УДК 621.313.333

ИССЛЕДОВАНИЕ ДИНАМИКИ ВЫБЕГА СИНХРОННЫХ ДВИГАТЕЛЕЙ С УЧЕТОМ ХАРАКТЕРИСТИК ПРИВОДНЫХ МЕХАНИЗМОВ

Ю.В. КРЫШНЕВ

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Эффективным способом сохранения бесперебойной работы предприятий с непрерывным технологическим процессом при нарушениях электроснабжения является обеспечение быстродействующего самозапуска синхронных двигателей (СД). К промышленным объектам, на которых перерыв электроснабжения может повлечь за собой частичный или полный срыв сложных технологических процессов (а как следствие, выпуск массового брака или длительный последующий простой установок и механизмов), можно отнести технологические комплексы химических и нефтехимических заводов, предприятия добычи и транспорта нефти, сетевые насосы городских котельных, компрессорные станции промышленных предприятий и др.

Обеспечение самозапуска высоковольтной электродвигательной нагрузки требует комплексного решения вопросов, связанных с работой электродвигателей и их систем управления, а также учета характера изменения момента сопротивления приводных механизмов [2, 3, 6, 7].

Указанный системный подход в алгоритме самозапуска СД предусматривает разработку устройства быстродействующего ABP синхронных двигателей, адаптирующегося к инерционным механическим свойствам агрегата при его произвольной загрузке.

В случаях нарушения связи СД с питающей сетью (неоперативное отключение вводного выключателя либо КЗ со стороны питающей линии) происходит выбег СД с приводным механизмом – плавное снижение угловой скорости агрегата. Выбег может быть групповым, когда к общим шинам, потерявшим питание, подключено несколько СД. За счет обмена электромагнитной энергией между двигателями группы вплоть до момента времени, когда амплитуда питающего напряжения снизится до $0,4U_{ном}$, группу двигателей можно рассматривать как один эквивалентный синхронный двигатель (ЭСД) с обобщенными динамическими параметрами [1, 2]. Метод расчета режима группового выбега основан на допущении, что результирующий электромагнитный вращающий момент ЭСД равен нулю, а момент сопротивления обобщенного механизма рассчитывается по формуле:

$$m_c = m_{mp} + \left(\mathbf{k}_{\rm sr} - m_{mp}\right)\omega^{\gamma},\tag{1}$$

где m_{mp} – начальный момент сопротивления обобщенного механизма, в отн. ед.; k_{32} – коэффициент загрузки обобщенного механизма по активной мощности; ω – средняя угловая скорость группы двигателей, в отн. ед. синхронной угловой скорости СД; γ – показатель степени, характеризующий обобщенный механизм.

Показатель степени у в формуле (1), в зависимости от типа механизма, изменяется от 0 до 6 [2, 7].

Изменение угловой скорости ЭСД на этапе выбега описывается уравнением движения ротора:

$$-m_c = -\tau_j \frac{ds}{dt},\tag{2}$$

где τ_j – эквивалентная электромеханическая постоянная времени системы «ЭСД – обобщенный приводной механизм»; *s* – скольжение ЭСД.

Решая (2) для разных *у*, можно определить связь между угловой скоростью выбега агрегата того или иного типа и временем перерыва питания ЭСД (см. табл. 1).

