,000 293,000 200,0000 200,0000 200,00000000	440 430 410	Выхо толщи ћ;
0000446 3778 000444 000555 000555 0005555 0005555 0005555 0005555 0005555 0005555 0005555 0005555 0005555 0005555 0005555 0005555 0005555 000555555	$\begin{array}{c} 0,81\\ 0,62\\ 0,62\\ 0,62\\ \end{array}$	0,00 0,88 4 4	на, мм на, мм
274 263,6 2263,6 228,0 219,5 219,5 187,4 187,4 187,4	388,3 373,3 342,7 342,7 326,3 310,3 298,8 298,8	436 426 416	Раствор валков, "м.ж С
19.60 10.60	20,60 20,10 19,10 19,10 17,65	12,25 12,25 12,25 12,25	Усилие прокатки Р _і Ми

(Продолжение)

ş.

) X i.

89888888888888888888888888888888888888	25 26 27 28*	Номер про- пуска
Вдоль	На угол	Способ прокатки
2100	2780	Ширн- на, мм b _i
$\begin{array}{c}11\\127\\91\\49\\227\\33\\227\\33\\227\\33\\227\\33\\27\\37\\37\\37\\37\\37\\37\\37\\37\\37\\37\\37\\37\\37$	174,0 166,0 159,0 152,0	Вход толщин ћ ₁₁
$\begin{array}{c} 0,056\\ 0,0683\\ $	0,35 0,32 0,31	ная на, мм <u>ћ_1-1</u> г
97.0 97.0 105 112 112 112 114 115 114 1177	79,4 81,4 82,3 84,3	Сопротив- леформа- цин б <i>Мн/м</i> ³
.0.4 .76	7,0 7,0	San oбжал A h _i
200000 2000000	0,0162 0,0144 0,0144 0,0144	The, MM
$\begin{array}{c} 0.046\\ 0.046\\ 0.026\\ 0.024\\ 0.024\\ 0.015\\ 0.015\\ 0.008\\ 0.$	0,026 0,027 0,027 027	Возможно $\left(\frac{\Delta K_i}{r}\right)_p$
$\begin{array}{c} 0,040\\ 0,040\\ 0,037\\ 0,026\\ 0,026\\ 0,018\\ 0,016\\ 0,018\\ 0,014\\ 0,$	$0,023 \\ 0,024 \\ 0,024 \\ 0,025 \\ 0,02$	e odжатне ¹ $\left(\frac{\Delta h}{r}\right)_{M}$
$\begin{array}{c} 0,040\\ 0,037\\ 0,$	0,0162 0,0144 0,0144 0,0144 0,0144	Выбр обжат
2457911457778 76933776660	7,0 7,0 7,0	$\frac{48}{100}$
1127 1127 1127 1109 1127 1109 1127 1109 1127 1109 1127 1109 1127 1109 1127 1109 1127 1109 1127 1109 1127 1127 1127 1127 1127 1127 1127 112	166,0 159,0 152,0 145,0	Вых: толща ћ;
0,26 0,187 0,187 0,083 0,068 0,046	0,24 0,32 0,31	одная на, мм
112 144 34 34 34 34 34 34 34 34 34 34 34 34 3	158,3 151,5 144,7 137,8	Раствор валков, мм S;
20,60 21,60 22,06 24,500	22,50 21,60 21,10	Усилие прокатки Р ₁ Ми

Носле пропусков, отмеченных звездочкой, выполняется поворот раската в горизонтальной плоскости.
 Во есех пропусках возможное обжатие (\Delta h_i =0.043.

