2020 Математика и механика № 66

УДК 517.9 DOI 10.17223/19988621/66/5 MSC 2020: 35L05, 35C05, 35C07

О.Н. Шабловский

НЕЛИНЕЙНЫЕ БЕГУЩИЕ ВОЛНЫ И «ОТРИЦАТЕЛЬНАЯ ТЕПЛОЁМКОСТЬ» В СРЕДЕ С КОНКУРИРУЮЩИМИ ИСТОЧНИКАМИ

Получены новые точные решения волнового уравнения с нелинейными источниками. Построены уединенные бегущие волны и кинк-решения, формирующиеся при конкуренции двух источников. Определены условия возникновения аномального температурного отклика среды на тепловое воздействие («отрицательная теплоемкость»). Дан пример физической интерпретации одного из решений: вычислена скорость роста кристалла как функция переохлаждения расплава.

Ключевые слова: волновое уравнение; нелинейный источник энергии; температурный отклик среды; переохлажденный расплав.

В современной математической физике важное место занимают волновые уравнения с нелинейными источниками (уравнения Клейна – Гордона). Такие источники позволяют моделировать сложные явления в различных областях естествознания. В данной работе для определенности будем говорить о процессах волнового теплопереноса в системе «среда – источник энергии». Волновые задачи являются важным элементом динамической теории неравновесных состояний вещества [1].

Гиперболическое уравнение теплопроводности, получаемое с помощью вариационных принципов [2, 3] и учитывающее конечную скорость распространения тепловых возмущений, имеет вид

$$c\left(\frac{\partial \tau}{\partial t} + \gamma \frac{\partial^2 \tau}{\partial t^2}\right) = \lambda \frac{\partial^2 \tau}{\partial x^2} + q_{v}, \qquad (1)$$

где t – время; x – декартова координата; $\tau = T - T^0$ есть отклонение температуры T от ее отсчетного значения $T^0 \equiv \mathrm{const}$; c – объемная теплоемкость; λ – коэффициент теплопроводности; γ – время релаксации теплового потока; q_v – мощность внутренних источников и стоков энергии; скорость распространения тепловых возмущений равна $w = (\lambda/c\gamma)^{1/2}$. Физические аспекты обоснования уравнения (1) изложены в [4]. Частным случаем модели (1) является волновое уравнение

$$\frac{\partial^2 \tau}{\partial t^2} = w^2 \frac{\partial^2 \tau}{\partial x^2} + k_{\upsilon} (\tau, x, t), \qquad (2)$$

где $k_{_{\mathrm{U}}}=q_{_{\mathrm{U}}}/(c\gamma)$; c, γ — const. Это уравнение характеризует быстрые процессы, в которых волновой механизм переноса тепла преобладает над диффузионным: $\gamma\partial/\partial t>1$. Основные предпосылки данной работы состоят в следующем:

1. Можно выделить два вида знакопеременных источников $q_{_{\mathbb Q}}=q_{_{\mathbb Q}}(T)$. Пусть $q_{_{\mathbb Q}}(T=T^1)=0$, где T^1 — пороговая температура, при переходе через которую

функция $q_{\scriptscriptstyle U}(T)$ меняет знак. Источник технического происхождения (далее для краткости tech-источник) обладает следующими свойствами: он положителен в области «высоких» температур $T>T^1$, где происходит подвод тепла, и отрицателен в области «низких» температур $T< T^1$, где тепло отводится, например вследствие теплообмена между элементом технического устройства и окружающей средой. Таким образом, $(dq_{\scriptscriptstyle U}/dT)_{T=T^1}>0$.

Источник, типичный для биологической ткани (далее для краткости bioисточник), обладает свойствами, отличающими его от объектов неживой природы [5]. Такой источник выполняет уравновешивающую роль компенсатора: в области «высоких» температур $T\!\!>\!T^1$ идет теплоотвод $q_{\scriptscriptstyle 0}<0$; в области «низких» температур $T\!\!<\!T^1$ происходит тепловыделение $q_{\scriptscriptstyle 0}>0$ в биоткани. Значит, в этом случае наклон функции источника при пороговой температуре отрицателен: $(dq_{\scriptscriptstyle 0}/dT)_{T-T^1}<0$.

2. Неклассическое явление «отрицательной теплоемкости» (ОТ) состоит в том, что подвод/отвод тепла дает снижение/рост температуры. Обзор экспериментальных и теоретических работ по этой проблеме и примеры ОТ в задачах конвекции стратифицированных двухкомпонентных жидкостей в поле силы тяжести даны в [6]. Некоторые нелинейно-волновые аспекты явления ОТ представлены в [7].

Будем рассматривать автомодельные решения волнового уравнения, применяя аргумент типа «бегущая волна»:

$$\tau = \tau(\zeta), \ \zeta = x' - Mt, \ x' = x/w,$$

$$\frac{d^2 \tau}{d\zeta^2} = \frac{k_0}{M^2 - 1},$$
(3)

где M=N/w — тепловое число Маха; N — скорость перемещения волны $\zeta=0$, $x_0=Nt,\ N>0$; $N,\ w$ — const. Процесс «дозвуковой» при $M^2<1$, процесс «сверхзвуковой» при $M^2>1$. Таким образом, переход «дозвук» \leftrightarrow «сверхзвук» означает инверсию знака правой части (3). Предметом исследования является случай, когда

$$k_{\upsilon}(\tau,\zeta) = (M^2 - 1)[f(\tau) - g(\tau,\zeta)], g = \tau Q^2(\zeta), \tag{4}$$

причем $Q^2(\zeta=0)>0,\ Q^2\to 0$ при $\zeta\to\pm\infty$. Далее источник τQ^2 называем сосредоточенным, потому что при всех конечных $\tau(\zeta)$ его воздействие проявляется главным образом в окрестности волны $\zeta=0$. Кроме того, мы рассматриваем пример периодической зависимости $Q^2(\zeta)$ от волновой координаты. Источник $f(\tau)$ нелинеен по температуре и может быть знакопеременным.

