УДК 539.12

РЕДКИЕ РАСПАДЫ СТРАННЫХ МЕЗОНОВ

*Е. З. АВАКЯН*¹⁾, *С. Л. АВАКЯН*¹⁾

¹⁾Гомельский государственный технический университет им. П. О. Сухого, пр. Октября, 48, 246746, г. Гомель, Беларусь

Путем фитирования по константам основных распадов странного сектора мезонов $(f_K, g_{\varphi\gamma}, g_{K^*K\gamma}, g_{K^*K\pi}, g_{\varphi K\bar{K}})$ определено значение параметра Λ_S , характеризующего размер области конфайнмента странного кварка модели конфайнмированных кварков. В рамках указанной модели изучен распад K_{l_3} , параметры наклона $\lambda'_+, \lambda'_-, \lambda'_0$ формфакторов которого вычислены с использованием полученного значения $\Lambda_S = 505$ МэВ. Показано, что последовательный учет промежуточных состояний приводит к значительному улучшению найденных численных значений параметров наклона рассматриваемого распада. С 10 % точностью удалось воспроизвести киральное соотношение Каллана – Треймана – Матура – Окубо – Пандита. В работе предсказаны бренчинги распадов $K^+ \to \pi^+ e^+ e^$ и $K^+ \to \pi^+ \mu^+ \mu^-$. Оказалось, что для адекватного описания данных распадов также необходим учет промежуточных состояний. В случае распадов $K^+ \to \pi^+ l^+ l^-$ следует принимать во внимание вклады промежуточных мезонов ($a_1(1260), K_1(1270), \rho(770)$). Изучено влияние бозона Хиггса на амплитуды распадов $K^+ \to \pi^+ l^+ l$. Вклад диаграмм с промежуточным бозоном Хиггса оказался пренебрежимо мал ввиду большой массы $m_H \cong 125$ ГэВ и маленькой константы взаимодействия Хиггса с фермионами $g_{H\bar{f}} = \frac{m_f}{v}$, где $v = (\sqrt{2}G_F)^{-1/2} \approx 246$ ГэВ.

Ключевые слова: низкоэнергетические взаимодействия; кварковые модели; каоны; электрослабые взаимо-

Ключевые слова: низкоэнергетические взаимодеиствия; кварковые модели; каоны; электрослаоые взаимодействия.

RARE DECAYS OF STRANGE MESONS

E. Z. AVAKYAN^a, S. L. AVAKYAN^a

^aSukhoi State Technical University of Gomel, 48 Kastryčnika Avenue, Gomel 246746, Belarus Corresponding author: S. L. Avakyan (avakyan@tut.by)

The value of the parameter Λ_s characterizing the size of the confinement region of the strange quark in the Quark Confinement Model (QCM) was obtained by fitting the constants of the fundamental decays of the strange mesons sector $(f_K, g_{\varphi\gamma}, g_{K^*K\gamma}, g_{K^*K\pi}, g_{\varphi K\bar{K}})$. The decay K_{l_3} was studied in the framework of QCM. The slope parameters $\lambda'_+, \lambda'_-, \lambda'_0$ of the form factors of this decay were calculated using the obtained value $\Lambda_s = 505$ MeV. It is shown that a consistent account of the intermediate states leads to a significant improvement in the obtained numerical values of the slope parameters of the decay under consideration. It should be noted that we managed to reproduce the Callan – Treiman – Maturo – Okubo – Pandit chiral ratio with 10 % accuracy. The branching ratios for $K^+ \to \pi^+ e^+ e^-$ and $K^+ \to \pi^+ \mu^+ \mu^-$ decays have been predicted

Образец цитирования:

Авакян ЕЗ, Авакян СЛ. Редкие распады странных мезонов. Журнал Белорусского государственного университета. Физика. 2019;1:51–62.

For citation:

Avakyan EZ, Avakyan SL. Rare decays of strange mesons. *Journal of the Belarusian State University. Physics.* 2019;1:51–62. Russian.

Авторы:

Елена Зиновьевна Авакян – кандидат физико-математических наук, доцент; доцент кафедры высшей математики факультета автоматизированных и информационных систем. Сергей Левонович Авакян – кандидат физико-математических наук, доцент; доцент кафедры высшей математики факультета автоматизированных и информационных систем.