Таблица 1

Связь угловой скорости выбега механизмов с временем перерыва питания ЭСД

Тип механизма, практические примеры	Зависимость <i>t</i> (с) от <i>w</i> (отн. ед.)					
$\gamma = 0$ (транспортеры, дробилки, шаровые мельницы, поршневые компрессоры)	$t = \frac{\tau_j}{k_{32}} (1 - \omega)$					
	$t = \frac{\tau_{j}}{k_{sc} - m_{mp}} \ln \frac{k_{sc}}{(k_{sc} - m_{mp}) \omega + m_{mp}}$					
$\gamma = 2$ (центробежные насосы с очень низким статическим противо- давлением на выходе, турбокомпрессоры, газодувки, вентиля- торы, дымососы)	$t = \frac{\tau_j}{k_2(k_{se} - m_{mp})} \left(\operatorname{arctg} \frac{1}{k_2} - \operatorname{arctg} \frac{\omega}{k_2} \right); \qquad k_2 = \left(\frac{m_{mp}}{k_{sr} - m_{mp}} \right)^{\frac{1}{2}}$					
$\gamma = 3$ (конденсатные насосы; центробежные насосы с низким ста- тическим противодав- лением на выходе)	$t = \frac{\tau_j}{k_{sc} - m_{mp}} \left(\frac{1}{6k_3^2} \ln \frac{(1 + k_3)^2 (\omega^2 - \omega k_3 + k_3^2)}{(\omega + k_3)^2 (1 - k_3 + k_3^2)} + \frac{1}{k_3^2 \sqrt{3}} \left(\arctan \frac{\overline{2} - k_3}{k_3 \sqrt{3}} - \arctan \frac{2\omega - k_3}{k_3 \sqrt{3}} \right) \right);$ $k_3 = \left(\frac{m_{mp}}{k_{sr} - m_{mp}} \right)^{\frac{1}{3}}$					
$\gamma = 4$ (центробежные насосы со средним статическим противо- давлением на выходе; питательные насосы)	$t = \frac{\tau_{j}}{k_{sc} - m_{mp}} \frac{1}{2\sqrt{2}k_{4}^{2}} \times \left(\frac{1}{2} \ln \frac{(1 + k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} + \omega k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 + k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} + \omega k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} - k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} - k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} - k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} - k_{4}^{2})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4})}{(1 - k_{4}\sqrt{2} - k_{4})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4})}{(1 - k_{4}\sqrt{2} - k_{4})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4})}{(1 - k_{4}\sqrt{2} - k_{4})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4})}{(1 - k_{4}\sqrt{2} - k_{4})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4}\sqrt{2})}{(1 - k_{4}\sqrt{2} - k_{4})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4})}{(1 - k_{4}\sqrt{2} - k_{4})} + \frac{1}{2} \ln \frac{(1 - k_{4}\sqrt{2} + k_{4})}{(1 - k_{4}\sqrt{2} - k_{4}$					

Продолжение табл. 1

Тип механизма, практические примеры	Зависимость <i>t</i> (с) от <i>w</i> (отн. ед.)				
$\gamma = 4$ (центробежные насосы со средним статическим противо- давлением на выходе; питательные насосы)	$t = \frac{\tau_{j}}{k_{sc} - m_{mp}} \frac{1}{2\sqrt{2}k_{4}^{2}} \times \left(\frac{1}{2} \ln \frac{(1 + k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} - \omega k_{4}\sqrt{2} + k_{4}^{2})}{(1 - k_{4}\sqrt{2} + k_{4}^{2})(\omega^{2} + \omega k_{4}\sqrt{2} + k_{4}^{2})} + \right) \\ \times \left(+ \arctan \frac{\sqrt{2} + k_{4}}{k_{4}} + \arctan \frac{\sqrt{2} - k_{4}}{k_{4}} - \frac{\sqrt{2} - $				
γ = 5 (центробежные насосы с высоким ста- тическим противодав- лением на выходе; пи- тательные насосы)	$t = \frac{\tau_{j}}{k_{sc} - m_{mp}} \left\{ \begin{array}{l} \ln \left(\frac{1+k_{5}}{\omega+k_{5}} \right)^{\frac{1}{5k_{5}^{4}}} \left(\frac{\alpha_{1}}{2\omega^{2} + \omega k_{5}(\sqrt{5} - 1) + 2k_{5}^{2}} \right)^{\alpha_{2}} \times \\ \times \left(\frac{2\omega^{2} - \omega k_{5}(\sqrt{5} + 1) + 2k_{5}^{2}}{\alpha_{3}} \right)^{\alpha_{4}} \end{array} \right\} + \left\{ \begin{array}{l} + \alpha_{5} \left(\alpha_{6} - \arctan \frac{4\omega + k_{5}(\sqrt{5} - 1)}{k_{5}\sqrt{10 + 2\sqrt{5}}} \right)^{\alpha_{4}} \\ + \alpha_{7} \left(\alpha_{8} - \arctan \frac{4\omega - k_{5}(\sqrt{5} + 1)}{k_{5}\sqrt{10 - 2\sqrt{5}}} \right)^{\alpha_{4}} \end{array} \right\} + \left\{ \begin{array}{l} + \alpha_{7} \left(\alpha_{8} - \arctan \frac{4\omega - k_{5}(\sqrt{5} + 1)}{k_{5}\sqrt{10 - 2\sqrt{5}}} \right)^{\alpha_{4}} \\ + \alpha_{7} \left(\alpha_{8} - \arctan \frac{4\omega - k_{5}(\sqrt{5} + 1)}{k_{5}\sqrt{10 - 2\sqrt{5}}} \right)^{\alpha_{5}} \end{array} \right\} $				
	$k_{5} = \left(\frac{m_{mp}}{k_{3r} - m_{mp}}\right)^{\frac{1}{5}}; \alpha_{1} = 2 + k_{5}\left(\sqrt{5} - 1\right) + 2k_{5}^{2};$ $\alpha_{2} = \frac{\sqrt{5} - 1}{20k_{5}^{4}}; \alpha_{3} = 2 - k_{5}\left(\sqrt{5} + 1\right) + 2k_{5}^{2}; \alpha_{4} = \frac{\sqrt{5} + 1}{20k_{5}^{4}};$ $\alpha_{5} = \frac{\sqrt{5} + 1}{k_{5}^{4}\sqrt{10(5 + \sqrt{5})}}; \alpha_{6} = \arctan \frac{4 + k_{5}(\sqrt{5} - 1)}{k_{5}\sqrt{10 + 2\sqrt{5}}};$ $\alpha_{7} = \frac{\sqrt{5} - 1}{k_{5}^{4}\sqrt{10(5 - \sqrt{5})}}; \alpha_{8} = \arctan \frac{4 - k_{5}(\sqrt{5} + 1)}{k_{5}\sqrt{10 - 2\sqrt{5}}}$				