Цель работы: 1) построить функции $Q^2(\zeta)$, $f(\tau)$, допускающие точное аналитическое решение волновой задачи; 2) изучить конкурентное взаимодействие сосредоточенного и нелинейного источников (4) и указать примеры существования ОТ.

Алгоритм построения решения

Возьмем за основу дифференциальное уравнение для неизвестной функции $\theta = \theta(\zeta)$:

$$\frac{d^2\theta}{d\zeta^2} = \left[F^2(\zeta) + \frac{dF(\zeta)}{d\zeta} \right] \theta. \tag{5}$$

Здесь $F(\zeta)$ — произвольная функция. Одно из частных решений этого уравнения имеет вид [8]

$$\theta = \tau_0 \exp \left[\int_0^{\zeta} F(\zeta) d\zeta \right], \ \tau_0 \equiv \text{const.}$$
 (6)

Выполним преобразование F = iQ, $\theta = \theta_1 + i\theta_2$ и тогда, выделяя в (5) действительную и мнимую части, получим систему уравнений

$$\frac{d^2\theta_1}{d\zeta^2} = -Q^2\theta_1 - \theta_2 \frac{dQ}{d\zeta}, \quad \frac{d^2\theta_2}{d\zeta^2} = -Q^2\theta_2 + \theta_1 \frac{dQ}{d\zeta}, \tag{7}$$

которой удовлетворяют функции $\theta_1 = \tau_0 \cos J$, $\theta_2 = \tau_0 \sin J$, $dJ/d\zeta = Q$. Очевидно, что здесь $\theta_2 Q = -d\theta_1/d\zeta$, $\theta_1 Q = d\theta_2/d\zeta$. Переобозначим $\theta_1 \rightarrow \tau$ и запишем первое уравнение (7) в виде

$$\frac{d^2\tau}{d\zeta^2} = -\tau Q^2 + \frac{1}{Q} \frac{dQ}{d\zeta} \frac{d\tau}{d\zeta} \,. \tag{8}$$

Аналогичным образом можно поступить с уравнением для θ_2 ; новых результатов это не дает. В уравнении (8) примем связь

$$\frac{1}{Q}\frac{dQ}{d\zeta}\frac{d\tau}{d\zeta} = f(\tau),$$

которая означает переход к источнику вида (4); см. также (3). С учетом решения

$$\tau = \tau_0 \cos J \ , \ dJ/d\zeta = Q \tag{9}$$

получаем $(-\tau_0)\sin J(d^2J/d\zeta^2) = f(\tau)$. Теперь возьмем

$$f(\tau) = (\tau_0^2 - \tau^2)D(\tau). \tag{10}$$

В итоге имеем дифференциальное уравнение для функции $J = J(\zeta)$:

$$\frac{d^2J}{d\zeta^2} = -\tau_0 D \sin J , \quad D = D(\tau = \tau_0 \cos J) . \tag{11}$$

Выбор отдельных частных зависимостей $D(\tau)$ дает возможность получить точные решения уравнения (11). А это значит, что решение (9) будет удовлетворять уравнению (3) с источником (4), (10). Таким образом, в данном классе решений влияние сосредоточенного источника на градиент температуры описывается формулой $(d\tau/d\zeta)^2 = (\tau_0^2 - \tau^2)Q^2$. Конкуренция источников f и g наблюдается там, где эти функции одного знака; на рисунках области конкуренции отмечены звездочкой.

При анализе ОТ-ситуаций рассматриваем температурные интервалы, где конкуренция отсутствует. Кроме того, учитываем, что $\partial \tau/\partial t = -Nd\tau/d\zeta$, N>0. При фиксированном x имеем аномальный температурный отклик среды, если в этой точке $d\tau/d\zeta>0$, т.е. $\partial \tau/\partial t<0$ и $k_0>0$ либо $d\tau/d\zeta<0$ и $k_0<0$. Области, где существует явление ОТ, отмечены на рисунках черным треугольником.

Решения на основе уравнения синус-Гордона

Обсудим варианты, когда (11) можно представить в виде уравнения синус-Гордона, определяющего автомодельное решение $J = J(\zeta)$:

$$\frac{d^2J}{d\zeta^2} = -\tau_0 D_0 \sin BJ \,, \tag{12}$$

где D_0 – положительная постоянная; $B \ge 1$ – целое число. Далее применяем известные частные решения [9] этого уравнения: если $\tau_0 < 0$, то

$$J(\zeta) = (4/B)\operatorname{arctg} E, E = \exp(\zeta\sqrt{-\tau_0 D_0 B});$$
(13)

если $\tau_0 > 0$, то

$$J(\zeta) = (-\pi/B) + (4/B) \operatorname{arctg} E, E = \exp(\zeta \sqrt{\tau_0 D_0 B}).$$
 (14)

Из этих формул легко получаем функцию $Q^2(\zeta)$ сосредоточенного источника. Укажем отдельные примеры точных решений вида (9).

