УДК 519.6: 621.74

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ОБРАБОТКИ ИЗОБРАЖЕНИЙ МИКРОСТРУКТУР ЖЕЛЕЗОУГЛЕРОДИСТЫХ СПЛАВОВ

Докт. физ.-мат. наук, проф. ЧИЧКО А. Н., канд. техн. наук ЛИХОУЗОВ С. Г., асп. САЧЕК О. А., докт. техн. наук, проф. СОБОЛЕВ В. Ф., канд. техн. наук ЧИЧКО О. И.

Белорусский национальный технический университет

Известно, что обрабатываемость деталей в значительной степени зависит от микроструктуры и свойств металла. Причем, чем больше количество графита в микроструктуре и крупнее его включения, тем легче деталь обрабатывается резанием [1]. В связи с этим представляет научный интерес установление взаимосвязей между обрабатываемостью чугунов и особенностями микроструктурного строения фаз графита. Как показывает опыт многих исследователей, выявить различие между особенностями микроструктуры серых чугунов, используя традиционные металловедческие методы, основанные на балльных методиках графита, достаточно сложно. Поэтому нужны новые подходы, позволяющие выявить взаимосвязи между характеристиками микроструктуры и свойствами чугунов. Наиболее перспективными методами количественной оценки микроструктур являются методы, основанные на компьютерной обработке изображений, которые находят широкое применение в технических приложениях [2].

Целью настоящего исследования является разработка методики определения характеристик графитной фазы в серых чугунах, позволяющей количественно оценить микроструктуру различных деталей. В качестве исходных данных использованы две группы деталей «коленвал», изготовленные с применением технологий A и D соответственно. Было исследовано по пять образцов каждой группы и по четыре фотографии микроструктуры с каждого образца (всего 40 фотографий). Обрабатываемость деталей, изготовленных по технологии D, была в два раза выше, чем обрабатываемость деталей, изготовленных по технологии A.

В каждом исследуемом изделии выделено характерное сечение, которое подвергалось анализу (рис. 1).

Рис. 1. Схема расположения областей исследованных изображений микроструктур (а) на выбранном сечении (б) отливки «коленвал» (порядок: край → центр)

Как видно из рис. 1, для каждого сечения выделены четыре участка. Участок Φ_1 (фотография 1) расположен на краю выделенного сечения и соответствует области припуска детали. Участок сечения Φ_4 (фотография 4) соответствует центральной области выделенного сечения. Участки Φ_2 и Φ_3 являются промежуточными для выделенного сечения. Использование различных участков позволило увеличить представительность используемой выборки и повысить точность расчета микроструктуры, а также оценить влияние скорости кристаллизации на микроструктуру.

Металлографический анализ исследуемых микроструктур показал (рис. 2), что фактически микроструктуры деталей с различной обрабатываемостью не классифицируются на две группы. Это позволяет сделать вывод о том, что для решения задачи классификации данных микроструктур из серого чугуна необходимо разработать новую методику, отличную от предлагаемой ГОСТом.

Рис. 2. Фотографии микроструктур образцов (×100), изготовленных по технологиям: a - A; 6 - D

В основу развиваемого метода положен алгоритм, позволяющий по изображению микроструктуры определить статистическое распределение характеристик графитной фазы в серых чугунах. Основными шагами алгоритма являются: бинаризация изображения с использованием адаптивного порога, сегментация изображения для выделения включений графита, обработка графитных включений с вычислением их площадей, периметров и расстояний между ними, определение функции статистического распределения перечисленных параметров.

Алгоритм определения площадей и периметров графитных включений представлен ниже.

Шаг 1. Формирование исходного множества Ω^0 на основе изображения микроструктуры серого чугуна

$$\Omega^0 = \{ N_{ij}^0 \in N \},\$$

где N_{ij}^0 – значение яркости цветного изображения в точке с координатами (i, j); i, j – индексы двумерного пространства в интервалах $1 \le i \le L_x$, $1 \le j \le L_y$; L_x , L_y – размеры изображения в пикселях по осям координат X и Y соответственно.