Во есех пропусках возможное обжатие

68

 $b_1 = 1115$ мм. По номограмме рис. 3 для $\frac{h_0}{r} = 0.92$ и $\frac{\Delta h_1}{r} = 0.02$ находим Q_P = 0,34. Уравнение (4) дает

$$Q_{P_1} = \frac{P_1}{1,15 \cdot 55, 8 \cdot 1,115 \cdot 0,490} = 0,34,$$

откуда Р₁=11,95 Мн. При таком усилии прокатки начальный раствор валков по уравнению Головина-Симса [см. 13] равен

$$S_1 = 440 - \frac{11,95}{2.94} = 436 \text{ MM}.$$

Во втором, третьем и четвертом пропусках получаются примерно те же усилия и моменты прокатки, что и в первом пропуске. Начальные растворы валков для этих пропусков равны соответственно S_2 =426 мм, S_3 =416 мм, S_4 =406 мм (см. таблицу).

После четвертого пропуска получается раскат с размерами 410×1120×1440 мм, дальнейшую прокатку которого ведут «на угол». Для этого раскат поворачивают в горизонтальной плоскости на некоторый угол и в этом положении производят ряд пропусков, в результате чего раскат приобретает форму параллелограмма. Затем раскат вновь поворачивают на некоторый угол и в новом положении прокатывают до тех пор, пока он не станет прямоугольником требуемой ширины, в данном случае 2100 мм. Учитывая, что в процессе прокатки возможны случайные дополнительные повороты раската, прокатку «на угол» выполняют обычно не в один прием, как описано выше, а в два или три приема, чтобы иметь возможность внести коррективы по ходу прокатки.

Длина участка соприкосновения раската с валками в каждом пропуске при прокатке «на угол» сперва возрастает, сохраняет некоторое время наибольшее значение, затем снова уменьшается. Расчет обжатий нужно вести по участку соприкосновения раската с валками наибольшей длины, когда усилие и момент прокатки также достигают наибольших значений. В соответствии с имеющимися исследованиями [13-17], наибольшая Длина участка соприкосновения одинакова для всех пропусков при прокатке по первой диагонали и равна

Ħ

$$b' = \frac{l}{\sin \varphi}, \quad \text{если} \quad \frac{b}{l} \leq \operatorname{tg} \varphi, \tag{76}$$

(7a)

при прокатке по второй диагонали она также одинакова для всех пропусков.

. . . .

 $b' = \frac{b}{\cos \phi}$, если $\frac{b}{l} > tg \phi$

$$b'' = \frac{\eta^2}{\beta} \cdot \frac{l}{\cos \varphi}, \quad \text{если } \frac{b \beta^2}{l \eta^2} > \text{tg} \varphi;$$
 (8a)

$$b'' = \beta \frac{b}{\sin \varphi}$$
, если $\frac{b \beta^2}{l \eta^2} \leq tg \varphi$. (86)

- где l и b -- длина и ширина раската перед прокаткой «на γгол»:
 - η коэффициент обжатия при прокатке по одной диагонали:
 - В коэффициент уширения, получаемый в результате прокатки «на угол»;

$$tg \varphi = \frac{1}{\eta} \sqrt{\frac{\eta^4 - \beta^2}{\beta^3 - 1}},$$

ф - угол задачи заготовки перед прокаткой по первой диагонали.

Для вычисления длины участка соприкосновения раската с валками по формулам (7) и (8) необходимо знать коэффициент обжатия п и коэффициент уширения β. Структура формулы для вычисления tg o показывает, что для получения заданного уширения β необходимо выполнить условие $\eta^4 - \beta^2 > 0$. При $n^4 - \beta^2 = 0$ угол ϕ равен нулю, т. е. заданное уширение можно получить только при прокатке «на ребро». При п⁴ — в² <0 получить заданное уширение вообще невозможно. Из этих соображений, с учетом производственного опыта, можно выбирать значения коэффициента обжатия при заданном значении уширения.

После выбора коэффициентов у и в выполняют проверку их по условию умещения раската на длине бочки валков. В одной из работ авторов [17] показано, что это условие выражается уравнением¹

$$B \geqslant \frac{1}{\beta} \cdot \frac{i \eta^3 \sqrt{\beta^2 - 1} + b \beta^2 \sqrt{\eta^4 - \beta^2}}{\sqrt{(\beta^2 + \eta^2)(\eta^2 - 1)}},$$
(9)

где *В* — длина бочки валков за вычетом некоторого запаса (200-300 мм), учитывающего возможность смещения заготовки в сторону.

