ОБРАБОТКА КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

УДК 669.71.535.241

ИМПУЛЬСНАЯ ЛАЗЕРНАЯ НАПЛАВКА КОНСТРУКЦИОННЫХ СТАЛЕЙ КОЛЬЦЕВЫМИ ПУЧКАМИ

А. В. МАКСИМЕНКО, В. Н. МЫШКОВЕЦ

Учреждение образования «Гомельский государственный университет имени Франциска Скорины», Республика Беларусь

П. С. ШАПОВАЛОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение

Во многих отраслях промышленности в последние годы все шире используются лазерная сварка, термообработка и наплавка различных материалов [1]. Использование лазеров в первую очередь предполагается в тех технологических процессах, которые неосуществимы с помощью других источников энергии.

Одно из таких направлений в технологии – обработка материалов лазерными пучками. Данный вид обработки позволяет воздействовать на изделия, имеющие поверхности кольцевой формы, при их сварке или термообработке. Использование лазерных пучков кольцевого сечения вместо круговых пучков повышает качество и эффективность процесса импульсной лазерной наплавки металлов вследствие увеличения коэффициента формы наплавки.

Основной физической характеристикой процесса нагрева при воздействии лазерного излучения является температурное поле в материале. Если распределение температуры в материале известно, то это позволяет выбрать рациональные технологические режимы обработки.

Теоретическая часть

Для расчета температурного поля на поверхности материала, нагреваемого лазерным пучком, воспользуемся неоднородным эллиптическим уравнением теплопроводности [2]. Будем считать, что используемый лазерный пучок обладает круговой симметрией, тогда исходное уравнение в полярной системе координат имеет вид:

$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} = -\frac{1}{\lambda}I,$$
(1)

где T – температура; λ – теплопроводность материала; I – интенсивность теплового источника.

Тепловой источник представим в виде произведения круговой гауссовой функции на многочлен четной степени от *r*, что позволяет описывать распределение температуры, создаваемое пучками круговой симметрии, с произвольным радиальным распределением интенсивности:

$$I = (C_0 + C_1 r^2 + C_2 r^4 + \dots + C_n r^{2n}) \exp\left(-\frac{2r^2}{w^2}\right).$$
 (2)

Здесь *w* – радиус пучка. В случае $C_0 \neq 0$, а $C_i = 0$, $(i = \overline{1, n})$ имеем обычный гауссовый круговой пучок, где C_0 является интенсивностью лазерного излучения на оси пучка r = 0. Если $C_0 = 0$, то имеем кольцевой лазерный пучок. И в зависимости от выбора C_i можно подобрать произвольную форму пучка.

Учитывая постановку задачи для решения уравнения (1), граничные условия могут быть записаны в виде:

$$\frac{T(r=b) = 0}{dT(r=0)} = 0.$$
(3)

Если в первом граничном условии положить, что b стремится к ∞ , то из этого вытекает, что на бесконечности температура равна нулю. Второе граничное условие следует из круговой температурного источника.

Интегрируя дифференциальное уравнение (1) с учетом второго граничного условия (3), получим:

$$\frac{dT}{dr} = \frac{w^2}{4\lambda} r e^{-\frac{2r^2}{w^2}} \sum_{k=1}^n C_k \left[r^{2k} + \sum_{i=1}^k k(k-1) \dots (k-i+1) \frac{w^{2i}}{2^i} r^{2(k-i)} \right].$$
(4)

Интегрируя уравнение (4) с учетом первого граничного условия (3), получим выражение описывающее распределение температурного поля на поверхности материала нагреваемого лазерным пучком с круговой симметрией:

$$T = -\frac{\lambda w^2}{8} \left[e^{-\frac{2r^2}{w^2}} \sum_{k=2}^n S_k(r) - e^{-\frac{2a^2}{w^2}} \sum_{k=2}^n S_k(b) + \left(Ei \left(\frac{2r^2}{w^2} \right) - Ei \left(\frac{2b^2}{w^2} \right) - 2\ln(r) + 2\ln(b) \right) \times \right. \\ \left. \times \sum_{k=1}^{n+1} (-1)^{k-1} \frac{C_{k-1} w^{2(n-1)}}{2^{k-1}} k(k-1) \dots 2 \cdot 1 \right],$$
(5)