Шаг 2. При помощи функций пороговой обработки с использованием (1) создается полутоновое изображение микроструктуры (множество $\Omega^1 = \{N_{ii}^1 \in R \mid 0 \le N_{ii}^1 \le 1\}$)

$$N_{ij}^{1} = \frac{N_{ij}^{0}}{\max{\{N_{ij}^{0}\}}}.$$
 (1)

Шаг 3. С помощью преобразования (2) изображение трансформируется в вектор длиной *m* бинаризованных изображений $\Omega^2 = \{\Omega_1^2, \Omega_2^2, ..., \Omega_m^2\}$, где $\Omega_k^2 = \{N_{iik}^2\}$, k = 1, m:

$$N_{ijk}^{2} = \begin{cases} -1, \text{ если } N_{ij}^{1} \leq \beta_{k}; \\ 1, \text{ если } N_{ij}^{1} > \beta_{k}, \end{cases}$$
(2)

где $\beta_k \in \{\beta_1, \beta_2, ..., \beta_m\}$ – порог бинаризации.

Шаг 4. Создание бинаризованного изображения микроструктуры из полученного вектора $\Omega^3 = \{N_{ij}^3 | N_{ij}^3 = 0$ или $N_{ij}^3 = 1\} = \Omega_l^2$, где l – индекс вектора параметров α , для которого выполняется условие

$$\mu - \frac{\varepsilon}{2} < \alpha_l < \mu + \frac{\varepsilon}{2}, \tag{3}$$

где
$$\alpha_k = \frac{\sum_{i=1}^{L_x} \sum_{j=1}^{L_y} t_{ij}^k}{L_x L_y - \sum_{i=1}^{L_x} \sum_{j=1}^{L_y} t_{ij}^k}; \quad t_{ij}^k = \begin{cases} 1, \text{ если } N_{ijk}^2 = -1; \\ 0, \text{ если } N_{ijk}^2 = 1, \end{cases}$$

 $k = 1, m; \mu$ – заданное значение; ε – отклонение μ . *Шаг* 5. Формирование множества $\Omega^4 = \{N_{ij}^4 \in N\}$ маркированных пятен (графитных включений), где N_{ij}^4 – номер пятна, которому принадлежит точка с координатами (i, j).

В процессе формирования множества Ω^4 производится распознавание несвязных структур (графитных включений) путем создания множества $Q = \{q_i | i = 1, k\}$, где k – число не-

связных структур, которое увеличивается в процессе распознавания изображения. Формирование множества Ω^4 происходит последовательно для каждой точки (*i*, *j*) при выполнении одного из следующих условий:

• если $N_{i,j}^3 = 0$, то $N_{i,j}^4 = 0$;

• если $N_{i,j}^3 = 1$, то $N_{i,j}^4$ может принимать значения исходя из следующих условий:

а) если
$$\begin{cases} N_{i-1,j}^4 = q_a; \\ N_{i-1,j}^3 = 1; \end{cases} \bigcup \begin{cases} N_{i,j-1}^4 = q_b; \\ N_{i,j-1}^3 = 1, \end{cases}$$
где q_a ,

 $q_b \in Q; \ a, b \in [1, k],$ тогда $N_{i,j}^4 = \min\{q_a, q_b\};$

5) если
$$\begin{cases} N_{i-1,j}^4 = q_a; \\ N_{i-1,j}^3 = 1; \end{cases} \begin{cases} N_{i,j-1}^4 = q_b; \\ N_{i,j-1}^3 = 0, \end{cases}$$
 тогда

 $N_{i,j}^4 = q_a;$

6

в) если
$$\begin{cases} N_{i-1,j}^4 = 0; \\ N_{i-1,j}^3 = 0; \\ \end{bmatrix} \bigcup \begin{cases} N_{i,j-1}^4 = q_b; \\ N_{i,j-1}^3 = 1, \\ \end{bmatrix}$$
тогда

 $N_{i, j}^4 = q_b;$

г) если
$$\begin{cases} N_{i-1,j}^4 = 0; \\ N_{i-1,j}^3 = 0; \end{cases} \begin{cases} N_{i,j-1}^4 = 0; \\ N_{i,j-1}^3 = 0, \end{cases}$$
тогда $k =$

 $= k + 1; N_{i,j}^4 = k.$

Шаг 6. Определение вектора $S = \{s_1, s_2, ..., s_k\}$ площадей пятен (графитных включений) путем последовательного выполнения следующей опе-рации для всех точек с координатами (i, j):

$$s_k = s_k + 1,$$

где $k = N_{ii}^4$.

Шаг 7. Определение вектора $P = \{p_1, p_2, ..., p_k\}$ периметров пятен (графитных включений) путем последовательного выполнения следующей операции для всех точек с координатами (*i*, *j*): если $N_{i-1,j}^4 = 0 \bigcup N_{i+1,j}^4 = 0 \bigcup N_{i,j-1}^4 = 0 \bigcup N_{i,j+1}^4 = 0$, тогда $p_k = p_k + 1$, где $k = N_{ii}^4$.