Пусть в рассматриваемом примере прокатку ведут в два приема. Коэффициент уширения в первом приеме В₁==0,8 β, а во втором — β₂=0,2 β, где полное гребуемое уширение раската β=2100:1120=1.88. Следовательно, β₁=0.8 · 1.88=1.5 и β₂= =0.2 · 1.88=1.25 (могут быть приняты и другие соотношения между β_1 и β_2).

. Коэффициент обжатия для первого приема выберем из условия $\eta_1^4 - 1.5^2 > 0$ Примем $\eta_1 = 1.40$, при этом $1.40^4 - 1.50^2 > 0$. Для второго приема примем n=1,2, при этом $1,2^4-1,25^2>0$.

Для первого приема находим

$$tg \phi_1 = \frac{1}{\eta_1} \sqrt{\frac{\eta_1^4 - \beta_1^2}{\beta_1^2 - 1}} = \frac{1}{1,4} \sqrt{\frac{1,4^4 - 1,5^2}{1,5^2 - 1}} = 0,805,$$

1 При выводе формулы (9) предположено, что коэффициенты обжатия при прокатке по первой и второй диагоналям одинаковые, так же как и при выводе формулы для определения tg ф.

откуда $\varphi_1 = 0.676 \ pa\partial; \ \sin \varphi_1 = 0.627; \ \cos \varphi_1 = 0.779.$ При

$$\frac{b}{l} = \frac{1120}{1440} = 0,78 < \text{tg}\,\varphi_1 = 0,805,$$

согласно (76),

$$b_1' = \frac{b}{\sin \varphi_1} = \frac{1120}{0.627} = 1790 \text{ MM}$$

а при

$$\frac{b}{l} \cdot \frac{\beta_1^2}{\eta_1^2} = \frac{1120}{1440} \cdot \frac{1.5^3}{1.4^2} = 0.893 > \text{tg}\,\phi_1 = 0.805,$$

согласно (8а).

$$p_1'' = \frac{\eta_1^2}{\beta_1} \cdot \frac{l}{\cos \varphi_1} = \frac{1, 4^2}{1, 5} \cdot \frac{1440}{0, 779} = 2420 \text{ mm}.$$

Длина бочки валков за вычетом 300 мм составляет B=3500--300 = 3200 мм. Подстановка β₁ = 1,5, l = 1440 мм, b = = 1120 мм, $\eta_1 = 1.40$ в уравнение (9) даст

$$\frac{1}{1,5} \cdot \frac{1440 \cdot 1,4^3 \cdot \sqrt{1,5^2 - 1} + 1120 \cdot 1,5^2}{\sqrt{(1,5^2 + 1,4^2)(1,4^3 - 1)}} = 2520 < 3200,$$

т. е. выбранные значения η₁ и β₁ являются приемлемыми.

После первого приема раскат превращается в прямоугольник толщиной 410:1,96=209 мм, ширина которого составляет 1120 · 1,5 = 1680 мм, а длина из условия постоянства объема 410 · 1120 · 1440 : 209 · 1680 = 1890 мм. Для второго приема нахолим

$$g \varphi_2 = \frac{1}{\eta_2} \sqrt{\frac{\eta_2^4 - \beta_2^2}{\beta_2^2 - 1}} = \frac{1}{1,2} \sqrt{\frac{1,2^4 - 1,25^2}{1,25^2 - 1}} = 0,795,$$

откуда $\varphi_2 = 0.670 \ pa\partial$, $\sin \varphi_2 = 0.623$, $\cos \varphi_2 = 0.782$. При

$$\frac{b}{l} = \frac{1680}{1890} = 0.89 > \text{tg}\,\varphi_2 = 0.795,$$

согласно (7а),

1

$$b_2' = \frac{l}{\cos \varphi_2} = \frac{1890}{0.782} = 2420$$
 MM,

а при

$$\frac{b}{l} \cdot \frac{\beta_2^2}{\eta_2^2} = \frac{1680}{1890} \cdot \frac{1.25^3}{1.2^3} = 0.966 > \text{tg}\,\varphi_2 = 0.795,$$