Пусть B=1, $D(\tau)\equiv D_0$, $\tau=\pm\tau_0\left(1-6E^2+E^4\right)\Big/\Big(1+E^2\Big)^2$; здесь верхний и нижний знаки «±», а также выражения $E(\zeta)$ соответствуют (13) и (14). Функции источников такие:

$$f(\tau) = (\tau_0^2 - \tau^2)D_0$$
, $Q^2(\zeta) = \mp 16\tau_0 D_0 E^2 / (1 + E^2)^2 > 0$,

где $Q^2 \to 0$ при $\zeta \to \pm \infty$. Схематическое изображение нелинейного источника показано на рис. 1, a для $\tau_0 < 0$. При $\tau_0 > 0$ решение обладает аналогичными свойствами. В данном случае решение имеет структуру уединенной волны: $\zeta \to \pm \infty$, $\tau \to \tau_0$, $\tau(\zeta=0) = -\tau_0$; выпуклость линии $\tau(\zeta)$ обращена вверх, рис. 1, b. Функция $\tau(\zeta)$ — знакопеременная: $\tau=0$ при $\zeta=\zeta_1$, $\zeta=\zeta_2=-\zeta_1$, где $E_1^2=E^2$ ($\zeta=\zeta_1$) = $3-2\sqrt{2}$, $E_2^2=E^2$ ($\zeta=\zeta_2$) = $3+2\sqrt{2}$. Своеобразие ситуации в том, что именно при $\zeta=0$ достигает максимума функция $Q^2(\zeta)$, и в этой точке обращается в ноль нелинейный источник. Конкуренция источников f>0 и g>0 наблюдается в интервале $[0,-\tau_0)$. Таким образом, формирование уединенной волны происходит под влиянием преобладающего воздействия сосредоточенного источника. После перемены знака функции $\tau(\zeta)$ конкуренция отсутствует (f>0, g<0), и профиль волны выравнивается. Нетрудно видеть, что ОТ-ситуация наблюдается в сверхзвуковом/дозвуковом режиме слева/справа от возвышения волны, рис. 1.

Рис. 1. Решение (9), (12) при B=1, $\tau_0<0$: a — функция нелинейного источника; b — уединенная волна; * — область конкуренции источников; \blacktriangle — область существования «отрицательной теплоемкости»; — — функция источника в сверхзвуковом ($M^2>1$) режиме; — функция источника в дозвуковом ($M^2<1$) режиме

Fig. 1. Solution (9), (12) for B = 1, $\tau_0 < 0$: (a) nonlinear source function; (b) sole wave; (*) the region of source competition; (\blacktriangle) the negative heat capacity region; -- the source function in the supersonic regime; —— the source function in the subsonic regime

Например, в дозвуковом режиме явление ОТ существует в фиксированной точке $x=x^1>\zeta_1>0$ при $t\in \left[0,t^1\right)$, где $t^1=(x^1-\zeta_1)/N$ есть конечное время, в течение которого волна проходит расстояние $x^1-\zeta_1$.

Пусть

$$B = 2, D = 2D_0 \cos J, f(\tau) = 2D_0 \tau \left(\tau_0^2 - \tau^2\right) / \tau_0.$$
 (15)

При $\tau_0 < 0$ решения (9), (13) имеют кинк-структуру: $\tau(\zeta)$ монотонно возрастает слева направо от τ_0 до $(-\tau_0)$, причем $\tau(\zeta=0)=0$, рис. 2. Конкуренция источников отсутствует: f>0, g<0 при $\tau\in(\tau_0,0)$; f<0, g>0 при $\tau\in(0,-\tau_0)$, рис. 2, a. ОТ-ситуация существует при $M^2>1$ в области решения, соответствующей нижней (левой) части кинка; при $M^2<1$ аномальный отклик получаем в верхней (правой) части кинка. В дозвуковом режиме явление ОТ существует на конечном интервале времени $\left[0,t^1\right)$ при каждом $x=x^1\in(0,\infty)$, $t^1=x^1/N$. Отметим еще, что при $M^2>1$ нелинейный источник имеет вид, характерный для биоткани: подвод/отвод тепла происходит в «холодной»/«горячей» температурных областях.

Рис. 2. Решение (9), (12) при B=2, $\tau_0<0$: a — функция нелинейного источника; b — кинк-структура. Обозначения такие же, как на рис. 1 **Fig. 2.** Solution (9), (12) for B=2, $\tau_0<0$: (a) nonlinear source function; (b) kink structure. Notations are the same as for Fig. 1

При $\tau_0>0$ из (9), (14) получаем уединенную волну: $\tau\in(0,\tau_0]$, $\tau(\zeta\to\pm\infty)\to 0$, $\tau(\zeta=0)=\tau_0$. График функции $f(\tau)$ (он здесь не приводится) обращен выпуклостью вверх: имеется конкуренция, f>0, g>0 при $\tau\in(0,\tau_0)$, см. (15). В заключительной части статьи будет дан пример физической интерпретации этого решения: движение фазовой границы кристаллизации переохлажденного расплава.