Шаг 8. Определение вектора $R = \{r_1, r_2, ..., r_n\}$ расстояний между пятнами (графитными включениями) путем последовательного выполнения следующей операции:

• если выполняются условия
$$\begin{cases} N_{i+1,j}^3 = 0; \\ N_{i,j}^3 = 1 \end{cases}$$

и
$$\begin{cases} N_{i+k,j}^3 = 0; \\ N_{i+k+1,j}^3 = 1, \end{cases}$$
, тогда $\eta_k = \eta_k + 1$

Шаг 9. Построение функций распределения значений площадей, периметров пятен и расстояний между ними $H_S(s)$, $H_P(p)$, $H_R(r)$ с шагами дискретизации значений Δq_S , Δq_P , Δq_R .

По данному алгоритму было разработано программное обеспечение, позволяющее автоматизировать процесс обработки микроструктуры серых чугунов. Программа «Автоматизированная обработка микроструктур серого чугуна» («AOM-2 сч») позволяет проводить анализ фотографий нетравленых микроструктур серого чугуна, сделанных на микроскопе с помощью новой методики микроструктурного анализа, позволяющей с высокой степенью точности на количественном уровне определять статистическое распределение графитной фазы в микроструктуре изделия. Программа «AOM-2 сч» для железоуглеродистых сплавов, имеющих в микроструктуре графит, позволяет:

• определять статистические функции распределения значений параметров микроструктуры: площадь, периметр, ширину включений графита, отношение периметра к площади включений, расстояния между включениями, отношение расстояния между включениями графита к ширине включений;

• проводить обработку как отдельного изображения микроструктуры, так и группы изображений микроструктур;

• определять интегральные характеристики для группы изображений микроструктур;

• экспортировать числовую информацию статистической функции распределения в Microsoft Excel.

Результаты компьютерной обработки микроструктур для четырех областей деталей, изготовленных по технологиям A и D, представлены в табл. 1–3. Интегральное статистическое распределение значений площади включений графита $H_S^{\text{сум}}(s)$ рассчитывалось по формуле

$$H_S^{\operatorname{cym}}(s_i) = \sum_{j=1}^4 H_S^j(s_i),$$

где $s_i - i$ -й интервал дискретизации, i = 1,21; $H_s^j - функция распределения значений площа$ дей включений графита для*j*-й области сечениядетали. Аналогично рассчитываются интегральные распределения значений периметров включе-

ний графита и расстояний между ними.

Таблица 1

Расчетные статистические распределения по микроструктурам (использовано 20 микроструктур) площади S, периметра P включений графита и параметра S/P по областям Ф₁-Ф₄ для образцов, изготовленных по технологиям A и D

Значения функции распределения параметров, о. е.										
<i>H</i> ^{сум} (s) (площадь включений графита S) для образцов, изготовленных по технологиям			<i>Н</i> ^{сул} (периметр р графита <i>Р</i>) для об ленных по т	⁴ (<i>p</i>) включени бразцов, и технологи	ій ізготов- ям	<i>H</i> ^{CVM} _{SP} (s/p) (отношение площади к периметру включений графита <i>S</i> / <i>P</i>) для образцов, изготовленных по технологиям				
Интервал, пикс.	Α	D	Интервал, пикс.	Α	D	Интервал, пикс.	A	D		
0–25	12,991	13,495	0–25	12,202	12,739	0–0,25	4,225	4,154		
25-50	1,647	1,906	25-50	2,816	3,206	0,25–0,50	5,858	5,811		
50-75	0,968	1,023	50-75	1,451	1,409	0,50–0,75	2,351	2,568		
75–100	0,720	0,678	75–100	1,023	0,880	0,75–1,00	1,871	2,158		
100-125	0,540	0,497	100–125	0,620	0,492	1,00–1,25	1,487	1,513		
125-150	0,431	0,368	125-150	-150 0,466 0,356 1,25-1,50		1,25–1,50	1,226	1,171		
150-175	0,350	0,301	150-175	0,303	0,219	1,50–1,75	0,915	0,835		
175-200	0,276	0,232	175-200	0 0,241 0,174 1,75–2,00		1,75–2,00	0,682	0,597		
200-225	0,242	0,199	200–225	0,170	0,116	2,00–2,25	0,485	0,413		
225-250	0,209	0,161	225-250	0,135	0,094	2,25–2,50	0,322	0,299		
250-275	0,170	0,130	250-275	0,109	0,060	2,50–2,75	0,212	0,187		
275-300	0,152	0,114	275-300	0,082	0,047	2,75–3,00	0,136	0,121		
300-325	0,127	0,098	300-325	0,065	0,035	3,00–3,25	0,078	0,068		
325-350	0,118	0,089	325-350	0,060	0,034	3,25–3,50	0,053	0,039		
350-375	0,095	0,079	350-375	0,039	0,021	3,50–3,75	0,032	0,021		
375–400	0,081	0,062	375–400	0,035	0,018	3,75–4,00	0,022	0,016		
400-425	0,075	0,051	400-425	0,025	0,015	4,00–4,25	0,012	0,010		
425-450	0,065	0,052	425–450	0,024	0,013	4,25–4,50	0,011	0,008		
450-475	0,062	0,040	450-475	0,017	0,009	4,50–4,75	0,008	0,003		
475-500	0,048	0,040	475–500	0,019	0,007	4,75–5,00	0,003	0,003		
>500	0,629	0,384	>500	0,095	0,052	>5,00	0,006	0,004		