согласно (8а),

4.0

$$b_2'' = \frac{\eta_2^2}{\beta_2} \cdot \frac{l}{\cos \varphi_2} = \frac{1.2^2}{1.25^2} \cdot \frac{1890}{0.782} = 2780 \text{ Mm}.$$

Подстановка $\beta_2 = 1.25$, l = 1890, b = 1680, $\eta_2 = 1.2$ в уравнение (9) даст

$$\frac{1}{1,25} \cdot \frac{1890 \cdot 1,2^{8} \sqrt{1,25^{2}-1} + 1680 \cdot 1,25^{8} \sqrt{1,2^{4}-1,25^{8}}}{\sqrt{(1,25^{2}+1,2^{2})(1,2^{2}-1)}} = 3020 < 3200,$$

т. е. выбранные значения n₂ и β₂ являются приемлемыми.

Мы получили следующие исходные данные для расчета величины обжатий при прокатке «на угол».

Раскат толщиной 410 мм прокатывают по первой диагонали, пока толщина его не станет равна 410: 1,4=293 мм. Наибольшая длина участка соприкосновения раската с валками во всех этих пропусках одинаковая и составляет 1790 мм.

Прокатку по второй диагонали ведут до толщины 293 : 1,4= =209 мм. Наибольшая длина соприкосновения в этих пропусках составляет 2420 мм.

После этого вновь начинают прокатку раската по первой диагонали до тех пор, пока его толщина не станет равна 209: 1,2=174 мм. Длина участка соприкосновения при этом составляет 2420 мм.

Прокатку по второй диагонали ведут до толщины 174 : 1,2= =145 мм, а длина участка соприкосновения при этом равна 2780 мм.

В пятом пропуске имеем:

$$h_4 = 410 \text{ mm}; \quad \overline{\sigma}_5 = 58,8 \text{ MH/m}^2; \quad b_5 = 1790 \text{ mm}; \quad \frac{h_4}{r} = \frac{410}{490} = 0,84.$$

Для этих данных по уравнению (4) находим

$$Q_{P_6} = \frac{24,5}{1,15 \cdot 58,8 \cdot 1,790 \cdot 0,490} = 0,413,$$

откуда допустимое обжатие по усилию прокатки, согласно номограмме (см. рис. 3), равно $\left(\frac{\Delta h}{r}\right)_{P_{1}} = 0.08.$

Для тех же исходных данных, полагая в первом приближении ψ₅==0,5, находим

$$Q_{M_6} = \frac{1,99}{1,15 \cdot 58,8 \cdot 1,790 \cdot 0,490^2} = 0,068,$$

откуда допустимое обжатие по моменту прокатки, согласно номограмме на рис. 4, равно $\left(\frac{\Delta h}{r}\right)_{M_{b}} = 0,036$ и $\Delta h_{M_{b}} = 17,6$ мм.

При таком обжатии геометрический фактор в пятом пропуске

$$w_{5} = \sqrt{\frac{r \Delta h_{5}}{h_{4} \cdot h_{5}}} = \sqrt{\frac{490 \cdot 17.6}{410 \cdot 392.4}} = 0.23.$$

По кривой на рис. 2 этому значению геометрического фактора соответствует $\psi_5 = 0.59$, вместо $\psi_6 = 0.5$, принятого первоначально. Подстановка $\psi = 0.59$ в уравнение (5), дает $Q_{M_s} = 0.058$; по номограмме (см. рис. 4) находим $\left(\frac{\Delta h}{r}\right)_{M_s} = 0.030$.

