УДК 629.113-592

## ЛИНЕЙНАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ СЛЕДЯЩИХ ПНЕВМАТИЧЕСКИХ АППАРАТОВ С СИЛОВОЙ ОБРАТНОЙ СВЯЗЬЮ

## С.В. ГИЛЬ

Белорусский национальный технический университет, г. Минск

Нелинейная модель ускорительного клапана [1] учитывает основные нелинейности, характерные для этого пневмоаппарата: наличие зазоров, сил сухого трения, нелинейные расходно-перепадные характеристики пневмосопротивлений, ограничения перемещения подвижных элементов. Для выяснения общих закономерностей влияния ряда факторов на качество переходных процессов обычно требуется выполнить большой объём вычислений. Вследствие сложности и трудоёмкости такого анализа целесообразно применять нелинейную модель лишь на завершающей стадии проектирования при проверке выбранных основных параметров системы.

Для предварительного выбора и качественной оценки параметров системы регулирования давления воздуха, в состав которой входят следящие пневмоаппараты с силовой обратной связью, необходима её линейная (линеаризованная) математическая модель. Такая модель позволяет получить структурную схему рассматриваемой системы, с помощью которой можно выполнить структурный и частотный анализ системы и выявить причинно-следственные связи между процессами, прочисходящими в отдельных элементах системы. Кроме того, такая модель позволяет получить аналитические связи между основными конструктивными параметрами системы и показателями быстродействия, точности и устойчивости, с помощью которых можно проводить предварительное исследование системы аналитическими методами.

Степень приближения линейной модели к реальным процессам в следящих пневмосистемах существенно зависит от принятого метода линеаризации основных нелинейных функций. Для линеаризации наиболее важной и сложной расходноперепадной характеристики пневмосопротивления с переменным проходным сечением в работе использован метод интерполяционного многочлена первой степени [2], который позволяет получить меньшие погрешности линеаризации нелинейностей по сравнению с другими методами.

Используя нелинейную модель ускорительного клапана [1] и применяя линеаризацию расходно-перепадных характеристик пневмосопротивлений вышеуказанным методом, получена его линейная модель, которая представлена в виде:

$$dp_{3}/dt = (\pi \mu_{y} D_{y} k v_{0} B_{0} p_{p}/V_{3})(\alpha_{2} h_{y} - \beta_{2} p_{3}) - ((\mu A)_{4} k v_{0} B_{0}/V_{3})(\alpha_{1} p_{3} - \beta_{1} p_{4});$$

$$dp_{3}/dt = ((\mu A)_{4} k v_{0} B_{0}/V_{4})(\alpha_{1} p_{3} - \beta_{1} p_{4});$$

$$m_{n} \cdot d^{2} h_{y}/dt^{2} + v_{s} \cdot dh_{y}/dt + c_{y} h_{y} = A_{n1} p_{2} - (A_{n1} - A_{u1}) p_{3}$$

$$(1)$$

где  $p_3$  и  $p_4$  — давление воздуха, соответственно, в полости ускорительного клапана и в наполняемой ёмкости;  $\mu_y$  — коэффициент расхода клапана ускорителя;  $D_y$  — диаметр седла впускного клапана; k — показатель адиабаты k = 1,4;  $v_0$  — местная скорость звука,  $v_0 = \sqrt{kRT}$ ; R — газовая постоянная, для воздуха R = 287,14 м/(с K); T — термодинамическая температура воздуха перед дросселем;  $B_0$  — коэффициент аппроксимации гиперболической газодинамической функции расхода,  $B_0$  = 0,654 [3];  $V_3$  — объём полости ускорительного клапана;  $\alpha_1, \beta_1, \alpha_2$  и  $\beta_2$  — коэффициенты линеаризации расходно-перепадных характеристик пневмосопротивлений;  $h_y$  — перемещение клапана ускорителя;  $(\mu A)_4$  — пропускная способность трубопровода, соединяющего ускоритель и наполняемую ёмкость;  $V_4$  — объём наполняемой ёмкости;  $m_n$  — суммарная масса поршня и корпуса клапанов;  $v_E$  — коэффициент вязкого трения;  $c_y$  — жёсткость пружины клапана;  $A_{n1}$  — площадь поршня со стороны управляющей полости;  $A_{uu1}$  — площадь штока (седла) впускного клапана ускорителя.

