Вместе с тем на данный момент 3D-модели еще не являются главным источником информации об изделии на многих предприятия. Несмотря на то, что, как и многие предприятия, проектируют свои изделия в виде 3D, в итоге на их основе выпускаются конструкторскую документацию — традиционно бумажные чертежи, которые в дальнейшем и являются основным источником информации, в том числе и в производстве. Для полноценного использования 3D-моделей необходимо внедрение единой PDM (Product Data Management — система управления данными об изделии) системы, создание единой информационной среды предприятия, внедрение сквозных САПР для конструкторско-технологической подготовки, разработка и выполнение стандартов предприятия, внесение организационных изменений в существующих бизнес-процессы.

Для того чтобы перейти на цифровую трансформацию, безбумажную технологию следует: перейти на электронно-цифровой макет изделия при выпуске конструкторской документации; перейти на электронный подлинник и последовательный уход от «отвязанных» от модели чертежей, а также их бумажных версий; оснащенность техническими средствами на всех участках жизненного цикла изделия; высокопроизводительные сети; введение обязательного использования расчетных комплексов для всех видов расчетов с использованием 3D-моделей; цифровая симуляция технологического процесса.

Литература

- 1. Единая система конструкторской документации. Виды и комплектность конструкторских документов : ГОСТ 2.102.
- 2. Единая система конструкторской документации. Электронная модель детали: ГОСТ 2.052.
- 3. Кондаков, А. И. САПР технологических процессов : учеб. для студентов высш. учеб. заведений / А. И. Кондаков. М. : Академия, 2007. 272 с.
- 4. Ведмедь, П. Почему внедрение новых технологий PLM происходит медленно? «ПЛМ Урал» / П. Ведмедь, С. П. Щейников. Режим доступа: http://www.uppro.ru/print/library/information systems/management/plmtehnologii.html.
- 5. Щейников, С. П. Системно-ориентированный подход к разработке продукции на базе продуктов Siemens PLM Software.
- 6. Интернет-ресурс: материал из Википедии.

АНАЛИЗ ВЛИЯНИЯ ГЕОМЕТРИИ КРУГЛОГО ПЕРИОДИЧЕСКОГО АРМАТУРНОГО ПРОФИЛЯ НА ДЕФОРМАЦИОННО-КИНЕМАТИЧЕСКИЕ ПАРАМЕТРЫ КОНЦА ПРОКАТКИ

Г. А. Слепнев

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель И. В. Астапенко

Цель работы – провести деформационно-кинематический анализ конца прокатки арматурного профиля в условиях прокатного стана 320 СПЦ-1 ОАО «БМЗ» – управляющая компания холдинга «БМК» для изучения параметров прокатки и совершенствования методики расчета калибров периодического арматурного профиля № 32.

Поставленная цель достигается решением следующих задач:

 – анализ деформационно-кинематических параметров прокатки арматурного профиля № 32 по данным калибровки и телеметрии стана 320;

142 Секция ІІ. Материаловедение и технологии обработки материалов

- проведение аналитического и численного определения параметров прокатки для клетей № 13, 17, 18 по базовому технологическому процессу;
- определение численным экспериментом основных деформационных, кинематических параметров деформации в калибрах исследуемых клетей для уточнения расчетных методик калибровки;
 - анализ результатов и формулирование выводов.

Объектом исследования в работе являются деформационно-кинематические параметры прокатки периодического арматурного профиля № 32 в прокатных клетях № 13, 17, 18 мелкосортного прокатного стана 320 ОАО «Белорусский металлургический завод».

Непрерывный мелкосортный стан 320 предназначен для производства сортового и фасонного проката. Главная линия стана включает в себя черновую группу (8 клетей), промежуточную группу (6 клетей) и чистовую группу (6 клетей) [1].

Калибровка валков в клетях № 13 и 17 круг и овал соответственно, клеть № 18 чистовая, геометрия калибра предназначена для прокатки арматурного профиля № 32 по ГОСТ 34028–2016. Подкатом является полоса овального сечения, выходящая из клети № 12 (рис. 1) [2], [3].

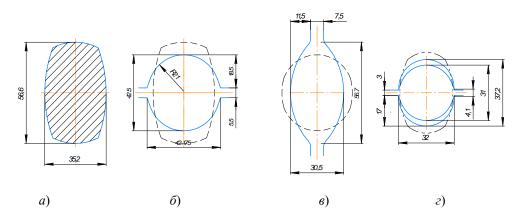


Рис. 1. Геометрия сечения подката и калибров: a — сечение подката из клети № 12; δ , ϵ , ϵ — геометрия калибров в клетях № 13, 17, 18

В табл. 1 представлены размеры валков и прокатываемой полосы, а также параметры прокатки в клетях \mathfrak{N}_{2} 13, 17, 18 в соответствии с действующим технологическим процессом.