где $S_k(r) = C_k \sum_{i=1}^k \left((-1)^{k-1} \frac{w^{2(r-i+1)} r^{2(i-1)}}{2^{r-i+1}} \sum_{m=i}^k \frac{1}{m} k(k-1) \dots (i+1)i \right), \quad Ei(x)$ – интегральная

показательная функция [3], [4]. В случае, когда используется обыкновенный круговой гауссов пучок ($C_0 \neq 0, C_i = 0, i = \overline{1, n}$), распределение температурного поля имеет вид:

$$T = -\frac{\lambda w^2 C_0}{8} \left[Ei \left(\frac{2r^2}{w^2} \right) - Ei \left(\frac{2b^2}{w^2} \right) - 2\ln(\frac{r}{b}) \right].$$
(6)

При численном моделировании процесса нагревания лазерным пучком поверхности использовались обыкновенные круговые гауссовые пучки и различные кольцевые пучки (рис. 1).

Качественное распределение температурного поля при воздействии таких пучков на поверхность материала имеет вид, представленный на рис. 2.

Рис. 1. Распределение интенсивности излучения в поперечном сечении кругового $(a, (C_0 \neq 0, C_i = 0))$ и кольцевого гауссового пучка $(\delta, (C_5 \neq 0, C_i = 0))$

Рис. 2. Распределение температурного поля на поверхности материала при нагревании круговым (a, ($C_0 \neq 0$, b = 6r/w)) и кольцевым гауссовым пучком (δ , ($C_5 \neq 0$, b = 6r/w))

Экспериментальная часть

Для формирования кольцевых пучков в настоящей работе была использована оптическая схема [5], в состав которой входят телескопическая система и две конические линзы (рис. 3). Одна коническая линза помещена между линзами телескопа, а вторая расположена на расстоянии от телескопической системы.

Лазер 1 генерирует цилиндрической формы пучок со сплошным круговым сечением, который, пройдя через отрицательную линзу 2, первую коническую линзу 3 и положительную линзу 4, перераспределяется в кольцевой пучок за счет преломления на конической поверхности линзы 3. Затем этот пучок направляется на вторую коническую линзу 5, у которой угол при основании выбран таким образом, чтобы после преломления он распространялся параллельно оптической оси системы. Угол падения α_5 на вторую коническую линзу 5 для параллельного лазерного пучка определяется выражением

$$\alpha_{5} = \Theta_{3}(n-1)(1-d_{2}\Phi_{4}), \tag{7}$$

где Θ_3 – угол при основании конической линзы 3; d_2 – расстояние между конической линзой 3 и положительной линзой 4 телескопической системы; Φ_4 – оптическая сила

линзы 4; *n* – показатель преломления материала, из которого изготовлены конические линзы.

Рис. 3. Оптическая схема для формирования кольцевых пучков

Плавное изменение диаметров кольцевых контуров осуществляется за счет перемещения конической линзы 3 вдоль оси оптической системы относительно одного из компонентов телескопической системы (рис. 4.1). Диаметр кольца в плоскости обработки определяется выражением

$$D \approx 2 f_{00} \Theta_3 (n-1)(1-d_2 \Phi_3),$$
 (8)

где f_{ob} – фокусное расстояние объектива 7, а величина d_2 изменяется в следующих пределах:

$$d_{2\min} \le d_2 \ge d_{2\max}. \tag{9}$$

Величины $d_{2\min}$ и $d_{2\max}$ зависят от конструктивного исполнения телескопической системы.

Данная оптическая схема разработана для установки, в состав которой входят: лазерный излучатель с оптико-механической приставкой для формирования пучков заданной геометрии и системой визуального наблюдения. Лазерная установка содержит блоки питания и управления работой лазерного излучателя, а также систему охлаждения и трехпозиционную координатную систему с микрошаговыми двигателями, управляемыми от персонального компьютера.

Лазерный излучатель изготовлен на базе двухлампового квантрона с активным элементом на АИГ:Nd⁺³ размером 8 × 100 мм и диффузным отражателем. Источник питания для ламп накачки излучателя (ИНП-7×90) обеспечивает в режиме свободной генерации выходную энергию порядка 15 Дж с регулируемой длительностью импульсов от 2 до 10 мс.

Оптическая схема установки с входящими в ее состав элементами представлена на рис. 4.