Пусть B=3, $D=D_0\left(4\cos^2J-1\right)$, $f\left(\tau\right)=D_0\left(\tau_0^2-\tau^2\right)\left[4\left(\tau^2/\tau_0^2\right)-1\right]$. При $\tau_0<0$ решение имеет кинк-структуру $\tau\in (\tau_0,-\tau_0/2)$, причем $\tau(\zeta=0)=\tau_0/2$. Температурный интервал $(\tau_0/2,0)$, на котором происходит конкуренция источников f<0, g<0, располагается между двумя интервалами $(\tau_0,\tau_0/2)$ и $(0,-\tau_0/2)$, где конкуренция отсутствует, рис. 3. ОТ существует в сверхзвуковом и дозвуковом режимах, соответственно в левом и правом интервалах. При $\tau_0>0$ ситуация аналогична случаю B=2: в условиях конкуренции источников f>0, g>0 формируется уединенная волна при $\tau\in \left(\tau_0/2,\tau_0\right]$, $\tau(\zeta\to\pm\infty)\to \tau_0/2$, $\tau(\zeta=0)=\tau_0$. Такие же качественные результаты получаются для B=4, B=5.

Рис. 3. Решение (9), (12) при B=3, $\tau_0<0$: перемежаемость областей с отсутствием и наличием конкуренции источников.

Обозначения такие же, как на рис. 1 **Fig. 3.** Solution (9), (12) for B=3, $\tau_0<0$: alternating regions with and without source competition. Notations are the same as for Fig. 1

Решения на основе двойного уравнения синус-Гордона

В (11) возьмем $D = D_0 + D_1 \tau$, $D_1 > 0$ и получим

$$\frac{d^2J}{d\zeta^2} = -\tau_0 D_0 \sin J - \frac{\tau_0^2 D_1}{2} \sin 2J \ . \tag{16}$$

Воспользуемся известными частными решениями [9] этого двойного уравнения синус-Гордона. Нелинейный источник $f(\tau)$ имеет вид (10).

Если
$$\tau_0^2 D_1^2 > D_0^2$$
, то

$$\tau = \tau_0 \left(1 - S^2 \right) / \left(1 + S^2 \right), \quad S^2 = D_2^2 \operatorname{th}^2 \zeta D_3,$$

$$D_2^2 = \left(\tau_0 D_1 + D_0 \right) / \left(\tau_0 D_1 - D_0 \right) > 1, \quad D_3 = \sqrt{\tau_0^2 D_1^2 - D_0^2} / \left(2\sqrt{D_1} \right),$$

$$Q^2 \left(\zeta \right) = \left(\tau_0 D_1 + D_0 \right)^2 / \left[D_1 \left(\operatorname{ch}^2 \zeta D_3 + D_2^2 \operatorname{sh}^2 \zeta D_3 \right)^2 \right].$$
(17)

Параметры задачи оцениваются следующим образом: 1) $\tau_0>0$, $D_0>0$, $\tau_0D_1>D_0$, $\tau_\infty<0$, $|\tau_\infty|<\tau_0$; 2) $\tau_0<0$, $D_0<0$, $\tau_0D_1< D_0$, $\tau_\infty>0$, $|\tau_0|>\tau_\infty>0$, где $\tau_\infty=\tau(\zeta\to\pm\infty)$. Решение имеет вид уединенной волны, функция $\tau(\zeta)$ — знакопеременная; $\tau(\zeta=0)=\tau_0$. При $\tau_0<0$ имеем $\tau\in[\tau_0,\tau_\infty)$, выпуклость линии $f(\tau){\leq}0$ обращена вниз; при $\tau_0>0$ имеем $\tau\in(\tau_\infty,\tau_0]$, выпуклость линии $f(\tau){\geq}0$ обращена вверх. Условия появления ОТ-ситуации такие же, как для варианта B=1: см. (12) и рис. 1.

Если в (16) $D_0^2 > \tau_0^2 D_1^2$, то решение выглядит так:

$$\tau = \tau_0 \left(1 - S_1^2 \right) / \left(1 + S_1^2 \right), \quad S_1^2 = D_4^2 \operatorname{tg}^2 \zeta D_5,$$

$$D_4^2 = \left(D_0 + \tau_0 D_1 \right) / \left(D_0 - \tau_0 D_1 \right) > 1, \quad D_5 = \sqrt{D_0^2 - \tau_0^2 D_1^2} / \left(2\sqrt{D_1} \right),$$

$$Q^2 \left(\zeta \right) = \left(D_0 + \tau_0 D_1 \right)^2 / \left[D_1 \left(\cos^2 \zeta D_5 + D_2^2 \sin^2 \zeta D_5 \right)^2 \right].$$
(18)

Параметры задачи оцениваются следующим образом: 1) $\tau_0 > 0$, $D_0 > 0$, $D_0 > \tau_0 D_1$; 2) $\tau_0 < 0$, $D_0 < 0$, $D_0 < \tau_0 D_1$. Качественные свойства функции $f(\tau)$ такие же, как для предшествующего решения (17). Решение (18) представляет собой цуг волн. Например, для $\tau_0 > 0$ имеем: $\tau = \tau_0$ при $\zeta D_5 = \pi n_0$; $\tau \rightarrow (-\tau_0)$ при $\zeta D_5 = \pi n_0 \pm (\pi/2)$, где $n_0 = 0, \pm 1, \pm 2, \ldots$ Функция $\tau(\zeta)$ — знакопеременная, рис. 4; $\tau = 0$ при $tg^2 \zeta D_5 = (1/D_4^2) < 1$. Каждая отдельная волна располагается по отношению к аргументу ζD_5 на интервалах $(-\pi/2, \pi/2)$, $(\pi/2, 3\pi/2)$ и т.п. Явление ОТ наблюдается в течение конечного промежутка времени в «холодной» области $\tau \in (-\tau_0, 0)$ на восходящем/нисходящем участках отдельной волны при сверхзвуковом/дозвуковом режиме.