Для получения передаточных функций динамических звеньев линейной модели ускорительного клапана и построения структурной схемы этой модели приведём линейные дифференциальные уравнения (1) к стандартной форме записи и преобразуем их по Лапласу при нулевых начальных условиях:

$$(T_{3}s+1)p_{3}(s) = \kappa_{h1}h_{y}(s) + \kappa_{3}p_{4}(s); \quad (T_{4}s+1)p_{4}(s) = \kappa_{4}p_{3}(s); (T_{n}^{2}s^{2} + 2\zeta_{n}T_{n}s + 1)h_{y}(s) = \kappa_{n}(\kappa_{n1}p_{2}(s) - \kappa_{oc1}p_{3}(s))$$
(2)

где  $T_3, T_4, T_n$  — постоянные времени;  $\kappa_3, \kappa_4, \kappa_{h1}, \kappa_n, \kappa_{h1}, \kappa_{oc1}$  — коэффициенты передач;  $\zeta_n$  — коэффициент относительного демпфирования.

Постоянные времени:

$$T_{n} = \sqrt{m_{n}/c_{y}};$$

$$T_{3} = V_{3} / (kv_{0}B_{0}(\pi\mu_{y}D_{y}p_{p}\beta_{2} + (\mu A)_{4}\alpha_{1}));$$

$$T_{4} = V_{4} / (kv_{0}B_{0}(\mu A)_{4}\beta_{1})$$
(3)

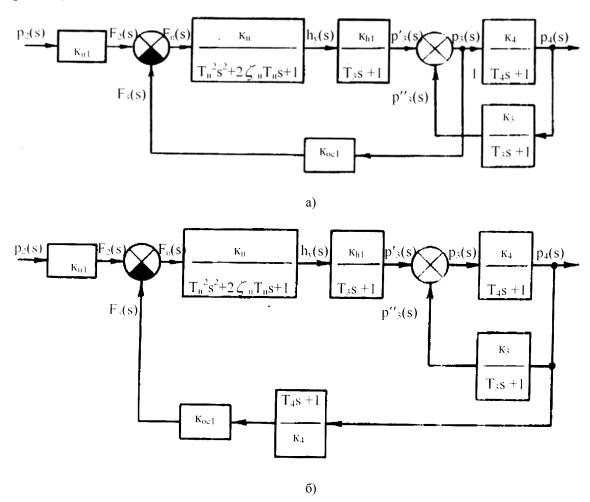
Коэффициенты передач:

$$\kappa_{3} = (\mu A)_{4} \beta_{1} / (\pi \mu_{y} D_{y} p_{p} \beta_{2} + (\mu A)_{4} \alpha_{1}), \quad \kappa_{4} = \alpha_{1} / \beta_{1};$$

$$\kappa_{h1} = \pi \mu_{y} D_{y} p_{p} \alpha_{2} / (\pi \mu_{y} D_{y} p_{p} \beta_{2} + (\mu A)_{4} \alpha_{1}),$$

$$\kappa_{n} = 1 / c_{y}; \quad \kappa_{n1} = A_{n1}; \quad \kappa_{oc1} = A_{n2}$$
(4)

Коэффициент относительного демпфирования:

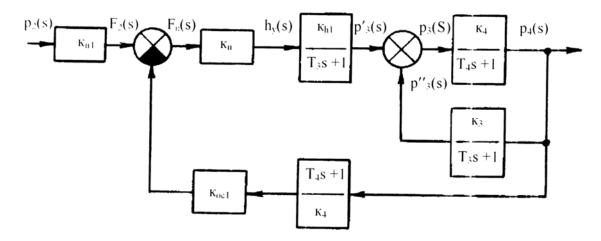

$$\zeta_n = v_E / 2\sqrt{m_n} / c_y. \tag{5}$$

В третьем уравнении системы (2) выражение  $F_s(s) = \kappa_n p_2(s) - \kappa_{oc1} p_3(s)$  представляет собой изображение по Лапласу ошибки сравнения сил давления воздуха, действующих на поршень ускорительного клапана.

Передаточные функции динамических звеньев в соответствии с уравнениями (2) записываются в виде:

$$W_{3}(s) = p_{3}(s)/p_{4}(s) = \kappa_{3}/(T_{3}s+1); W_{h1}(s) = p_{3}(s)/h_{y}(s) = \kappa_{h1}/(T_{3}s+1); W_{4}(s) = p_{4}(s)/p_{3}(s) = \kappa_{4}/(T_{4}s+1); W_{n}(s) = h_{y}(s)/F_{\varepsilon}(s) = \kappa_{n}/(T_{n}^{2}s^{2}+2\zeta_{n}T_{n}s+1)$$
(6)

Структурная схема линейной модели ускорительного клапана (рис. 1а), построенная по уравнениям (2), имеет перекрещивающиеся обратные связи. Чтобы освободиться от них, выполним структурные преобразования исходной схемы, перенеся узел разветвления 1 через звено  $W_4(s) = \kappa_4 / (T_4 s + 1)$ ; по направлению передачи сигнала. При этом в главную обратную связь добавляем звено с передаточной функцией  $1/W_4(s) = (T_4 s + 1)/\kappa_4$ ; и в результате получаем преобразованную структурную схему (рис. 1б).