Authors:

Elena Z. Avakyan, PhD (physics and mathematics), docent; associate professor at the department of higher mathematics, faculty of automated and information systems. *mikot@tut.by*

Sergey L. Avakyan, PhD (physics and mathematics), docent; associate professor at the department of higher mathematics, faculty of automated and information systems. *avakyan@tut.by*

in this work. The account of intermediate states turns out to be required for adequate description of hadron interactions. In the case of $K^+ \to \pi^+ l^+ l^-$ decays, the contributions of intermediate mesons $(a_1(1260), K_1(1270), \rho(770))$ should be taken into account. It is shown that a consistent account of intermediate hadron states is extremely important for the description of these processes. We also studied the influence of the Higgs boson on the amplitudes of the $K^+ \to \pi^+ l^+ l$ decays. The contribution of the diagrams with the intermediate Higgs boson turns out to be negligible because of the large mass $m_H \cong 125$ GeV and the small interaction constant $g_{Hff} = \frac{m_f}{v}$, where $v = (\sqrt{2}G_F)^{-1/2} \approx 246$ GeV.

Key words: low energy interactions; quark models; kaons; electroweak interaction.

Введение

Задача исследования низкоэнергетических распадов каонов остается актуальной на протяжении многих десятилетий. Это связано с тем, что в указанных распадах тесно сплетены сильные, слабые и электромагнитные взаимодействия кварков. Изучение распадов *К*-мезонов позволяет получить информацию о возможных проявлениях новой физики за рамками стандартной модели (СМ). Их можно назвать окном в мир новой физики. С этой точки зрения представляется крайне важным получение достоверных количественных оценок параметров данных распадов в рамках СМ. Каонные распады рассматриваются в целом ряде обзоров, например в [1; 2], изучаются экспериментально (группы BNL KEK – JAEA IHEP, Protvino INFN, Frascati) [3].

В данной работе исследуются распады $K \to \pi l v_l$ (так называемые K_{l_3} -распады) и распады $K^+ \to \pi^+ l^+ l$. Для первых определены параметры наклона $\lambda'_+, \lambda'_-, \lambda'_0$, а также воспроизведено соотношение Каллана – Треймана – Матура – Окубо – Пандита (КТМОП) [4; 5]. Получены бренчинги распадов $K^+ \to \pi^+ e^+ e^$ и $K^+ \to \pi^+ \mu^+ \mu^-$. Следует отметить, что найденные значения больше экспериментальных примерно в 1,5 раза, что согласуется с результатами, полученными в других подходах. Однако, как показано в работе, последовательный учет промежуточных адронных состояний позволяет значительно приблизить значения бренчингов к экспериментальным, что в очередной раз говорит о несомненно важной роли промежуточных мезонов в низкоэнергетической адронной физике.

Также вычислен вклад бозона Хиггса в рассматриваемые распады. Все исследование проводилось в рамках модели конфайнмированных кварков (МКК) [6].

Кварковая модель

МКК базируется на следующих предположениях.

1. Адронные поля возникают в результате интегрирования по глюонным и кварковым переменным в производящем функционале КХД. В результате получается лагранжиан взаимодействия адронов с кварками

$$\mathcal{L}_{M} = \frac{g_{M}}{\sqrt{2}} M_{i}^{\mu} \bar{q}_{m}^{a} \Gamma_{\mu} \lambda^{mn} q_{n}^{a}, \qquad (1)$$

где M_i^{μ} – евклидовы поля, связанные с полями физических частиц; $q^a = (u^a, d^a, s^a)$ – кварковые поля; a – цветовой индекс; Γ_{μ} – матрицы Дирака; λ_i – матрицы Гелл-Манна; константы взаимодействия g_M мезонов с кварками определяются из так называемого условия связности

$$Z_M = 1 + \frac{3g_M^2}{4\pi^2} \tilde{\Pi}'_M(m_M),$$

где $\tilde{\Pi}'_{M}(m_{M})$ – производная массового оператора соответствующего мезона. Для дальнейших расчетов удобно вместо g_{M} использовать величину

$$h_{M} = \frac{3g_{M}^{2}}{4\pi^{2}} = -\frac{1}{\tilde{\Pi}_{M}'(m_{M})}.$$

Все взаимодействия адронов с кварками описываются кварковыми диаграммами, полученными из матрицы *S*, усредненной по глюонному вакууму:

$$S = \int d\sigma_{VAC} T \exp\left\{i \int dx \mathcal{L}_{int}\right\}.$$

Пропагатор кварка имеет вид

$$S(x_{1}, x_{2} | B_{VAC}) = \langle 0 | T(q(x_{1})\overline{q}(x_{2})) | 0 \rangle = i(p + B_{VAC})^{-1} \delta(x_{1} - x_{2}).$$

2. Конфайнмент кварков обеспечивается наличием нетривиального глюонного вакуума. Предполагается, что усреднение по вакуумным глюонным полям *В*_{VAC} кварковых диаграмм, генерируемых *S*-матрицей, должно обеспечивать конфайнмент кварков и делать теорию конечной.