Рис. 4. Решение (18): цуг волн при $\tau_0 > 0$ **Fig. 4.** Solution (18): wave chain for $\tau_0 > 0$

Для $\tau_0 < 0$ график $\tau(\zeta)$ получается из рис. 4 переворотом на 180° вокруг горизонтальной оси. В этом случае имеем ОТ-ситуацию в «горячей» области на нисходящем/восходящем участках отдельной волны при сверхзвуковом/дозвуковом режиме.

B (11) возьмем
$$D = [\cos(J/2) - m]/[\tau_0 \cos(J/2)]$$
 и получим
$$\frac{d^2J}{dr^2} = 2m\sin\frac{J}{2} - \sin J \ .$$

Это уравнение имеет точное решение [10]:

$$J = 4 \arctan u , u = \left[(1 - m)/m \right]^{1/2} / \cos \left(\zeta \sqrt{1 - m} \right), 0 < m < 1.$$
 (19)

В результате находим

$$\tau = \tau_0 \left[1 - \frac{8u^2}{\left(1 + u^2 \right)^2} \right]; \quad f(\tau) = \frac{\left(\tau_0^2 - \tau^2 \right)}{\tau_0} \left[1 - m \left(\frac{2\tau_0}{\left(\tau_0 + \tau \right)} \right)^{1/2} \right]; \tag{20}$$

$$Q^{2}(\zeta) = \frac{16m(1-m)^{2}\sin^{2}(\zeta\sqrt{1-m})}{\left[1 - m\sin^{2}(\zeta\sqrt{1-m})\right]^{2}}.$$
 (21)

Обсудим случай $\tau_0 > 0$. Периодическое решение (19), (20) дает цуг волн, примыкающих друг к другу при $\zeta\sqrt{1-m} = \pi n_0 \pm (\pi/2)$, $u \to \infty$. Каждая отдельная волна обращена в своей центральной части выпуклостью вниз и расположена на интервале вида $\zeta\sqrt{1-m} \in [-\pi/2,\pi/2]$. Зависимость $\tau(\zeta)$ может быть знакоперемен-

ной: она принимает значения от τ_0 до $\tau_0(1+8m^2-8m)$. Размах колебаний функции (21) равен 16m. Зависимость $f(\tau)$ в (20) примечательна тем, что именно в дозвуковом режиме она представляет нелинейный источник, характеризующий биоткань, рис. 5. Значение $m=1/\sqrt{2}$ является пороговым: слева и справа от него различаются знаки величины $f(\tau=0)=\tau_0\left(1-m\sqrt{2}\right)$. При $m\neq 1/\sqrt{2}$ имеется перемежаемость областей с наличием и отсутствием конкуренции; в отличие от рассмотренного выше случая B=3 (см. рис. 3) здесь конкуренция отсутствует на внутреннем температурном интервале, примыкающем к $\tau=0$. ОТ-ситуацию имеем там, где нет конкуренции. Если $m=1/\sqrt{2}$, то конкуренция присутствует во всей области определения решения. Полученные физические результаты нетрудно переформулировать для случая $\tau_0<0$.

Рис. 5. Решение (20): возможные варианты перемежаемости областей с отсутствием и наличием конкуренции источников. Обозначения такие же, как на рис. 1
Fig. 5. Solution (20): possible combinations of alternating regions with and without source competition. Notations are the same as for Fig. 1

Таким образом, решение (20), (21) говорит о том, что в дозвуковом режиме периодический по волновой координате источник τQ^2 действует на фоне нелинейного *bio*-источника и возбуждает цуг волн.

Еще одно точное решение можно получить, выполнив преобразование $\zeta \rightarrow i \zeta$ в формулах (3) и (19) – (21). Эти результаты здесь не приводятся. Отметим только, что получаемая из (21) функция $Q^2(\zeta)$ описывает дважды сосредоточенный источник, потому что она дважды достигает максимум: слева и справа от $\zeta = 0$.

Переменная скорость распространения возмущений

Для волнового уравнения (2) рассмотрим случай переменной «скорости звука»:

$$w^2 = w_0^2 \pm w_1^2(\tau) > 0$$
, $w_1^2 = a_1^2 \tau^{\alpha}$, (22)

$$\alpha$$
, $a_1 - \text{const}$, $\zeta = (x/w_0) - t$, $w_0 = N$,

где α — положительное четное число. Здесь и далее верхний/нижний знаки соответствуют положительной (p)/отрицательной (n) производной $d(w^2)/d\tau$. Уравнение (2) принимает вид

$$d^2\tau/d\zeta^2 = \mp w_0^2 k_{_{\rm N}}/w_1^2 \ . \tag{23}$$

Если $k_{\rm U}=k_{\rm U}^1 \tau^{\alpha} \sin B \tau$; $k_{\rm U}^1$, B — const, то (23) превращается в уравнение синус-Гордона, определяющее бегущие «звуковые» волны $\tau=\tau(\zeta)$, см. формулы (12) — (14). Отметим, что в этом случае источник $k_{\rm U}(\tau)$ колеблется по τ с нарастающей амплитудой — по резонансному типу. Возможны и другие варианты частных зависимостей $k_{\rm U}(\tau)$, позволяющие преобразовать (23) к уравнению с известными точными аналитическими решениями. Изучим два примера, для которых (23) отличается по структуре от уравнения синус-Гордона. В соответствии со знаком производной $d(w^2)/d\tau$ будем говорить о (p) и (n) средах.