 $Puc.\ 1.\$ Структурные схемы линейной модели ускорительного клапана: а – исходная; б – преобразованная

Для безмассовой расчётной схемы ускорительного клапана третье уравнение системы (2) принимает вид:

$$h_{\nu}(s) = \kappa_n \left( \kappa_{n1} p_2(s) - \kappa_{nc1} p_3(s) \right). \tag{7}$$

Структурная схема для этого случая строится по уравнению (7) и по первому и второму уравнению системы (2). После структурных преобразований, аналогичных как для схемы рис. 1а, получаем преобразованную структурную схему рис. 2.



*Puc. 2.* Структурная схема линейной модели ускорительного клапана для безмассовой расчётной схемы

Перемещение впускного клапана в изображениях по Лапласу в соответствии со структурной схемой рис. 1б определяется по уравнению

$$h_{v}(s) = \left[\kappa_{n_{1}} - (T_{4}s + 1)\kappa_{oc_{1}}\Phi_{1}(s)/\kappa_{4}\right]p_{2}(s), \tag{8}$$

где  $\Phi_1(s)$  – главная передаточная функция замкнутой системы для одномассовой расчётной схемы ускорителя, определяется по выражению

$$\Phi_1(s) = p_4(s) / p_2(s) = \kappa_4 \kappa_{h1} \kappa_n \kappa_{h1} / (a_0 s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4), \tag{9}$$

где  $a_0, a_1, a_2, a_3, a_4$  – коэффициенты, равные

$$a_{0} = T_{3}T_{4}T_{n}^{2}; \quad a_{1} = \left[2\zeta_{n}T_{3}T_{4} + (T_{3} + T_{4})T_{n}\right]T_{n},$$

$$a_{2} = T_{3}T_{4} + 2\zeta_{n}T_{n}(T_{3} + T_{4}) + T_{n}^{2}(1 - \kappa_{3}\kappa_{4});$$

$$a_{3} = (T_{3} + T_{4}) + 2\zeta_{n}T_{n}(1 - \kappa_{3}\kappa_{4}) + \kappa_{oc1}\kappa_{h1}\kappa_{n};$$

$$a_{4} = 1 - \kappa_{3}\kappa_{4} + \kappa_{oc1}\kappa_{h1}\kappa_{n}$$

$$(10)$$

Главная передаточная функция замкнутой системы для безмассовой расчётной схемы ускорителя согласно структурной схемы рис. 2, определяется по выражению

$$\Phi_0(s) = p_4(s) / p_2(s) = \kappa_4 \kappa_{h1} \kappa_n \kappa_{h1} / (a_5 s^2 + a_6 s + a_4), \tag{11}$$

где  $a_5$  и  $a_6$  – коэффициенты, равные

$$a_5 = T_3 T_4, \ a_3 = T_3 + T_4 + T_4 \kappa_{oc1} \kappa_{h1} \kappa_n. \tag{12}$$

Анализ структурных схем ускорительного клапана показал, что они являются двухконтурными и замкнутыми. Главная отрицательная обратная связь является пневмомеханической и образована последовательным соединением пропорционального звена, представляющего коэффициент передачи обратной связи ускорительного клапана  $\kappa_{oc1}$  и форсирующего звена первого порядка, и обеспечивает механизм отслеживания давления в наполняемой ёмкости. Наличие форсирующего звена в главной обратной связи объясняет установленную при экспериментальном исследовании ускорительного клапана зависимость перемещения его впускного клапана при про-

чих равных условиях от объёма наполняемой ёмкости  $V_4$  и пропускной способности трубопровода, соединяющего ёмкость с ускорительным клапаном  $(\mu A)_4$ , так как постоянная времени  $T_4$  этого звена зависит от указанных параметров.

Разработанная линейная математическая модель ускорительного клапана является универсальной и может быть использована для других следящих аппаратов, имеющих силовую отрицательную обратную связь.

## Литература

- 1. Автушко В.П., Бартош П.Р., Гиль С.В. Динамика следящих пневмоаппаратов с силовой обратной связью //Современные проблемы машиноведения: Материалы междунар. науч.-техн. конф. (научные чтения, посвящённые 105 годовщине со дня рождения П.О. Сухого): Сб. ст. /Под ред. А.С. Шагиняна. Гомель: ГГТУ, 2000. Т. 1. С. 192-194.
- 2. Навроцкий К.Л. Теория и проектирование гидро- и пневмоприводов: Учеб. для студентов вузов по спец. «Гидравлические машины, гидроприводы и гидропневмоавтоматика». М.: Машиностроение, 1991. 384 с.
- 3. Метлюк Н.Ф., Автушко В.П. Динамика пневматических и гидравлических приводов автомобилей. М.: Машиностроение, 1980. 231 с.

Получено 11.10.2002 г.