Анзац конфайнмента в МКК в случае однопетлевых кварковых диаграмм состоит в замене

$$S = \int d\sigma_{VAC} \operatorname{Tr} \left| M(x_1) S(x_1, x_2 | B_{VAC}) \dots M(x_n) S(x_n, x_1 | B_{VAC}) \right| \rightarrow$$

$$\rightarrow \int d\sigma_{v} \operatorname{Tr} \left| M(x_1) S_{v}(x_1 - x_2) \dots M(x_n) S_{v}(x_n - x_1) \right|.$$

Здесь

$$S_{\nu}(x_1 - x_2) = \int \frac{d^4 p}{i(2\pi)^4} e^{-ip(x_1 - x_2)} \frac{1}{\nu \Lambda_q - \hat{p}}.$$

Параметр Λ_q характеризует размер области конфайнмента кварка с ароматом q = u, d, s. Мера интегрирования $d\sigma_v$ определена так, что

$$\int \frac{d\sigma_{v}}{v-\hat{z}} = G(z) = a(-z^{2}) + \hat{z}b(-z^{2}).$$

Функция G(z) называется функцией конфайнмента. Она не зависит ни от цвета, ни от аромата кварков. G(z) представляет собой целую функцию, убывающую в евклидовой области быстрее любой степени z при $z^2 \to \infty$. Выбор функции G(z), или, что то же самое, $a(-z^2)$ и $b(-z^2)$, является одним из модельных предположений. Будем использовать $a(-z^2)$ и $b(-z^2)$ в виде

$$a(u) = a_0 e^{-u^2 - a_1 u},$$

 $b(u) = b_0 e^{-u^2 - b_1 u}.$

Требование выполнения в МКК аномальных тождеств Уорда дает дополнительные соотношения между a(0) и b(0): a(0) = 2, b(0) = -a'(0). Используя a(u) и b(u) в приведенной выше форме, можно получить $a_0 = 2$, $a_1 = \frac{b_0}{4}$. Таким образом, свободными параметрами модели являются Λ_q , b_0 , b_1 . Параметры модели для нестранного сектора были зафиксированы фитированием по хорошо известным константам низкоэнергетической физики f_{π} , $g_{\rho\gamma}$, $g_{\pi\gamma\gamma}$, $g_{\omega\pi\gamma}$, $g_{\rho\pi\pi}$. Оказалось, что наилучшее описание всей совокупности констант достигается при $b_0 = 2$, $b_1 = 0, 2$, $\Lambda_n = 430$ МэВ.

Параметры странного кварка

Для описания странных мезонов необходимо зафиксировать дополнительный параметр Λ_s , описывающий область конфайнмента странного кварка. Для фитирования используем константы основных распадов странных мезонов, происходящих при слабых, электромагнитных и сильных взаимодействиях (табл. 1).

Таблица 1

Константы основных распадов странных мезонов, использованные для фитирования параметра странного кварка

Table 1

Распад, переход	Аналитическое выражение	Экспериментальное значение [7]	Значение в МКК	
$K^+ \rightarrow \mu^+ \nu$	$f_{k} = \frac{\Lambda}{\pi} \frac{\sqrt{3}F_{P}(\mu_{K}^{2}, \Lambda, \Delta)}{\sqrt{2F_{PP}(\mu_{K}^{2}, \Lambda, \Delta)}}$	157 МэВ	160 МэВ	
$\phi \to \gamma$	$g_{\varphi\gamma} = \frac{F_{V}\left(\mu_{\varphi}^{2}\right)}{\pi\sqrt{8F_{VV}\left(\mu_{\varphi}^{2}, \Lambda_{s}, 0\right)}}$	0,0758	0,0901	

The constants of the main decays of strange mesons used to fit the strange quark parameter