Уединенная «звуковая» волна:

$$\tau = \tau_0 / (1 + B_1^2 \zeta^2); \tau_0, B - \text{const}, \tau_0 > 0; \ \tau \in (0, \tau_0];$$

$$k_0^{(p),(n)} = \pm k_1^2 \tau^{2+\alpha} \left[(4\tau/3) - \tau_0 \right] / \tau_0^2, \ k_1^2 = 6a_1^2 B_1^2 / w_0^2.$$
(24)

Здесь a_1^2 – параметр среды; B_1^2 – параметр источника. Источники $k_{\rm U}^{(p),(n)}(\tau)$ – зна-копеременные, и на периферии волны ($\zeta \to \pm \infty$) имеем $\tau \to 0$, $w^2 \to w_0^2$, $k_{\rm U} \to 0$, $(dk_{\rm U}/d\tau) \to 0$. Возвышение волны, т.е. максимум функции $\tau(\zeta)$, формируется в точке $\zeta = 0$, где $\tau(\zeta = 0) = \tau_0 > 0$. Для (p)-среды на возвышении имеем $k_{\rm U}^{(p)} > 0$, $dk_{\rm U}^{(p)}/d\tau > 0$; сам источник обладает tech-свойствами. Для (n)-среды на возвышении имеем $k_{\rm U}^{(n)} < 0$, $dk_{\rm U}^{(n)}/d\tau < 0$; сам источник обладает tech-свойствами. Для tech-свойствами, рис. 6. Таким образом, на возвышении волны для обеих сред имеем tech-свойствами, tech-

$$K(\zeta = 0) = \left| k_{v}^{(p),(n)} \right| \frac{w_{0}^{2}}{w_{1}^{2}} = 2\tau_{0}B_{1}^{2}.$$

В данном примере она не зависит от a_1^2 и определяется шириной температурного интервала τ_0 и параметром источника B_1^2 .

Рис. 6. Нелинейная среда (22), $d(w^2)/d\tau < 0$: объемные источники энергии, действующие в биологической ткани; $-\cdot -\cdot -$ источник, возбуждающий уединенную волну (24); — источник, возбуждающий знакопеременный кинк (25)

Fig. 6. Nonlinear medium (22), $d(w^2)/d\tau < 0$: volumetric energy sources acting in the biological tissue: $-\cdot -\cdot -$ the source of sole wave (24); —— the source of alternating kink (25)

Знакопеременный кинк:

$$\tau = \tau_0 \text{ th } B_1 \zeta ; \tau_0, B_1 - \text{const}, \tau_0 > 0;$$

$$k_0^{(p),(n)} = \pm k_1^2 \tau^{1+\alpha} \left(\tau_0^2 - \tau^2\right) / \tau_0^2 , k_1^2 = 2a_1^2 B_1^2 / w_0^2 , \tau \in (-\tau_0, \tau_0) .$$
(25)

Аналогично только что рассмотренной уединенной волне, здесь для (p)-среды/(n)-среды имеем tech-источник/bio-источник, рис. 6. В центральной точке кинка $\zeta=0$, $\tau=0$, $d\tau/d\zeta=\tau_0 B_1$, $k_{_{\rm O}}^{(p),(n)}=0$, $k_{_{\rm O}}^{(p),(n)}/d\tau=0$. Отметим корреляцию между наклоном функции источника в невозмущенных состояниях $(\zeta \to \pm \infty)$ и наклоном кинка в его центральной точке:

$$\left(\frac{k_{0}^{(p),(n)}}{d\tau}\right)_{\zeta\to\pm\infty} = \mp \frac{4w_{1}^{2}(\tau=\tau_{0})}{\tau_{0}^{2}w_{0}^{2}} \left(\frac{d\tau}{d\zeta}\right)_{\zeta=0}^{2} = \mp \frac{4B_{1}^{2}w_{1}^{2}(\tau=\tau_{0})}{w_{0}^{2}}.$$

Здесь отношение $w_1^2(\tau=\tau_0)/w_0^2$ дает количественную характеристику нелинейных свойств среды в интервале температур $(-\tau_0,\tau_0)$.

Фазовая граница кристаллизации

Обсудим физическую интерпретацию решения (9), (14), (15) при $\tau_0 > 0$. Пусть линия $\zeta = 0$ есть фазовая граница кристаллизации однокомпонентного чистого расплава, переохлажденного до температуры $T_* < T_c$, где T_c — равновесная температура кристаллизации. Применение волновой модели (2) оправдано тем, что по мере увеличения переохлаждения усиливается роль локально-неравновесного теплопереноса, см. [1], [11]. Будем рассматривать правую часть уединенной волны в дозвуковом режиме: $\zeta \ge 0$, N > 0, $M^2 < 1$,

$$T - T^{0} = \tau = 2\tau_{0}E/(1 + E^{2}), E = \exp(\zeta\sqrt{2\tau_{0}D_{0}}), \tau_{0} > 0, D_{0} > 0,$$

$$Q(\zeta) = 2E\sqrt{2\tau_{0}D_{0}}/(1 + E^{2}), \tau \in (0, \tau_{0}],$$

$$k_{v} = k_{v}^{+} + k_{v}^{-},$$

$$k_{v}^{+} = (1 - M^{2})g > 0, k_{v}^{-} = (M^{2} - 1)f < 0,$$

$$f = 2D_{0}\tau(\tau_{0}^{2} - \tau^{2})/\tau_{0}, g = \tau Q^{2} = 2D_{0}\tau^{3}/\tau_{0}.$$
(26)

