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Abstract

A method of studying target mass effects based on the Jost- 
Lehmann-Dyson integral representation for structure functions of 
the inelastic lepton-hadron scattering is elaborated. It is shown 
that, in accordance with general principles of local quantum field 
theory, expressions obtained for the physical structure functions 
depending on the target mass have a correct spectral property.

1 Introduction
The cross-section of the inclusive lepton-hadron scattering (see Fig. 1) is 
parameterized by structure functions Fi(x, Q2) which connected with the 
hadronic tensor as follows

+ + (i)

x ( a  -  F2(X, Q2) -  ^ - L — x ^ p - ^ P ^ x ,  Q2) .
\  Q /  *\q ' ■‘ J

The inclusive cross section for inelastic lepton-hadron scattering is ex
pressed as the Fourier transform of the expectation value of the current 
product J(z)J(0) in the target state. The operator product expansion 
(OPE) is a powerful tool to study inelastic scattering processes. This 
method has been applied to define the contribution of target mass terms 
to the structure functions in paper [1]. Within this method the structure
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functions are parameterized by the quark distribution function F(x) that 
appears with the argument

1 +  \ / l  +  4x2e ’ '

where scaling variable (2) is usually called the Nachtmann variable [2], x 
is the Bjorken scaling variable

Q2 Q2
X “  2Г ~  2(9  • P) ’

and б is expressed through the target mass M  and the transfer momentum 
Q as

C Q 2 ’ Q = -Q  ■ (4)

All definitions used here can be understood from Fig. 1.

Figure 1: Diagram of the inelastic lepton-nucleon scattering.

This ̂ -approach leads to expressions for the physical structure functions 
which conflict with general spectral condition at x  =  1. At the same time 
the target mass corrections become to be large at large x. This trouble with 
the ^-scaling has widely been discussed in the literature (see, for example, 
[3, 4, 5, 6]).

We will use the Jost-Lehmann-Dyson (JLD) [7, 8] representation for 
the structure function which reflects general principles of the theory [9]. We 
argue that in this case it is possible to get an expressions for the structure
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functions in terms of the quark distribution incorporating the target mass 
effects and having the correct spectral property. Our investigation of the 
inelastic lepton-hadron scattering based on the JLD representation has 
been started in [10] and continued in [11, 12]. This paper belongs to this 
series.

2 Method
The situation that an approximation can be in a confrontation with general 
properties is not rare event in quantum field theory. It is well known, for 
example, that when the renormalization group equation for the running 
coupling is solved directly, there arise unphysical singularities of the ghost 
pole type. One has to apply some additional requirements to correct this 
trouble. The analytic approach proposed in [13] gives a possible resolution 
of the ghost pole problem.1 This method combines the renormalization 
invariance and the Q2-analyticity of the Kallen-Lehmann type has revealed 
new important properties of the analytic coupling.

The integral representation for the analytic running coupling is

5 a n ( Q 2 )  =  /  ^ a  + Q 2 - *  ’ ( 5 )

where the spectral function p(a) can be found via a discontinuity of the 
perturbative running coupling on the physical cut. In the leading order 
the analytic running coupling has the form

a “ ^ 2 ) = f t  lnQ 2/A2 +  A2 -  Q 2 ’ (6 )

where f t  is the one loop coefficient of the renormalization group f t  function.
The analytic coupling has no ghost pole at Q2 =  A2 . The first term 

on the of right-hand side (6) preserves the standard ultraviolet behavior 
of the invariant coupling. The second term, which comes from the repre
sentation (5) and enforces the proper analytic properties, compensates the 
ghost pole at Q 2 = A2 . This term gives no contribution to the perturbative 
expansion. We note also that unlike in electrodynamics, the asymptotic

1See also [10, 14] for reviews and [15, 16, 17], where a new comparative analysis of 
the analytic perturbation theory and ordinary one has been performed.
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freedom property in QCD has the effect that such nonperturbative contri
butions show up in the effective coupling function already in the domain of 
low energies and momentum transfers reachable in realistic experiments, 
rather than at unrealistically high energies.