Окончание табл. 1 Ending table 1

Распад, переход	Аналитическое выражение	Экспериментальное значение [7]	Значение в МКК
$K^* \rightarrow K \gamma$	$g_{K^*K\gamma} = \frac{F_{PVV}(\mu_{K^*}^2, \Lambda, \Delta)}{\Lambda \pi \sqrt{3F_{PP}(\mu_{K^*}^2, \Lambda, \Delta)F_{VV}(\mu_{K^*}^2, \Lambda, \Delta)}}$	1,29 ГэВ ⁻¹	1,17 ГэВ-1
$K^* \rightarrow K\pi$	$g_{K^*K\pi} = \frac{2\pi F_{PVV}\left(\mu_{K^*}^2, \Lambda, \Delta\right)}{\Lambda \sqrt{F_{PP}\left(\mu_{K}^2, \Lambda, \Delta\right)F_{PP}\left(\mu_{\pi}^2, \Lambda_n, 0\right)F_{VV}\left(\mu_{K^*}^2, \Lambda, \Delta\right)}}$	4,65	4,22
$\phi \to K \overline{K}$	$g_{\varphi K \bar{K}}(m_{\varphi}^{2}) = \frac{2\pi F_{VPP}(\mu_{\varphi}^{2}, \Lambda, \Delta)}{F_{PP}(\mu_{K}^{2}, \Lambda, \Delta)\sqrt{F_{VV}(\mu_{\varphi}^{2}, \Lambda_{s}, 0)}}$	4,47	4,02

В табл. 1 функции, входящие в аналитические выражения констант, вычисляются по формулам

$$\begin{split} F_{pp}(x,\Lambda,\Delta) &= \int_{0}^{\infty} b(u) du + \frac{x}{4\Lambda^{2}} \int_{0}^{u} du b \left(-\frac{ux}{4\Lambda^{2}} \right) \frac{1 - \frac{u}{2} + u\Delta}{\sqrt{1 - u + \left(\frac{u\Lambda}{2}\right)^{2}}}, \\ F_{pp}(x,\Lambda,\Delta) &= \int_{0}^{\infty} b(u) du + \frac{x}{4\Lambda^{2}} \int_{0}^{u} du b \left(-u \frac{x}{4\Lambda^{2}} \right) \frac{1 - \frac{u}{2} + \frac{u^{2}}{4} + u\Delta}{\sqrt{1 - u + \left(\frac{u\Lambda}{2}\right)^{2}}}, \\ F_{p}(x,\Lambda,\Delta) &= \frac{\sqrt{1 - \Delta} + \sqrt{1 + \Delta}}{2} \left[\int_{0}^{\infty} a(u) du + \frac{x}{4\Lambda^{2}} \int_{0}^{1} du a \left(-u \frac{x}{4\Lambda^{2}} \right) \sqrt{1 - u + \left(\frac{u\Lambda}{2}\right)^{2}} \right] + \\ &+ \frac{\Delta}{4} \left[\sqrt{1 - \Delta} - \sqrt{1 + \Delta} \right] \frac{x}{4\Lambda^{2}} \int_{0}^{u} du u a \left(-u \frac{x}{4\Lambda^{2}} \right) \sqrt{1 - u + \left(\frac{u\Lambda}{2}\right)^{2}}, \\ F_{p}(x,\Lambda,\Delta) &= \int_{0}^{\infty} b(u) du + \frac{x}{4\Lambda^{2}} \int_{0}^{1} du b \left(-u \frac{x}{4\Lambda^{2}} \right) \sqrt{1 - u + \left(\frac{u\Lambda}{2}\right)^{2}}, \\ F_{pyp}(x,\Lambda,\Delta) &= \frac{1}{4} \int_{0}^{u} du a \left(-u \frac{x}{4\Lambda^{2}} \right) \ln \left(\frac{1 + \sqrt{1 - u + \left(\frac{u\Lambda}{2}\right)^{2}}}{1 - \sqrt{1 - u} + \left(\frac{u\Lambda}{2}\right)^{2}} \right), \\ F_{ppp}(x,\Lambda_{1},\Lambda_{2}) &= \int_{0}^{\infty} b(u) du + \frac{x}{4\Lambda^{2}} \int_{0}^{u} du b \left(-u \frac{x}{4\Lambda^{2}} \right) \sqrt{1 - u + \left(\frac{u\Lambda}{2}\right)^{2}} + \\ &+ \int_{0}^{1} d^{3} \alpha \delta \left(1 - \sum_{i=1}^{3} \alpha_{i} \right) \frac{\Lambda_{1}(2\Lambda_{2} - \Lambda_{1})}{\Lambda_{1}^{2} \alpha_{i} + \Lambda_{2}^{2}(1 - \alpha_{i})} \frac{x\alpha_{i}\alpha_{2}}{\Lambda_{1}^{2} \alpha_{i} + \Lambda_{2}^{2}(1 - \alpha_{i})} \frac{x\alpha_{i}\alpha_{2}}{\Lambda_{1}^{2} \alpha_{i} + \Lambda_{2}^{2}(1 - \alpha_{i})} \\ \end{split}$$