Из трех возможных обжатий: $\left(\frac{\Delta h}{r}\right)_{P_*} = 0,080, \left(\frac{\Delta h}{r}\right)_{M_*} = 0,030$ н $\left(\frac{\Delta h}{r}\right)_{s_*} = 0,043$, выбираем наименьшее, а именно $\left(\frac{\Delta h}{r}\right)_{M_*} = 0,03$, для которого ограничивающим фактором является момент прокатки. Абсолютная величина обжатия составляет $\Delta h_5 = 0,03 \times 2490 = 14,7$ мм. Следовательно, толщина раската после пятого пропуска

$$h_{\rm s} = 410 - 14,7 = 395,3$$
 MM.

По номограмме на рис. 3 для $\frac{\Delta h_5}{r} = 0,03$ и $\frac{h_4}{r} = 0,84$ на-

ходим

$$Q_{P_*} = \frac{P_5}{1,15 \cdot 58,8 \cdot 1,790 \cdot 0,490} = 0,35,$$

откуда фактически возникающее в пятом пропуске усилие прокатки $P_5 = 20.60 \, Mh$.

Начальный раствор валков для пятого пропуска

$$S_{5} = h_{5} - \frac{P_{5}}{C} = 395, 3 - \frac{20,6}{2,94} = 388,3$$
 MM.

Аналогично проводим расчет и для других пропусков по первой диагонали. Результаты расчетов приведены в таблице.

После 11-го пропуска получаем раскат толщиной $h_{11} = 300,2$ мм. После прокатки по первой диагонали толщина должна быть 293 мм, откуда обжатие для 12-го пропуска будет равно

$$h_{11} - h_{12} = 300, 2 - 293 = 7,2 \text{ MM}.$$

С целью более равномерного распределения нагрузки в 11-м и 12-м пропусках распределим общее обжатие за эти пропуски: 316.8—293=23.8, таким образом, Δh_{11} =12 мм, Δh_{12} =11.8 мм.

При помощи номограммы (рис. 3) находим $P_{11}=17,65$ Мн и $P_{12}=17,65$ Мн. откуда $S_{11}=298,8$ мм и $S_{12}=287$ мм.

После 12-го пропуска выполняют поворот раската для прокатки его по второй диагонали до толщины 209 мм.

Двенадцатый пропуск четный, следовательно, раскат находится на передней стороне клети — там, где имеется поворотное устройство. Это условие необходимо выполнять при прокатке по первой и второй диагоналям в обоих приемах — перед 20, 24 и 28-м пропусками (см. таблицу). Во всех этих пропусках величина обжатий ограничивается условием прокатки раската на заданную толщину, поэтому энергосиловые возможности

стана используются неполностью. Это обстоятельство, наряду с потерей времени на поворот раската, является недостатком, присущим процессу прокатки «на угол».

Начиная с 29-го пропуска, прокатку ведут вдоль, причем фактором, ограничивающим величину обжатий, является сначала момент, а затем, начиная с 33-го пропуска, усилие прокатки (см. таблицу). После 37-го пропуска раскат имеет толщину $h_{37}=27,3$ мм, а лист должен иметь толщину 20 мм. Оставшееся обжатие 27,3—20,0=7,3 мм нужно распределить на два пропуска таким образом, чтобы последний из них был проглаживающим, т. е. выполнялся при том же растворе валков, что и предыдущий. Следовательно, нужно выполнить два условия:

a)
$$\Delta h_{33} + \Delta h_{39} = 7,3 \text{ mm};$$

6) $S_{33} = S_{33}.$

Как показывают исследования авторов и имеющиеся в литературе данные [18], эти два условия удовлетворяются обычно при соотношении обжатий $\Delta h_{n-1} = (0,6+0,65) (\Delta h_{n-1} + \Delta h_n)$. В рассматриваемом примере $\Delta h_{38} = 0,63 \cdot 7,3 = 4,6$ мм и $\Delta h_{39} = -7,3 - 4,6 = 2,7$ мм. Тогда для 38-го пропуска при $h_{37} = 27,3$ мм, $\sigma_{38} = 167$ Мн/м², $b_{38} = 2100$ мм имеем $Q_{P_{98}} = 0,124$, откуда $P_{38} = -24,50$ Мн и $S_{38} = 22,7 - \frac{24,50}{2,94} = 14,4$ мм.