The invariant analytic formulation maintaining the asymptotic free
dom ultraviolet properties essentially modifies a behavior of the analytic 
running coupling in the infrared region by making it stable with respect 
to higher-loop corrections. This is radically different from the situation 
encountered in the standard renormalization-group perturbation theory, 
which is characterized by strong instability with respect to the next-loop 
corrections in the domain of small energy scale. The analytic perturbation 
theory results are much less sensitive to the choice of the renormaliza
tion scheme than those in the standard approach that allows us to reduce 
theoretical uncertainties drastically.

Thus, the causality and spectrality principles expressed in the form of 
Q2-analyticity, send us the message that perturbation theory is not the 
whole story. The requirement of proper analytic properties leads to the 
appearance of contributions given by powers of Q2 that cannot be seen in 
the original perturbative expansion.

2The 4-dimensional integral representation has been proposed by Jost and Lehmann 
in [7] for the so-called symmetric case. A more general case has been considered by 
Dyson [8].

Our consideration of the inelastic lepton-hadron process based on the 
JLD representation for structure functions. The structure functions de
pend on two arguments, and the corresponding representation that ac
cumulates the fundamental properties of the theory (such as relativistic 
invariance, spectrality, and causality) have a more complicated form in 
our analysis than in the representation of the Kallen-Lehmann type for 
functions of one variable.2 Applications of the JLD representation to au
tomodel asymptotic have been considered in [18].

For the function W(v, Q 2) satisfying conditions of the covariance, spec
trality, reality, Hermiticity and causality there exists a real moderately 
growing distribution ^(u, A2) such that the JLD integral representation in 
the nucleon rest frame can be written as [18]

TV(1/, Q2) = e(g0) [  du dX2 6 [ĝ  -  (M u -  q)2 -  A2] ip(u, A2) . (7)
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The weight function -ф(й, A2) is supported in

P = | u | O ,  A2 ^ in =  M 2 ( l - У Г ^ 2 ) 2 . (8)

The physical values of v and Q2 , for the process under consideration, are 
positive. One can neglect the sign factor e(g0) and keep the same notation 
for W(i/,Q 2 ). Taking into account that the weight function ^(u, A2) = 
^(p, A2) is radial-symmetric we write down the JLD representation for W  
in the following covariant form,

1 сю 1
W(^, Q2) =  f  dpP2 У  dX2 У  dz (9)

0  ^min  - 1

x 5(Q2 + M 2p2 +  A2 -  2zP y/ u 2 + M 2Q2 ^ ( p ,  A2) .

A ‘natural’ target mass dependent variable coming from the JLD rep
resentation which is different from the ^-variable (2) is

/ 1 +  4e
S ~  * V 1 +  4z2e ‘

In terms of the s-variable there arises the dispersion relation for the 
forward Compton scattering amplitude T(y, Q2) [10]

W )  =  I  1 W i . Q 2 )- (11)
Jo Si 1 -  (s i/s)2

The structure of this dispersion integral is similar to the structure which 
is appear for the x-variable. The s-moments of the structure function are 
the analytic functions in the complex Q2-plane with a cut along a negative 
part of the real axis.

Eq. (11) can be used to expand the Compton amplitude in the in
verse powers of s. If the operator basis is chosen such that an arbitrary 
contraction of the tensor with the nucleon momentum P^
vanishes, then the operator product expansion leads to a power series for 
the forward Compton scattering amplitude with the expansion parameter 
q^q^P^Pt, —д ^ Р 2 ) / ^ ) 2 , which corresponds to expanding dispersion inte
gral (11) in powers of 1/s2 . This relation between the analytic s-moments 
and the structure of the operator product expansion has been found in [10]. 
It should be stressed that the orthogonality requirement of the symmetric 
tensor (P\O l t l ...l in \P') to the nucleon momentum P^ determines its Lorentz 
structure unambiguously.
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3 Target mass effects
A physical structure function W (x, Q2) it is convenient to represent, as 
in [11, 12], in the form

W (X ,Q 2) = W0 (X ,Q 2) + W(X ,Q 2). (12).

The function Wo(z, Q2) for any physical structure function is expressed via 
the corresponding parton distribution F(x) as follows

W0 (x,Q 2) =
> (/? _ )- F ( l ) ,

* F((3_) — F(J3+ ) ,
if 0 x < x , 
if x x < 1.