Окончание табл. 1

Тип механизма, практические примеры	Зависимость <i>t</i> (с) от <i>w</i> (отн. ед.)		
γ = 6 (центробежные насосы с очень высо- ким статическим про- тиводавлением на вы- ходе; питательные на- сосы)	$t = \frac{\tau_{j}}{k_{se} - m_{mp}} \begin{pmatrix} \ln\left(\frac{(1 + k_{6}\sqrt{3} + k_{6}^{2})(\omega^{2} - \omega k_{6}\sqrt{3} + k_{6}^{2})}{(1 - k_{6}\sqrt{3} + k_{6}^{2})(\omega^{2} + \omega k_{6}\sqrt{3} + k_{6}^{2})}\right)^{\frac{1}{4\sqrt{3}k_{6}^{5}}} + \\ + \frac{1}{6k_{6}^{5}}(2 \arctan \frac{1}{k_{6}} + \arctan \frac{2 - k_{6}\sqrt{3}}{k_{6}} + \\ + \arctan \frac{2 + k_{6}\sqrt{3}}{k_{6}} - 2 \arctan \frac{\omega}{k_{6}} - \\ - \arctan \frac{2\omega - k_{6}\sqrt{3}}{k_{6}} - \arctan \frac{2\omega + k_{6}\sqrt{3}}{k_{6}} \end{pmatrix}; \\ k_{6} = \left(\frac{m_{mp}}{k_{m} - m_{mn}}\right)^{\frac{1}{6}}$		

Способ адаптивного управления быстродействующим самозапуском синхронной двигательной нагрузки по угловому ускорению [4, 5] предусматривает определение для каждого типа приводного механизма аналитической зависимости угла выбега от времени $\delta(t)$. Угол δ отыскивается в параметрической зависимости от величины начального углового ускорения агрегата ε_0 , измеряемой быстродействующим датчиком потери питания СД.

Например, для широко распространенного в промышленности вентиляторного типа приводных механизмов ($\gamma = 2$) угловая скорость агрегата в абсолютных единицах будет определяться по выражению:

$$\omega(t) = \omega_0 \left(\frac{1 - \sqrt{\frac{m'_{mp}}{1 - m'_{mp}}} tg \frac{t}{\tau_j^{"}}}{1 + \sqrt{\frac{1 - m'_{mp}}{m'_{mp}}} tg \frac{t}{\tau_j^{"}}} \right),$$
(3)

где $m'_{mp} = \frac{m_{mp}}{k_{32}}$ – относительный начальный момент сопротивления механизма;

$$\tau''_{j} = \frac{\tau_{j}}{k_{32}\sqrt{m'_{mp}(1-m'_{mp})}}$$
 – электромеханическая постоянная времени агрегата с $\gamma = 2$.

Угол выбега механизма определяется как угол рассогласования между векторами напряжения сети U_c и ЭДС группы выбегающих двигателей $E_{\partial \theta}$:

$$\delta(t) = \omega_0 t - \int \omega(t) dt = \omega_0 t - \omega_0 \tau_j^{"} \sqrt{\frac{m'_{mp}}{1 - m'_{mp}}} \ln\left(\cos\frac{t}{\tau_j^{"}} + \sqrt{\frac{1 - m'_{mp}}{m'_{mp}}}\sin\frac{t}{\tau_j^{"}}\right) + \delta_0.$$
(4)

Переключение на резервный источник питания необходимо производить в моменты времени, когда угол δ между векторами U_c и $E_{\partial \theta}$ равен [4, 5]: 1) 0°...105° – опережающее АВР (ОАВР);

2) 261°... 465° – синфазное ABP (САВР; угол 360° соответствует синфазной сходимости векторов U_c и $E_{\partial s}$ и минимальному броску тока включения).