Для 39-го пропуска при $h_{38} = 22,7$, $\sigma_{39} = 177 \ M_{H/M^2}$ и $b_{39} = -2100 \ M_{M}$ имеем $Q_{P_{39}} = 0,080$, откуда $P_{39} = 16,65 \ \kappa_{H}$ и $S_{39} = 20 - 16,65 \ \kappa_{H}$ и $S_{39} = 10,65 \ \kappa_{H}$ и $S_{39} = 20 - 16,65 \ \kappa_{H}$ и $S_{39} = 10,65 \ \kappa_{H}$ и $S_{39} = 20 - 16,65 \ \kappa_{H}$ и $S_{39} = 10,65 \ \kappa_{H}$ и S

Приведенный пример рассчитали применительно к условиям прокатки на стане 3500 Нижне-Тагильского металлургического комбината. По существующему режиму обжатий прокатка такого листа осуществляется не в 39, а в 44—45 пропусков. Использовать имеющиеся на этом стане резервы производительности практически оказалось затруднытельным вследствие недостаточной производительности нагревательных печей. Поэтому промышленную апробацию предложенных номограмм для расчета оптимальных режимов осуществляли на стане Лаута 2850 Ашинского металлургического завода, где имеются мощные нагревательные печи методического типа. Прирост производства толстых листов в результате применения режимов обжатий на этом стане оценивается равным 12000 *Мг* в год, в результате чего получается экономический эффект около 80 тыс. руб.

Предложенные для расчета оптимальных режимов номограммы полностью применимы и для толстолистовых станов современного типа, на которых прокатка «на угол», как правило, уже не применяется. Расчет при этом значительно проще, так как исчезает необходимость вычислять геометрические соотно-

94

Рис. 6. Изменение сопротивления деформации в процессе прокатки толстых листов:

96

шения по формулам (7), (8) и (9). Однако в любом случае расчет оптимального режима возможен только при условии, что известны значения сопротивления деформации в каждом пропуске. Надежные способы расчета сопротивления деформации в каждом пропуске пока отсутствуют. Поэтому рекомендуется находить кривые изменения сопротивления деформации в процессе прокатки по результатам исследования энергосиловых параметров на действующих прокатных станах, подобные кривой, показанной на рис. 5.

Несколько кривых, полученных указанным способом, приведено на рис. 6. Точки, по которым построены эти кривые, найдены по результатам осциллографирования, при помощи тех же номограмм (рис. 3 и 4), по которым рассчитывают оптимальный режим обжатий. В этом случае для получения величины сопротивления деформации поступают следующим образом.

По известным для каждого пропуска величинам $\frac{n_{i-1}}{r}$ и $\frac{\Delta h_i}{r}$ находят при помощи номограмм значения

$$Q_{P_i} = \frac{P_i}{1,15\overline{\sigma}_i b_i r}$$
 или $Q_{M_i} = \frac{M_i}{1,15\overline{\sigma}_i 2\psi_i b_i r}$

в которых b_i , P_i , M_i , ψ_i также известны, что позволяет вычислить сопротивление деформации σ_i . Если измерялись одновременно усилия и моменты прокатки, то значения σ_{li} , вычисленные по условиям и моментам прокатки, должны совпадать или различаться на величину, которая характеризует собой точность выполненных измерений. При расчете оптимального режима обжатий с использованием кривой сопротивления деформаций, построенной по описанному выше способу, ошибки, вызванные применением эмпирической формулы (1), компенсируются в значительной степени, что является еще одним обстоятельством, заставляющим отдать предпочтение экспериментальному способу определения $\overline{\sigma_i}$.

Изучение серии экспериментальных кривых изменения сопротивления деформации в процессе прокатки, аналогичных показанным на рис. 6, позволило сделать следующие выводы:

1. По мере уменьшения толщины раската сопротивление деформации увеличивается с возрастающей скоростью. Такой характер зависимости объясняется воздействием на свойства металла температурных и скоростных условий деформирования. К концу проката скорость деформирования вследствие уменьшения толщины раската возрастает, а температура металла снижается.