и введены обозначения

$$\Lambda^{2} = \frac{\Lambda_{1}^{2} + \Lambda_{2}^{2}}{2}, \ \Delta = \frac{\Lambda_{2}^{2} - \Lambda_{1}^{2}}{\Lambda_{1}^{2} + \Lambda_{2}^{2}},$$
$$\mu = \frac{m^{2}}{4\Lambda^{2}}, \ u_{\Delta} = \frac{2}{1 + \sqrt{1 - \Delta^{2}}}.$$

Оказалось, что наилучшее согласие (в смысле наименьшего суммарного отклонения) достигается при $\Lambda_s = 505$ МэВ.

Параметры К_{l3}-распадов

Матричный элемент распада $K \to \pi e v_e$ определяется диаграммами, приведенными на рис. 1, и может быть записан в виде

$$M^{\mu}(p_{1}, p_{2}) = F_{+}(t)(p_{1} + p_{2})^{\mu} + F_{-}(t)(p_{1} - p_{2})^{\mu},$$

где p_1, p_2 – импульсы каона и π -мезона; $t = (p_1 - p_2)^2$; $F_+(t) = F_+^a(t) + F_+^b(t)$; $F_-(t) = F_-^a(t) + F_-^b(t)$. Индексы *a* и *b* означают вклады диаграмм *a* и *b* (см. рис. 1).

Puc. 1. Диаграммы, описывающие распад $K \rightarrow \pi e v$ *Fig. 1.* Diagrams describing decay $K \rightarrow \pi e v$

Указанные вклады в МКК имеют вид

$$F_{\pm}^{a}(t) = \sqrt{2h_{K}h_{\pi}}F_{VPP}^{\mp}(t, m_{K}^{2}, m_{\pi}^{2}, \Lambda_{s}, \Lambda_{u}, \Lambda_{u}),$$

где h_K , h_{π} , h_{K^*} – константы взаимодействия мезонов с кварками, вычисленные в МКК с помощью условия связности; $F_{VPP}^{\pm}(t, m_K^2, m_{\pi}^2, \Lambda_s, \Lambda_u, \Lambda_u)$ – петлевые интегралы, описывающие переход $V \to PP$: $K \to \pi e v$,

$$\begin{split} F_{VPP}^{+} \Big(p^2, \, k_1^2, \, k_2^2, \, \Lambda_1, \Lambda_2, \Lambda_3 \Big) &= \frac{s}{4} \Delta_0^{\frac{u}{3}} du \, ub(-us) \sqrt{1 - u + \left(\frac{\Delta u}{2}\right)^2} + \\ &+ \frac{1}{2} \int_{0}^{1} \int_{0}^{1} d\alpha_1 d\alpha_2 d\alpha_3 \delta(1 - \alpha_1 - \alpha_2 - \alpha_3) b \bigg(- \frac{P}{\alpha_1 \Lambda_1^2 + \alpha_2 \Lambda_2^2 + \alpha_3 \Lambda_3^2} \bigg) \times \\ &\times \frac{P\Big[(\alpha_1 - \alpha_2) (\Lambda_1 - \Lambda_3) (\Lambda_2 - \Lambda_3) + \Lambda_3 (\Lambda_1 - \Lambda_2) \Big] + \alpha_1 k_1^2 - \alpha_2 k_2^2}{\alpha_1 \Lambda_1^2 + \alpha_2 \Lambda_2^2 + \alpha_3 \Lambda_3^2}, \\ F_{VPP}^{-} \Big(p^2, \, k_1^2, \, k_2^2, \, \Lambda_1, \Lambda_2, \Lambda_3 \Big) &= \frac{1}{2} \int_{0}^{\infty} du \, b(u) + \frac{s}{2} \int_{0}^{u_{\Delta}} du \, b(-us) \sqrt{1 - u + \left(\frac{\Delta u}{2}\right)^2} + \\ &+ \frac{1}{2} \int_{0}^{1} \int_{0}^{1} d\alpha_1 d\alpha_2 d\alpha_3 \delta(1 - \alpha_1 - \alpha_2 - \alpha_3) b \bigg(- \frac{P}{\alpha_1 \Lambda_1^2 + \alpha_2 \Lambda_2^2 + \alpha_3 \Lambda_3^2} \bigg) \times \\ &\times \frac{P\Big[(\alpha_1 + \alpha_2) (\Lambda_1 - \Lambda_3) (\Lambda_2 - \Lambda_3) + \Lambda_3 (\Lambda_1 + \Lambda_2 - \Lambda_3) \Big] + \alpha_1 k_1^2 + \alpha_2 k_2^2}{\alpha_1 \Lambda_1^2 + \alpha_2 \Lambda_2^2 + \alpha_3 \Lambda_3^2}. \end{split}$$