Начальное угловое ускорение выбега (рад/с) определяется как производная угловой скорости агрегата в момент времени t = 0:

$$\varepsilon_{0} = \omega'(t)\Big|_{t=0} = \omega_{0} \frac{k_{se}}{\tau_{j}} = \frac{\omega_{0}}{\tau_{j}^{"} \sqrt{m'_{mp}(1 - m'_{mp})}}.$$
(5)

С учетом (5) и принимая $m'_{mp} = 0,1, \omega_0 = 314$ рад/с и $\delta_0 = 0, (4)$ можно представить в виде:

$$\delta(t) = 2\pi \bigg(50t - \frac{17455}{\varepsilon_0} \ln(\cos 0,000955 \varepsilon_0 t + 3\sin 0,000955 \varepsilon_0 t) \bigg).$$

Таким образом, измеренное датчиком потери питания СД значение ε_0 может быть использовано для прогнозирования моментов времени ОАВР и САВР.

Отметим, что для механизмов с $\gamma > 2$ аналитические зависимости $\omega(t)$ могут приближенно быть получены путем разложения функций *arctg* и ln из правой части уравнений табл. 1 в ряд Тейлора в окрестности точки $\omega_0 = 314$ рад/с.

В случае, когда относительный начальный момент сопротивления пренебрежимо мал, решение дифференциальных уравнений (2) упрощается, и для всех γ могут быть получены точные аналитические зависимости $\omega(t)$ и $\delta(t)$ (см. табл. 2, рис. 1).

Таблица 2

Аналитические зависимости $\omega(t)$ и $\delta(t)$ при $m'_{mp} = 0$

Тип механиз- ма	Закон изменения угловой скорости ω(t), рад/с	Закон изменения угла выбега δ(t), рад
$\gamma = 0$	$\omega(t) = \omega_0 \left(1 - \frac{k_{32}}{\tau_j} t \right)$	$\delta(t) = \omega_0 \frac{k_{s}}{2\tau_j} t^2 + \delta_0$
$\gamma = 1$	$\omega(t) = \omega_0 e^{-\frac{k_{\infty}t}{\tau_j}t}$	$\delta(t) = \omega_0 t + \omega_0 \frac{\tau_j}{k_{32}} \left(e^{-\frac{k_{32}}{\tau_j}t} - 1 \right) + \delta_0$
<i>γ</i> = 2	$\omega(t) = \frac{\omega_0}{1 + \frac{k_{32}}{\tau_j}t}$	$\delta(t) = \omega_0 t - \omega_0 \frac{\tau_j}{k_{s2}} \ln\left(1 + \frac{k_{s2}}{\tau_j}t\right) + \delta_0$
$\gamma = 3$	$\omega(t) = \frac{\omega_0}{\left(1 + 2\frac{k_{s2}}{\tau_j}t\right)^{\frac{1}{2}}}$	$\delta(t) = \omega_0 t + \omega_0 \frac{\tau_j}{k_{32}} \left(1 - \left(1 + 2 \frac{k_{32}}{\tau_j} t \right)^{\frac{1}{2}} \right) + \delta_0$
$\gamma = 4$	$\omega(t) = \frac{\omega_0}{\left(1 + 3\frac{k_{32}}{\tau_j}t\right)^{\frac{1}{3}}}$	$\delta(t) = \omega_0 t + \omega_0 \frac{\tau_j}{2k_{32}} \left(1 - \left(1 + 3\frac{k_{32}}{\tau_j} t \right)^{\frac{2}{3}} \right) + \delta_0$

Окончание табл. 2

Тип механиз- ма	Закон изменения угловой скорости ω(t), рад/с	Закон изменения угла выбега <i>б(t)</i> , рад
$\gamma = 5$	$\omega(t) = \frac{\omega_0}{\left(1 + 4\frac{k_{s2}}{\tau_j}t\right)^{\frac{1}{4}}}$	$\delta(t) = \omega_0 t + \omega_0 \frac{\tau_j}{3k_{32}} \left(1 - \left(1 + 4 \frac{k_{32}}{\tau_j} t \right)^{\frac{3}{4}} \right) + \delta_0$
$\gamma = 6$	$\omega(t) = \frac{\omega_0}{\left(1 + 5\frac{k_{32}}{\tau_j}t\right)^{\frac{1}{5}}}$	$\delta(t) = \omega_0 t + \omega_0 \frac{\tau_j}{4k_{s2}} \left(1 - \left(1 + 5\frac{k_{s2}}{\tau_j}t\right)^{\frac{4}{5}} \right) + \delta_0$