 Таблица 1

 Исходные данные телеметрии работы стана и таблицы калибровки

Технологические параметры	Подкат из клети № 12	Клеть № 13	Клеть № 17	Клеть № 18
Диаметр валков (факт.) $D_{\rm B}$, мм	_	293	305	277
Диаметр валка по дну калибра валка (расчет) $D_{\text{д.к.}}$ мм	-	256	282	249
Катающий диаметр валков (расчет) D_{κ} , мм	_	250,43	287,22	253,16

для исследования прокатки арматурного профиля № 32

Окончание табл. 1

Технологические параметры	Подкат из клети № 12	Клеть № 13	Клеть № 17	Клеть № 18
Площадь сечения F_i , мм ²	1730	1380	1120	832
Высота полосы h_i , мм	25,20	42,50	27,50	
Ширина полосы b_i , мм	56,60	50	45,30	№ 32
Число оборотов привода для действующего технологического процесса (факт.) N_i , об/мин	_	577	629	717
Передаточное число к	_	1,620	1,538	1,227
Коэффициент трения (расчет) f	_	0,202	0,202	0,202
Температура полосы на выходе из клети № 12 (расчет) T_0 , °С	999,464			
Скорость движения толкателя $\upsilon_{\text{та}}$, м/с	4,10			

Для корректного определения деформационно-кинематических параметров процесса прокатки периодического арматурного профиля проведены численные эксперименты в программном пакете SimufactForming 16 с наложением на подкат из клети № 12 сетки конечных элементов с размером ячейки 1,4 мм по методике, изложенной в [4].

В результате численного моделирования определили параметры очага деформации (рис. 2) путем построения геометрии и расчета площадей в программном пакете Компас 3D. Результаты аналитического расчета и численного эксперимента представлены в табл. 2.

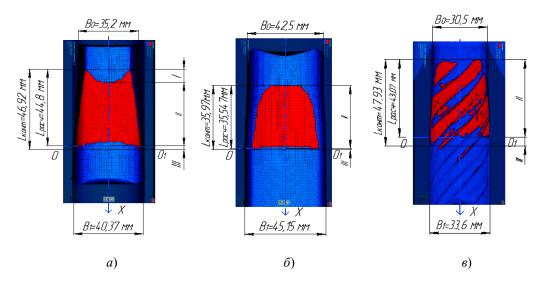


Рис. 2. Контактная поверхность очага деформации в калибрах клетей № 13, 17, 18: O_1 –O – плоскость осей валков; X – ось прокатки; B_0 , B_1 – исходная и конечная ширина полосы; I – зона контакта по выпускам калибра на входе в очаг деформации (ОД); II – зона одновременного контакта по выпуску и дну калибра; III – зона контакта по выпускам калибра на выходе из ОД; $L_{\text{расч}}$ – расчетная длина дуги прокатки; $L_{\text{конт}}$ – длина дуги контакта

Таблица 2

Результаты исследования

Геометрические параметрь	і прокатки полосы	Клеть № 13	Клеть № 17	Клеть № 18
Высота полосы H , мм	до прокатки H_0	56,60	40,37	45,15
	после прокатки H_1	42,50	30,50	31,00
Ширина полосы B , мм	до прокатки B_0	35,20	42,50	30,50
	после прокатки B_1	40,37	45,15	33,60
Длина очага деформации L , мм	$L_{ m pac ext{ u}}$	44,80	35,55	43,07
	$L_{\scriptscriptstyle m KOHT}$	46,92	35,97	47,93
Vrog management of the r	расчет	19,23	15,12	19,26
Угол прокатки α, град	модель	19,28	15,04	18,92
Длина дуги прокатки $L_{\scriptscriptstyle m I\!\! I}$, мм (формула)	расчет	42,02	37,90	42,55
	модель	41,90	37,61	42,85
Площадь контактной	расчет	1266,35	1335,24	1050,95
поверхности F_{κ} , мм ²	модель	1281,55	1075,55	1376,07
Площадь поперечного сече-	расчет	1380	1145	832
ния раската S_n , мм ²	модель	1373,56	1142,13	841,28
Катающий диаметр валков $D_{\kappa i}$, мм	расчет	250,43	287,22	253,16
	модель	249,0679	286,6542	259,5554
Опережение S_{1i}	модель	0,0371	0,0353	0,0423
Отставание S_{0i}	модель	0,1130	0,1018	0,2016
Коэффициент вытяжки λ	расчет	1,254	1,205	1,376
	модель	1,2386	1,1935	1,3799
Момент прокатки M , к H м	расчет	7,76	7,94	7,43
	модель	4,05	3,12	3,62
Усилие прокатки P , кН	расчет	185,36	210,67	175,84
	модель	174,90	157,52	161,52
M W. D.	расчет	288,97	340,18	454,58
Мощность прокатки W , кВт	модель	157,78	127,71	221,48
IC - 1 1	расчет	0,498	0,497	0,496
Коэффициент плеча ү	модель	0,552	0,527	0,523
Плечо прокатки а, мм	модель	23,14	19,81	22,41