Здесь $s = \frac{p^2}{4\Lambda^2}, P = \frac{\alpha_1 \alpha_2 p^2 + \alpha_1 \alpha_3 k_1^2 + \alpha_2 \alpha_3 k_2^2}{\alpha_1 \Lambda_1^2 + \alpha_2 \Lambda_2^2 + \alpha_3 \Lambda_3^2}.$

Учет вклада промежуточных адронных состояний проведен в так называемом цепочном приближении, в котором пропагатор промежуточного векторного мезона определяется следующим образом:

$$h_{\nu}G_{\nu}^{\mu\nu}(p) = \frac{1}{\Pi_{1}(p^{2}) - \Pi_{1}(m_{\nu}^{2})} \left\{ -g^{\mu\nu} + p^{\mu}p^{\nu}\frac{\Pi_{2}(p^{2})}{\Pi_{1}(p^{2}) - \Pi_{1}(m_{\nu}^{2}) + p^{2}\Pi_{2}(p^{2})} \right\}.$$

После стандартных преобразований имеем выражения для вкладов промежуточного векторного мезона в формфакторы $F_{+}^{b}(t)$:

$$F_{+}^{b}(t) = -F_{+}^{a}(t)\frac{t}{\Pi_{1}(t) - \Pi_{1}(m_{K^{*}}^{2})}F_{VV}(t),$$

$$F_{-}^{b}(t) = F_{-}^{a}(t)\frac{m_{k}^{2} - m_{\pi}^{2}}{\Pi_{1}(t) - \Pi_{1}(m_{K^{*}}^{2})}F_{VV}(t),$$

где $F_{VV}(t)$ – петлевой интеграл, описывающий поперечную часть перехода $V \rightarrow V$.

В рамках алгебры токов Калланом, Трейманом [4], Матуром, Окубо и Пандитом [5] было установлено простое соотношение между $F_+(m_K^2)$ и $F_-(m_K^2)$:

$$F_+\left(m_K^2\right) + F_-\left(m_K^2\right) = \frac{f_K}{f_\pi}.$$

Вычисляя значения $F_{\pm}(t)$ при $t = m_K^2 (m_{\pi}^2 = 0)$, получим

$$F_+(m_K^2) + F_-(m_K^2) = 0.9 \frac{f_K}{f_{\pi}}.$$

Таким образом, в рамках МКК с 10 % точностью удалось воспроизвести киральное соотношение КТМОП. Следует заметить, что в данном случае вклады промежуточных состояний сокращаются.

Векторный формфактор $F_{+}(t)$ представляет собой *p*-волновую проекцию матричного элемента $\langle 0|\bar{s}\gamma^{\mu}u|K\pi\rangle$, а *s*-волновую проекцию определяет скалярный формфактор, являющийся комбинацией $F_{+}(t)$:

$$F_0(t) = F_+(t) + \frac{t}{m_k^2 - m_\pi^2} F_-(t).$$

Удобно рассматривать формфакторы, нормированные к значению в нуле:

$$f_{+,0}(t) = \frac{F_{+,0}(t)}{F_{+,0}(0)}$$

Обычно для анализа экспериментальных данных используют следующую параметризацию:

$$f_{+,0}(t) = 1 + \lambda_{+,0}' \frac{t}{m_{\pi}^2} + \frac{1}{2} \lambda_{+,0}'' \left(\frac{t}{m_{\pi}^2}\right)^2 + \dots$$

Параметр наклона $\lambda'_{+,0} = m_{\pi}^2 f'_{+,0}(0).$

Полученные значения параметров λ'_{+} , λ'_{-} , λ'_{0} , а также усредненные экспериментальные значения приведены в табл. 2.

Таблица 2

Значения параметров наклона К.