б)

Рис. 1. Графики зависимостей: а) – угловой скорости выбега $\omega(t)$ различных механизмов для случая $m'_{mp} = 0$; б) – угла выбега $\delta(t)$ различных механизмов для случая $m'_{mp} = 0$

Путем решения уравнений из табл. 2, приняв $\delta(t) = 360^{\circ}$ и $\delta_0 = 0^{\circ}$, можно определить моменты времени первого проворота вектора $E_{\partial e}$ относительно вектора U_c для механизмов различных типов при $m'_{mp} = 0$. Результаты расчета представлены в таблице 3.

Таблица 3

Тип механиз-	Время САВР (с) при начальном угловом ускорении выбега механизма (рад/с ²)					
ма	$\varepsilon_0 = 40$	$\varepsilon_0 = 120$	$\varepsilon_0 = 180$	$\varepsilon_0 = 250$	$\varepsilon_0 = 320$	$\varepsilon_0 = 400$
$\gamma = 0$	0,5605	0,3236	0,2642	0,2242	0,1982	0,1772
$\gamma = 1$	0,5673	0,3304	0,2711	0,2311	0,2051	0,1842
$\gamma = 2$	0,5739	0,3371	0,2777	0,2377	0,2117	0,1908
$\gamma = 3$	0,5805	0,3436	0,2842	0,2442	0,2182	0,1972
$\gamma = 4$	0,5870	0,3500	0,2906	0,2505	0,2244	0,2035
$\gamma = 5$	0,5935	0,3563	0,2968	0,2567	0,2305	0,2095
$\gamma = 6$	0,5998	0,3625	0,3029	0,2627	0,2365	0,2154

Время САВР для выбега механизмов различных типов при $m'_{mp} = 0$

Как видно из табл. 3, если не учитывать тип приводного механизма, рассчитанный момент времени синфазного ABP может содержать существенную погрешность (разброс угла несинхронного включения СД максимален при $\varepsilon_0 = 400$ рад/с² и находится в диапазоне $-172^\circ...+103^\circ$). Если учесть возможное неблагоприятное отклонение времени срабатывания секционного выключателя, угол включения СД на резервный источник питания с большой вероятностью может выйти за пределы допустимой зоны. Кроме того, как показал анализ, недопустимо пренебрегать значением начального момента сопротивления механизма m'_{mp} , особенно для агрегатов с $\gamma > 2$. Приближенно тип γ механической характеристики агрегата может быть определен по информационным отсчетам изменения частоты ЭДС группы двигателей на этапе выбега, а методика определения величины m'_{mp} для отдельного СД приведена в [7]. Таким образом, можно сделать вывод о том, что на этапе внедрения устройства быстродействующего ABP синхронных двигателей необходимо определить m'_{mp} всех двигателей, находящихся на секции шин и приближенный тип механической характеристики γ ЭСД для учета этих величин в алгоритме самозапуска ЭСД.

Литература

- 1. Голоднов Ю.М. Самозапуск электродвигателей. М.: Энергоатомиздат, 1985.
- 2. Георгиади В.Х. Упрощенный расчет режима группового выбега электродвигателей //Промышленная энергетика. – 1985. – № 5. – С. 42-45.
- Курганов В.В., Крышнев Ю.В. Анализ экспериментальных данных опытов выбега мощных синхронных двигателей //Современные проблемы машиноведения. Тез. докл. МНТК. – Гомель: Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», 2002. – С. 117.
- 4. Курганов В.В., Крышнев Ю.В. Исследование условий обеспечения самозапуска синхронных электродвигателей при быстродействующем АВР //Энергетика. Из-

вестия высших учебных заведений и энергетических объединений стран СНГ. – 2001. – № 2. – С. 40-43.

- 5. Пат. 2471 ВУ, МПК. Способ автоматического включения резервного питания потребителей, содержащих синхронные электродвигатели /Курганов В.В. //Афіцыйны бюлетэнь /Дзярж. пат. ведамства Рэсп. Беларусь. – 1999. – № 4.
- 6. Раух Я.Я., Хитров А.И., Кабанов В.В. Учет нагрузки при выбеге электродвигателей 6-10 кВ //Промышленная энергетика. – 1981. – № 10. – С. 24-26.
- 7. Сыромятников И.А. Режимы работы асинхронных и синхронных двигателей. М.: Энергоатомиздат, 1984.

Получено 11.10.2002 г.