В результате проведенных исследований получены следующие результаты:

- 1. Выполнен аналитический расчет для определения деформационно-кинематических и энергосиловых параметров прокатки арматурного профиля № 32 на стане 320.
- 2. Разработана численная модель процесса прокатки в клетях № 13, 17, 18 стана 320 по действующей (базовой) технологии и выполнен анализ результатов моделирования.

- 3. Рассчитан и проверен численным экспериментом оптимизированный скоростной режим, существенно улучшающий силовую нагрузку на клети № 13, 17, 18 стана 320.
- 4. Разработана методика для определения параметров прокатки, которая может универсально применятся и для других схем калибров.
- 5. Для получения боковых полос арматуры потребовалось увеличение межвалкового зазора в клети № 17 с 4,5 до 7,5 мм на 3 мм.

Литература

- 1. Астапенко, И. В. Оборудование прокатных цехов: практикум по выполнению лаборатор. работ для студентов специальности 1-42 01 01 «Металлургическое производство и материалообработка (по направлениям)» направления 1-42 01 01-01 «Металлургическое производство и материалообработка (металлургия)» специализации 1-42 01 01-02 01 «Обработка металлов давлением» днев. и заоч. форм обучения / И. В. Астапенко. Гомель: ГГТУ им. П. О. Сухого, 2015. 47 с.
- 2. Барановский, Д. С. Совершенствование прокатки по «слиттинг-процессу» в контрольном калибре стана 320 ОАО «БМЗ» / Д. С. Барановский, И. В. Астапенко // Исследования и разработки в области машиностроения, энергетики и управления : материалы XXI Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых, Гомель, 22–23 апр. 2021 г. В 2 ч. Ч. 1 / М-во образования Респ. Беларусь, Гомел. гос. техн. ун-т им. П. О. Сухого ; под общ. ред. А. А. Бойко. Гомель : ГГТУ им. П. О. Сухого, 2021. С. 93–97.
- 3. Барановский, Д. С. Конструктивные решения контроля ширины полосы для горячей прокатки по «слиттинг-процессу» / Д. С. Барановский, И. В. Астапенко // Беларусь в современном мире: материалы XIV Междунар. науч. конф. студентов, магистрантов, аспирантов и молодых ученых, Гомель, 13–14 мая 2021 г. / М-во образования Респ. Беларусь, Гомел. гос. техн. ун-т им. П. О. Сухого, Гомел. обл. орг. о-ва «Знание»; под общ. ред. В. В. Кириенко. Гомель: ГГТУ им. П. О. Сухого, 2021. С. 250–253.
- 4. Васильков, Д. М. Исследование параметров очага деформации полосы при прокатке в валках с ящичными калибрами черновой группы клетей стана 370/150 ОАО «БМЗ» / Д. М. Васильков, И. В. Астапенко // Исследования и разработки в области машиностроения, энергетики и управления : материалы XVIII Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых, Гомель, 26–27 апр. 2018 г. / М-во образования Респ. Беларусь, Гомел. гос. техн. ун-т им. П. О. Сухого; под общ. ред. А. А. Бойко. Гомель : ГГТУ им. П. О. Сухого, 2018. С. 178–182.

ИССЛЕДОВАНИЕ РАЗЛИЧНЫХ СТРЕСС-ФАКТОРОВ, ВЛИЯЮЩИХ НА КАЧЕСТВО ПОВЕРХНОСТИ ПРИ ПРОКАТЕ В ЧЕРНОВОЙ ГРУППЕ КЛЕТЕЙ ЗАГОТОВКИ СЕЧЕНИЕМ 250 × 300 MM

И. А. Панковец

OAO «БМЗ – управляющая компания холдинга «БМК», г. Жлобин, Республика Беларусь

Научный руководитель М. Н. Верещагин

За весь период работы стана 370/150 (начиная с октября 2015 г.) при производстве сортового проката в прутках отмечаются дефекты поверхности прокатного происхождения, такие как морщины, вкатанная окалина, деформационная рванина, чешуйчатость и др. Классификация дефектов проводилась соответствии с ГОСТ 21014. В ходе анализа причин образования поверхностных дефектов выявлена вероятная причина — снижение пластичности металла на поверхности тела раската. Для исследования и определения стресс-факторов, потенциально способных привести к снижению пластичности проведены математические эксперименты методом конечных