Table 2

The values	of the	slope	parameters	K ,
------------	--------	-------	------------	------------

Параметр	МКК	Эксперимент
λ'_	3	0 [7]
λ'_0	16,5	11,7 ± 1,4 [7]
λ'_{+}	31	29,86 ± 0,2 [8]

Распад $K^+ \rightarrow \pi^+ l^+ l^-$

Лагранжиан взаимодействия, определяющий распад $K^+ \to \pi^+ l^+ l$ в МКК, есть

$$\mathcal{L}_I = \mathcal{L}_M + \mathcal{L}_{em} + \mathcal{L}_w^{eff}$$

где \mathcal{L}_M определен формулой (1); \mathcal{L}_{em} – лагранжиан электромагнитного взаимодействия лептонов и кварков, имеющий стандартный вид:

$$\mathcal{L}_{\rm em} = eA_{\mu} \Big(\overline{q}_i^{\ a} Q_{ij} \gamma^{\mu} q_j^{\ a} + \overline{l} \gamma^{\mu} l \Big),$$

 A_{μ} – электромагнитное поле, $Q = \text{diag}\left(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}\right)$ – зарядовая матрица.

Для описания слабых взаимодействий кварков воспользуемся эффективным лагранжианом $\mathcal{L}_{w}^{\text{eff}}$ для переходов с $\Delta S = 1$, к которым и относится рассматриваемый распад. Лагранжиан представляет собой разложение по четырехкварковым операторам [9; 10]:

$$\mathcal{L}_{w}^{\text{eff}} = \frac{G_{F}}{2\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{6} c_{i} O_{i},$$

где G_F – константа Ферми; V_{ud} , V_{us} – элементы матрицы Кабиббо – Кобаяши – Маскавы; O_i – локальные четырехкварковые операторы:

$$\begin{split} O_1 &= \left(\overline{d} O_L^{\mu} s \right) \left(\overline{u} O_L^{\mu} u \right) - \left(\overline{d} O_L^{\mu} u \right) \left(\overline{u} O_L^{\mu} s \right), \ \Delta I = \frac{1}{2}, \\ O_2 &= \left(\overline{d} O_L^{\mu} u \right) \left(\overline{u} O_L^{\mu} s \right) + \left(\overline{d} O_L^{\mu} s \right) \left(\overline{u} O_L^{\mu} u \right) + 2 \left(\overline{d} O_L^{\mu} s \right) \left(\overline{d} O_L^{\mu} d \right) + 2 \left(\overline{d} O_L^{\mu} s \right) \left(\overline{s} O_L^{\mu} s \right), \ \Delta I = \frac{1}{2}, \\ O_3 &= \left(\overline{d} O_L^{\mu} u \right) \left(\overline{u} O_L^{\mu} s \right) + \left(\overline{d} O_L^{\mu} s \right) \left(\overline{u} O_L^{\mu} u \right) - \left(\overline{d} O_L^{\mu} s \right) \left(\overline{s} O_L^{\mu} s \right), \ \Delta I = \frac{1}{2}, \\ O_4 &= \left(\overline{d} O_L^{\mu} u \right) \left(\overline{u} O_L^{\mu} s \right) + \left(\overline{d} O_L^{\mu} s \right) \left(\overline{u} O_L^{\mu} u \right) - \left(\overline{d} O_L^{\mu} s \right) \left(\overline{d} O_L^{\mu} d \right), \ \Delta I = \frac{3}{2}, \\ O_5 &= \left(\overline{d} O_L^{\mu} \lambda^a s \right) \sum_{q=u,d,s} \left(\overline{q} O_R^{\mu} \lambda^a q \right), \ \Delta I = \frac{1}{2}, \\ O_6 &= \left(\overline{d} O_L^{\mu} s \right) \sum_{q=u,d,s} \left(\overline{q} O_R^{\mu} q \right), \ \Delta I = \frac{1}{2}. \end{split}$$

Здесь $O_L^{\mu} = \gamma^{\mu} (1 - \gamma^5)$, $O_R^{\mu} = \gamma^{\mu} (1 + \gamma^5)$. Коэффициентные функции c_i могут быть представлены в виде решений ренормгрупповых уравнений:

$$c_{1} = -\chi_{1}^{4/b} \left(0,98\chi_{2}^{0,42} + 0,01\chi_{2}^{0,80} \right) + 0,04\chi_{1}^{-2/b} \left(\chi_{2}^{0,42} - \chi_{2}^{-0,30} \right),$$