Возьмем $T^0=T_*$, и тогда $\tau(\zeta\to +\infty)=0$, а переохлаждение расплава равно $\tau(\zeta=0)=T_c-T_*=\tau_0>0$. Параметр D_0 характеризует взаимодействие сосредоточенного источника k_0^+ (выделение теплоты фазового перехода) и теплоотвода k_0^- , обеспечивающего переохлажденное состояние расплава. Укажем размерность этого параметра: $D_0=\left[q_v/\left(T^2c\gamma\right)\right]=\left[1/\left(t^2T\right)\right]$, где $D_0=\left[q/r\right]$, $Q_0=r$ 0 удельный тепловой поток. Ясно, что при таком упрощенном подходе источник $D_0=r$ 1 «размазывает» по $D_0=r$ 2 подробности взаимодействия границы кристаллизации с жидкой фазой. По отношению к координате $D_0=r$ 3 как дробь

$$\Delta x = \tau_0 / |\partial \tau / \partial x|_{\text{max}} = w \tau_0 / |d\tau / d\zeta|_{\text{max}},$$

где знаменатель дроби есть максимальное значение модуля производной $d\tau/d\zeta$ при $\zeta \in [0,\infty)$. Расчеты показывают, что

$$\Delta x = \left(2 + \sqrt{2}\right) w / \left[\left(1 + \sqrt{2}\right) \sqrt{2\tau_0 D_0}\right].$$

Таким образом, баланс энергии на фазовой границе можем записать в виде

$$q_{\rm D}^+(\zeta=0)\Delta x = LN \,, \tag{27}$$

где LN есть тепловой поток, обусловленный выделением кристаллизационного тепла; L — теплота фазового перехода единицы объема вещества. Левая часть формулы (27) — это количественная оценка теплового потока, который создается сосредоточенным источником при $\zeta=0;\ q_{_{\rm U}}^{^+}=k_{_{\rm U}}^{^+}/(c\gamma)$. После аналитических преобразований, основанных на решении (26), из (27) получаем

$$N/w = M = \left(\sqrt{1 + 4\Gamma} - 1\right) / \left(2\sqrt{\Gamma}\right),\tag{28}$$

где $\Gamma=4D_0\lambda^2\tau_0^3/\left(w^4L^2\right)$ — положительный безразмерный параметр. В физическом отношении основной интерес представляет зависимость скорости фазовой границы от переохлаждения: $N=N(\tau_0)$. Известные в литературе (см. [11] и указанную там библиографию) данные о высокоскоростной кристаллизации глубоко переохлажденных (до 300 K) расплавов чистых металлов говорят о том, что функция $N(\tau_0)$ монотонно возрастающая, $dN/d\tau_0>0$, и при не слишком больших переохлаждениях удовлетворяет условию выпуклости: $d^2N/d\tau_0^2>0$. Например, для чистого никеля оба эти свойства выполнены при $0<\tau_0\leq 150$ К. Из формулы (28) ясно, что условие монотонного роста выполняется при всех $\Gamma>0$, а из условия выпуклости следует ограничение $\Gamma\leq 0.06$. Это означает, что для данного решения тепловое число Маха не превосходит 0.23. Числовые расчеты, проведенные на основе этой оценки, показывают, что для никеля формула (26) имеет физический смысл при $\tau_0\leq 57$ К.

Заключение

Для волнового уравнения с источниками построены новые решения типа бегущей волны. Результаты изложены в терминах теории теплопереноса. Рассмотрены два типа нелинейных источников, различающихся характером тепловыделения/теплоотвода в «горячей» и «холодной» температурных областях. Например, источник, характерный для биологической ткани, в отличие от источника технического происхождения, выделяет тепло при низких температурах. Представлены примеры аномального температурного отклика среды: подвод/отвод тепла дает снижение/рост температуры (так называемая «отрицательная теплоемкость»). Дан пример нелинейной среды, допускающей точное аналитическое описание волновой задачи при воздействии источника, который зависит от температуры по резонансному типу: его колебания происходят с нарастающей амплитудой. Для задачи о фазовой границе кристаллизации переохлажденного расплава получена физически содержательная зависимость скорости роста кристалла от переохлаждения.

ЛИТЕРАТУРА

- Jou D., Casas-Vazquez J., Lebon J. Extended Irreversible Thermodynamics. Springer-Verlag, 2001. 486 p.
- Глазунов Ю. Т. Вариационный принцип явлений взаимосвязанного тепло- и массопереноса, учитывающий конечную скорость распространения возмущений // Инженернофизический журнал. 1981. Т. 40. № 1. С. 134–138.
- 3. *Яворский Н.И*. Вариационный принцип для вязкой теплопроводной жидкости с релаксацией // Известия АН СССР. Механика жидкости и газа. 1986. № 3. С. 3–10.
- 4. *Никитенко Н.И*. Проблемы радиационной теории тепло- и массопереноса в твердых и жидких средах // Инженерно-физический журнал. 2000. Т. 73. № 4. С. 851–859.
- 5. *Pennes H. H.* Analysis of tissue and arterial blood temperature in the resting human forearm // J. Appl. Phisiol. 1948. V. 1. P. 93–122.
- 6. *Ингель Л.Х.* «Отрицательная теплоемкость» стратифицированных жидкостей // УФН. 2002. Т. 172. № 6. С. 691–699.
- 7. *Шабловский О.Н.* «Отрицательная теплоемкость» в задачах нелинейной динамики волн // Фундаментальные физико-математические проблемы и моделирование технико-технологических систем. Вып. 16. М.: Янус-К, 2014. С. 78–89.
- 8. *Ельшин М.И.* К проблеме колебаний линейного дифференциального уравнения второго порядка // Доклады АН СССР. 1938. Т. 18. № 3. С. 141–145.
- 9. *Полянин А.Д.*, *Зайцев В.Ф.* Справочник по нелинейным уравнениям математической физики: точные решения. М.: Физматлит, 2002. 432 с.
- Шабловский О.Н. Точные решения волновых уравнений с нелинейными источниками // Фундаментальные физико-математические проблемы и моделирование технико-технологических систем. Вып. 14. М.: Янус-К, 2011. С. 382–391.
- 11. Herlach D., Galenko P., Holland-Moritz D. Metastable solids from undercooled melts. Pergamon; Elsevier, 2007. 432 p.