Here _______
„ x \ / l  +  4er2 „ „ , „ / 1 — x2

~ 7ТЙ---TT~T2~2 1 +  2б ±  2бл/ ---2
1 +  4бХ2 +  4е2ж2 V 1 +  4бі2

and
1 

х = , — . -  .
V l +  4c2

The function w(x, Q2) can be represent in the form

(13)

(14)

(15)

W(Z,Q2)=  [  d/3e[f((3-,x,€)]</>(J3-,x,e), (16)
Jo

where
/(/3; x, e) =  ^У 1 +  4^ -  1 -  2e(l -  0  -  V2) • (17)

s
For the scalar quark currents function ф(0;х,Ф) in Eq. (16) is [11]

ф(@; x, e) =  0(T ) 0(1 -  r) ^ = j  [TFF(^F)] , (18)

where
r  = T (0-, x, e) =  -  ( — v^l +  4e — 1 

e \ s (19)

The analysis of combination of the physical structure functions F ^x, Q2) 
and F2 (x,Q 2) which is taken in the form

2x (2WT  -  WL ) = б х ^  -  (1 +  4ж2б) F2 (20)
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is similar to the scalar case.
The ^-scaling method leads to the expression

2x (2WT  -  WL ) = - = =  Ш  . (21)
V 1 +  4x2e

The defect of this equation is that there is a mismatch at x =  1. The 
combination physical structure functions in the left hand side of Eq. (21) 
vanishes at x  =  1, at the same time the right hand side does not because 
at x  =  1 the variable £ remains less than unity. Within the method based 
on the JLD representation it is possible to get a correct result which obeys 
the spectral condition. In this case we have to substitute into Eqs. (13) 
and (18) instead F(x) the function 2x2F(x).

For the structure function F2 = F ^  +  /2 the function F ^  is restored 
via the parton distribution as in (13). For the function /2(2, Q2) we have

=  3 J  Фгф^г) J  dyyF (y) + J  dzф2 (z)F (z)

+ S  + ф4 № &  +  ^ ) F " ( 4  .
lb IZ-

Here z-  < 1 and is defined as z - 2 =  r(/3_; x, e). The variable 77 is
x

?7 =  —, ...— •
V1 +  4er2

(22)

(23)

The functions ф̂  are

фі(г) =  1 — 6 ( — I +  15 I — I , 
\ z  J \ z  J

=  [-Зт74е428 +  2T72C2 (1 -  10T?2€)Z6

+(1 + 12т/2е -  90T7462) ?  +  2т?2 (13 -  347/2e)z2 +  5т?4] ,
^3(2) =  1 [-3?y4e4z8 + 6т/2е2 (3 -  2т72б)г6

+(1 +  30т/4е2 +  52т72е)24 -  6т?2 (1 -  14т72б)г2 +  45т/4] , 
фі{г) =  6т/4б428 — 4т/2е2 (1 — 8?72e)z6

-  2(1 + 8т/2е -  30T?462 )Z4 -  12т/2 (1 -  47/2e)z2 +  14т?4 ,

Ф№) = z5
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with
/3 = ^ 1  + ez2) .

For the structure function xF3 represented in the form xF3 (x, Q2) = 
ІУз°\х, Q2) + w3 (x, Q2) -we have

w3 (x, Q2) =  Г  d0 x, 6)] 0(z) e ( \ - z )  Ф3 (Z?; x, e ), (25)
Jo

where

Ф3(/?;х,е) =  |  3 
О (26)

- 3 2 W Y _ А -Л  (^X  Z \ z2 ] I1 z2 I Z \ z2 J
We take the input form of the parton distribution as follows [19] 

xF 3 (x) =  y /x(l —ж)3 . • (27)

Figure 2: Ratios of xF3 structure function with target mass correction to 
the parton distribution for the JLD-method (solid line) and the ̂ -approach 
(dashed curve).

In Fig. 2 we plot ratios of the structure function xF3 to the parton 
distribution (27) for e — 1/2. The solid line corresponds to incorporating 
the target mass effects by using the JLD approach, the dashed curve reflects 
the method of ^-scaling.
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4 Conclusions
We have argued that the approach based on the Jost-Lehmann-Dyson rep
resentation gives the self-consistent method of incorporating the target 
mass dependence into the structure function and does not lead to the con
flict with the spectral condition. The corresponding expressions for the 
physical structure functions Fi, F2 and F3 have been presented.
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