Таблица 2

Расчетные статистические распределения по микроструктурам (использовано 20 микроструктур) площади S, периметра P включений графита и параметра S/P для области Ф₁ (в зоне припуска) для образцов, изготовленных по технологиям A и D

Значения функции распределения параметров, о. е.											
	$H_S^{\text{сум}}(s)$			$H_P^{\operatorname{cym}}(p)$		$H_{SP}^{\text{cym}}(s/p)$					
(пл. графі изготовл	ощадь включе ита S) для обра енных по техн	ний 13цов, 10логиям	(пер графи изготовл	оиметр включе ита <i>P</i>) для обра иенных по техн	ений азцов, юлогиям	(отношение площади к периметру включений графита <i>S/P</i>) для образцов, изготовленных по технологиям					
Интервал, пикс.	A	D	Интервал, пикс.	A	D	Интервал, о. е.	A	D			
1	2	3	4	5	6	7	8	9			
0–25	0,432	3,532	0–25	3,217	3,332	0–0,25	1,133	1,124			
25-50	0,437	0,445	25-50	0,754	0,752	0,25–0,50	1,506	1,522			
50-75	0,237	0,230	50-75	0,341	0,324	0,50–0,75	0,637	0,671			
75–100	0,166	0,154	75–100	0,232	0,196	0,75–1,00	0,473	0,520			
100-125	0,126	0,113	100-125	0,132	0,108	1,00-1,25	0,363	0,338			

125-150 0.097 0.082 125-150 0.095 0,076 1,25-1,50 0,280 0,256 150-175 0,076 0,062 150-175 0,055 0,050 1,50-1,75 0.209 0,187 Окончание табл. 2 1 2 3 4 5 6 7 8 9 175-200 0,037 0.058 0.049 175-200 0.044 1,75-2,00 0.140 0.133 200-225 0,051 0,043 200-225 0,029 0,022 2,00-2,25 0,100 0,089 225-250 0,045 0,035 225-250 0,019 0,022 2,25-2,50 0,063 0,062 250-275 0,037 0,028 250-275 0,019 0,015 2,50-2,75 0,039 0,041 275-300 0,029 0,027 275-300 0,013 0,011 2,75-3,00 0,022 0,024 300-325 300-325 3,00-3,25 0,023 0,018 0,008 0,007 0,014 0,014 325-350 0.024 0.019 325-350 0.007 0,008 3,25-3,50 0,008 0.008 350-375 0,019 0,019 350-375 0,006 0,006 3,50-3,75 0,005 0,004 375-400 375-400 0,013 0,013 0,005 0,005 3,75-4,00 0,004 0,002 400-425 0,012 400-425 0,002 4,00-4,25 0,002 0,013 0,003 0,001 425-450 0,011 0,011 425-450 0,002 0,003 4,25-4,50 0,001 0,001 450-475 450-475 0.003 0,010 0,010 0,003 4,50-4,75 0,001 0,000 475-500 0,007 0,009 475-500 0,002 0,002 4,75-5,00 0,000 0,000

Приборостроение. Информатика

Таблица З

Расчетные параметры для	фотографий	образцов,	, изготовленных по технологиям А	иL)
-------------------------	------------	-----------	----------------------------------	----	---

	Образцы, изготовленные по технологии А					Образцы, изготовленные по технологиям А, D				
Параметр изображения	Φ_1	Φ_2	Φ_3	Φ_4	По всем областям	Φ_1	Φ_2	Φ_3	Φ_4	По всем областям
Число включений графита, о. е.	44643	30242	28347	26663	129895	53081	37779	38145	34788	163 793
Средняя площадь включений, пикс.	54,55	83,30	82,61	80,91	75,34	52,91	62,83	56,27	59,11	57,78
Доля графита, о. е.	0,142	0,128	0,121	0,113	0,13	0,153	0,124	0,111	0,106	0,12