Рис. 4. Оптическая схема установки для обработки материалов круговыми и кольцевыми пучками: 1 – гелий-неоновый лазер; 2 – диафрагма; 3 – поворотные зеркала; 4 – лампы накачки; 5 – активный элемент на АИГ:Nd⁺³; 6 – зеркала резонатора лазера; 7, 9 – телескопическая система; 8, 10 – аксиконы; 11 – поворотное интерференционное зеркало; 12 – корректирующая линза; 13 – электромеханический шаттер; 14 – поворотное зеркало; 15 – светофильтр и бинокуляр; 16 – светоделительная пластинка; 17 – устройство контроля временных и энергетических характеристик лазерного излучения; 18 – фокусирующий объектив; 19 – система подсветки; 20 – защитное стекло; 21 – плоскость обработки; 22 – вид контура лазерного пучка

Кроме этого уникальность использования данной установки при проведении экспериментальных работ состоит в том, что она снабжена оптико-механическими приставками, формирующими лазерные пучки заданной геометрии. Применение приставки I или II позволяет получать пучки в виде круглого сечения или кольца.

Регулируемый диаметр пятна круглого сечения в фокальной плоскости обработки – от 0,2 до 1,5 мм, а диапазон перестройки диаметров кольцевых контуров – от 0 до 10,4 мм. Нулевое значение – кольцевой контур превращается в пятно круглого сечения.

В работе исследования процесса наплавки проводились на поверхность образцов из стали 30ХГСА при использовании пучков кольцевого и кругового сечения в среде аргона. В ходе исследований плотность мощности выбиралась таким образом, чтобы глубина плавления основы соответствовала диапазону оптимальных значений, которые были определены ранее в предположении об использовании присадочного материала в виде проволоки диаметром $0.5 \cdot 10^{-3}$ м. Экспериментально определенные распределения интенсивности по поперечному сечению лазерных пучков и микрошлифы наплавок представлены на рис. 5.

Заключение

Анализ результатов решения уравнения (1) и экспериментальных исследований показал, что внешний вид изотермических поверхностей, характеризующих структурные и фазовые превращения в глубине материала, представленные на шлифах (рис. 5), соответствует распределению температурных полей на поверхности материала.

Форма поверхности наплавки, реализованной с использованием пучка кольцевого сечения, имеет более выпуклую сфероидальную поверхность, чем при воздействии пучка кругового сечения. Это обстоятельство подтверждает то, что при наплавке кольцевым пучком расплав движется от периферии к центру и кристаллизуется в более выпуклой сферической форме.

Рис. 5. Распределение интенсивности по поперечному сечению лазерных пучков кругового (*a*) и кольцевого (δ) контуров и соответствующие микрошлифы наплавок

На основании проведенных исследований был сделан вывод о том, что для увеличения коэффициента формы валика наплавки необходимо использовать лазерные пучки кольцевого сечения.

Литература

- 1. Григорьянц, А. Г. Технологические процессы лазерной обработки / А. Г. Григорьянц, И. Н. Шиганов, А. И. Мисюров. Москва : МГТУ им. Н. Э. Баумана, 2006. 663 с.
- 2. Моделирование теплофизических процессов импульсного лазерного воздействия на металлы / А. А. Углов [и др.]. Москва : Наука, 1991. 288 с.
- 3. Установка для лазерной обработки кольцевым пучком : а. с. 1557845 СССР, МКИ В23К 26/00 / А. Т. Малащенко, В. Н. Мышковец, А. В. Максименко, Г. Л. Покаташкин ; Гомел. гос. ун-т. – № 4379625 ; заявл. 17.02.88 ; опубл. 15.12.89.
- Установка для лазерной обработки кольцевым пучком : пат. № 2068328 РФ, МПК 6 В23К 26/00 / А. Т. Малащенко, В. Н. Мышковец, А. В. Максименко, Г. Л. Покаташкин ; заявитель Гомел. гос. ун-т им. Ф. Скорины. – № 4884890 ; заявл. 26.11.90 ; опубл. 27.11.96 // Официальный бюл. «Изобретения. Полезные модели». – 1996. – № 30.
- Мышковец, В. Н. Система формирования лазерного излучения в пучки кольцевого сечения / В. Н. Мышковец, А. В. Максименко, И. М. Каморников // Лазерная физика и спектроскопия : материалы IV Междунар. конф. по лазерной физике и спектроскопии : в 2 ч. / под ред. В. К. Кононенко. – Гродно, 1999. – Ч. 2. – С. 174–176.

Получено 10.09.2010 г.