Статья поступила 24.10.2018 г.

Shablovskii O.N. (2020) NONLINEAR WAVES AND "NEGATIVE HEAT CAPACITY" IN A MEDIUM WITH COMPETITIVE SOURCES. *Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika* [Tomsk State University Journal of Mathematics and Mechanics]. 66. pp. 64–76

DOI 10.17223/19988621/66/5

Keywords: wave equation; nonlinear energy source; temperature response of the medium; undercooled melt.

For a wave equation with sources, new running-wave type solutions are built. The results are expressed in terms of the heat transfer theory. We study two types of alternating volume energy sources q_v with a nonlinear temperature dependence T. Let $q_v(T=T^1)=0$ where T^1 is the temperature of the source sign change. The source is positive at $T > T^1$ (heat input) and negative at $T < T^1$ (heat output) when is has technical origin. A source of biological origin differs from technical ones. It serves as a compensator: at $T > T^1$ it takes the heat in; at $T < T^1$, it gives the heat out. Three types of analytical solutions are obtained: the sole wave, the kink structure, and the wave chain. Subsonic and supersonic wave processes are studied with respect to the rate of heat perturbations. The examples for a non-classical phenomenon of "negative heat capacity" are given when heat input/output leads to a temperature decrease/increase. We have considered a nonlinear medium liable to an exact analytical description of a wave problem with a having a resonance type of the temperature dependence: its oscillations have a crescent amplitude. As an example of physical interpretation for one solution, the rate of crystal growth is calculated as a function of the melt undercooling.

AMS 2020 Mathematical Subject Classification: 35L05, 35C05, 35C07

Oleg N. SHABLOVSKII (Doctor of Physics and Mathematics, Prof., Pavel Sukhoi State Technical University of Gomel, Republic of Belarus). E-mail: shablovsky-on@yandex.ru

REFERENCES

- Jou D., Casas-Vazquez J., Lebon J. (2001) Extended Irreversible Thermodynamics. Springer-Verlag.
- Glazunov Yu.T. (1981) Variatsionnyy printsip yavleniy vzaimosvyazannogo teplo- i massoperenosa uchityvayuschiy konechnuyu skorost' rasprostraneniya vozmushcheniy [Variation principle for the phenomena of interconnected heat and mass transfer with account of finite velocity of perturbation propagation]. *Inzhenerno-Fizicheskiy Zhurnal Engineering-Physical Journal*. 40(1). pp. 134–138.
- 3. Yavorskii N.I. (1986) Variational principle for a viscous heat-conducting liquid with relaxation. *Fluid Dynamics*. 21(3). pp. 338–345.
- Nikitenko N.I. (2000) Problemy radiatsionnoy teorii teplo- i massoperenosa v tverdyh i zhidkikh sredakh [Problems of radiation theory of heat and mass transfer in solid and liquid media]. *Inzhenerno-Fizicheskiy Zhurnal – Engineering-Physical Journal*. 73(4). pp. 851–859.
- 5. Pennes H.H. (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. *Journal of Applied Physiology*. 1(2). pp. 93–122.
- Ingel' L.Kh. (2002) "Negative heat capacity" in stratified fluids. *Physics-Uspekhi*. 45(6). pp. 637–644.
- Shablovskii O.N. (2014) "Otritsatelnaya teployemkost" v zadachakh nelineynoy dinamiki voln ["Negative heat capacity" in problems of nonlinear wave dynamics]. Fundamental'nye Fiziko-Matematicheskie Problemy i Modelirovanie Tekhniko-Tekhnologicheskikh System – Fundamental Physical and Mathematical Problems and Modeling of Technical and Technological Systems. Vol. 16. Moscow: Janus-K. pp. 78–89.
- 8. Yelshin M.I. (1938) *K probleme kolebaniy lineynogo-differentsialnogo uravneniya vtorogo poryadka* [To the oscillation problem of a linear second-order differential equation]. *Doklady AN SSSR Proceedings of the USSR Academy of Sciences*. 18(3). pp. 141–145.
- 9. Polyanin A.D., Zaytsev V.F. (2002) *Spravochnik po nelineynym uravneniyam matematicheskoy fiziki: tochnye resheniya* [Handbook on nonlinear equations of mathematical physics: exact solutions]. Moscow: Fizmatlit.
- 10. Shablovskii O.N. (2011) Tochnye resheniya volnovyh uravneniy s nelineynymi istochnikami [Exact solutions of wave equations with nonlinear sources]. Fundamental'nye Fiziko-Matematicheskie Problemy i Modelirovanie Tekhniko-Tekhnologicheskikh System Fundamental Physical and Mathematical Problems and Modeling of Technical and Technological Systems. Vol. 14. Moscow: Janus-K. pp. 382–391.
- 11. Herlach D., Galenko P., Holland-Moritz D. (2007) *Metastable Solids from Undercooled Melts*. Pergamon; Elsevier.

Received: October 24, 2018