Анализ данных табл. 3 показал, что доля графита для образцов обеих групп уменьшается при перемещении анализируемой области от края к центру, а именно для образцов, изготовленных по технологии D, - от 0,153 до 0,106 (в 1,44 раза), для образцов, изготовленных по технологии A, – от 0,142 до 0,113 (в 1,26 раза). Причем для зоны припуска в образцах, полученных с использованием технологии D, в 1,08 раза больше графита и на 20 % больше графитных включений, чем для зоны припуска образца другой группы. Кроме того, по функциям статистического распределения характеристик включений графита были сделаны выводы о различиях значений площадей и периметров графитных включений для образцов различных групп. Так, в образцах, изготовленных по технологии D, больше включений малой площади (до 75 пикс.) и периметра (до 50 пикс.) на 23 % и 18 % соответственно, тогда как для образцов, полученных с использованием технологии А, больше графитных включений с большей площадью и более развитым периметром, а также средняя площадь включений графита для мик-

роструктур образцов, полученных по технологии *D*, по всем областям изображения на 23 % меньше по сравнению с образцами другой группы.

Кроме того, было проведено исследование влияния положения анализируемой микроструктуры «поверхность – центр» на статистическое распределение графитной фазы в образцах. Известно, что на поверхности образца кристаллизация металла идет с более высокой скоростью в сравнении с кристаллизацией в центре образца. Это связано с различными условиями охлаждения отливки. Так, на рис. 3 представлены интегральные статистические распределения (положения анализируемой области в сечении изделия – Φ_1 , Φ_2 , Φ_3 , Φ_4) значений площадей включений графита в микроструктуре чугуна для отливок «коленвал», изготовленных по технологиям A и D. Как видно из рис. 3, дисперсность графитной фазы на поверхности образцов гораздо больше, чем внутри, т. е. в области припуска и больших скоростей кристаллизации в отливке более развита графитная фаза, по сравнению с областями, находящимися внутри отливки. Аналогичные закономерности установлены при исследовании статистических распределений периметров графитной фазы для изделий обеих групп.

Рис. 3. Интегральные статистические распределения значений площадей включений графита для деталей, изготовленных по технологиям: а − A; б − D, для различных сечений образцов: 1 − Φ₁; 2 − Φ₂; 3 − Φ₃; 4 − Φ₄

В результате оценки относительных расстояний графитных включений друг относительно друга был сделан вывод о том, что для образцов, изготовленных по технологии *D*, характерно более компактное расположение включений графита, тогда как в микроструктурах образцов, полученных с использованием технологии *A*, включения графита более удалены друг относительно друга, что особенно заметно в зоне припуска детали. На рис. 4 представлены результаты сравнения микроструктур двух групп по значениям расстояний между включениями графита по всем фотографиям образца (а) и в зоне припуска (б).

вывод

Разработан алгоритм для обработки микроструктур железоуглеродистых сплавов, содержащих графитную фазу, и заключающийся в определении статистической функции распределения характеристик включений графита в микроструктуре на основе компьютерной обработки изображения, включающий бинаризацию изображения с использованием адаптивного порога, сегментацию изображения для выделения включений графита, обработку графитных включений с вычислением их площадей, периметров и расстояний между ними, определение функции статистического распределения перечисленных параметров. По алгоритму разработано программное обеспечение «AOM-2 сч», с использованием которого по рассчитанным функциям статистического распределения показаны различия в микроструктурах чугунов с различной обрабатываемостью деталей.

Рис. 4. Статистические распределения значений расстояний между включениями графита для всей поверхности сечения (а) и в зоне припуска (б) для микроструктур образцов, изготовленных по технологиям: 1 – A; 2 – D

ЛИТЕРАТУРА

1. Пивоварский, Е. П. Высококачественный чугун; в 2 т. / Е. П. Пивоварский. – М.: Металлургия, 1965. – 1174 с.

2. Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. – М.: Техносфера, 2005. – 1072 с.

3. Лихоузов, С. Г. О методах компьютерной обработки микроструктур сталей с различной дисперсностью перлита / С. Г. Лихоузов, О. А. Сачек, А. Н. Чичко // Информатика и системы управления. – 2010. – № 1. – С. 19–29.

Поступила 02.12.2010