2. Возрастание сопротивления деформации по мере уменьшения толщины раската происходит монотонно. Неодинаковая величина обжатий в смежных пропусках и неодинаковая длительность пауз между этими пропусками вносят в эту монотонную зависимость незначительные возмущения.

7 Jakas 578

3. Прокатке одинаково нагретых слитков (слябов) одного и того же размера по разным режимам обжатий, не слишком сильно отличающихся числом пропусков, соответствуют сходные кривые изменения сопротивления деформации. Поэтому допустимо выполнять расчет оптимального режима обжатий по кривой сопротивления деформации, соответствующей применяемому на данном стане (неоптимальному) режиму обжатий. Возникающие при таком расчете неточности оказываются ошибками не первого, а второго порядка малости.

ЛИТЕРАТУРА

- В. А. Тягунов. Рациональная калибровка листовых станов. Металлургиздат, 1944.
- 2. А. Ф Головин. Прокатка. Металлургиздат, 1934.
- В. А. Тягунов. Режимы прокатки на реверсивных станах. Металлургиздат, Свердловск, 1954.
- 4. Б. Н. Бухвалов. О выборе сбжатий по прочности листовых валков. Сб. «Прокатное производство», Металлургиздат, Свердловск, 1958.
- 5. А. И. Целиков, В. В. Смирнов. Влияние внешних зон на сопротивление деформации при прокатке. Сталь, 1952, № 7.
- 6. Д. И. Пирязев, П. А. Александров. Удельное давление при горячей прокатке и анализ формул и методов для их расчета. Труды Украинского научно-исследовательского ин-та металлов, вып. 6, Харьков, 1960.
- 7. И. Я. Тарновский, В. П. Котельников. Исследование удельного давления при прокатке на блюминге с использованием вариационных принципов. Сб. трудов конференции «Технический прогресс в технологии прокатного производства», Металлургиздат, 1960.
- 8. М. Я. Бровман. Исследование деформации металла при прокатке на непрерывнозаготовочных станах. Труды АН Груз.ССР, т. XXVI, 1961, № 1.
- 9. В. М. Луговской, В. Ф. Потапкин. Приближенный расчет напряжений по линиям скольжения. Кузнечно-штамповочное производство, 1962, № 4.
- 10. R. B. Sims. The Calculation of Roll Forse and Torgue in Hot Rolling mills, Proc. Inst. Mech. Engrs., 1954, v. 168, 6.
- Е. С. Рокотян. Силовые воздействия в обжимных и листовых станах. Сб. «Вопросы обработки мегаллов давлением». Изд-во АН СССР, 1958.
- Emicke und K. H. Lucas. Ergebnissen von Walzversuchen an einem Grobblechwalzwerk mit Twin-Drive-Antrieb, Neue Hütte, 1959, 2.
- O. Emicke und K.-H. Lucas. Berechnungsgrundlagen zum Walzen in Winkel bei der Grobblechherstellung, Neue Hütte, 1959, 2.
- 14. М. Л. Зарощинский. Прокатка стали, Металлургиздат, 1948.
- 15. А. Г. Стукач. Прокатка на угол. Сб. «Обработка металлов давлени-
- ем», Металлургиздат, 1953, № 2.
 16. Б. Н. Бухвалов. Прокатка листов с косой задачей в валки. Труды Уральского политехнического института им. С. М. Кирова, вып. 78. Сб. «Расчет и конструирование заводского оборудования», Свердловск, 1960.
- 17. Д. И Суяров, М. И. Сиротин, Л. Г. Чубриков. Основы расчета прекатки на угол. Труды Ин-та металлургии УФАН СССР, вып. 9. Сб. «Исследование процессов листовой и ленточной прокатки», Свердловск. 1962.
- 18. Г. М. Кациельсон, М. М. Сафьян, А. П. Чекмарев, Г. И. Малый. Прокатка толстых листов с повышенной точностью. Металлургиздат, 1957.