$$c_{2} = 0,2\chi_{1}^{-2/b} \left(0,96\chi_{2}^{-0,30} + 0,03\chi_{2}^{-0,12} \right) - 0,02\chi_{1}^{4/b} \left(\chi_{2}^{0,42} - \chi_{2}^{-0,30} \right),$$

$$c_{5} = 10^{-2}\chi_{1}^{4/b} \left(3,3\chi_{2}^{0,42} + 0,3\chi_{2}^{-0,3} - 3,9\chi_{2}^{0,80} + 0,3\chi_{2}^{-0,12} \right) +$$

$$+ 0,01\chi_{1}^{-2/b} \left(-0,1\chi_{2}^{0,42} - 2,9\chi_{2}^{-0,30} - 1,4\chi_{2}^{0,80} - 1,4\chi_{2}^{-0,12} \right),$$

$$c_{6} = 10^{-2}\chi_{1}^{4/b} \left(4,8\chi_{2}^{0,42} - 0,6\chi_{2}^{-0,3} - 2,9\chi_{2}^{0,80} - 1,3\chi_{2}^{-0,12} \right) +$$

$$+ 0,01\chi_{1}^{-2/b} \left(-0,2\chi_{2}^{0,42} - 5,8\chi_{2}^{-0,30} - 1,0\chi_{2}^{0,80} + 7,0\chi_{2}^{-0,12} \right),$$

$$\left(\begin{pmatrix} c_{3} \\ c_{4} \end{pmatrix} = \chi_{2}^{-2/9}\chi_{1}^{-2/b} \left(\frac{2}{15} \\ \frac{2}{3} \end{pmatrix} \right),$$
(2)

где

$$\chi_1 = 1 + b \frac{\overline{g}^2(m_c)}{16\pi^2} \ln \frac{m_w^2}{m_c^2}; \ \chi_2 = 1 + 9 \frac{\overline{g}^2(m)}{16\pi^2} \ln \frac{m_c^2}{m^2}; \ b = 11 - \frac{2}{3}N.$$

Из (2) видно, что коэффициенты c_i зависят от точки нормировки μ , бегущей константы α_s и масс тяжелых кварков, поэтому c_i не определены однозначно. Нами проведены вычисления матричных элементов рассматриваемых распадов при различных значениях μ и α_s . Для получения амплитуд распадов $K^+ \rightarrow \pi^+ l^+ l^-$ параметр μ варьировался в пределах от 0,9 до 1,9 ГэВ, α_s – от 0,05 до 1,0.

Матричный элемент, соответствующий распаду $K^+ \to \pi^+ l^+ l^-$ (рис. 2), имеет вид

$$\mathcal{M}(K^+ \to \pi^+ l^+ l^-) = \frac{G_F}{2\sqrt{2}} V_{ud} V_{us} e F_+(q^2, m_K^2, m_\pi^2) p^\mu \frac{-ig^{\mu\nu}}{q^2 + i\epsilon} (-ie)\overline{l}(k) \gamma^\nu l(k'),$$

где

$$F_{+}\left(q^{2}, \ m_{K}^{2}, \ m_{\pi}^{2}\right) = \sqrt{h_{K}h_{\pi}} \frac{3\Lambda^{2}}{8\sqrt{2\pi}} \Phi\left(\frac{q^{2}}{\Lambda^{2}}, \ \frac{m_{K}^{2}}{\Lambda^{2}}, \ \frac{m_{\pi}^{2}}{\Lambda^{2}}\right).$$
(3)

Ширина распада

$$\Gamma\left(K^{+} \to \pi^{+}e^{+}e^{-}\right) = \frac{G_{F}^{2}\alpha^{2}}{128\pi^{3}m_{K}^{3}}V_{ud}^{2}V_{us}^{2}\frac{9h_{K}h_{\pi}}{8\pi} \times \\ \times \int_{4m_{e}^{2}}^{(m_{K}-m_{\pi})^{2}} dq^{2}q^{2}\left(1+\frac{2m_{e}^{2}}{q^{2}}\right)\lambda^{3/2}\left(1,\frac{m_{K}^{2}}{q^{2}},\frac{m_{\pi}^{2}}{q^{2}}\right)\lambda^{1/2}\left(1,\frac{m_{e}^{2}}{q^{2}},\frac{m_{e}^{2}}{q^{2}}\right)\left|\Lambda^{2}\Phi\left(\frac{q^{2}}{\Lambda^{2}},\frac{m_{K}^{2}}{\Lambda^{2}},\frac{m_{\pi}^{2}}{\Lambda^{2}}\right)\right|^{2},$$

здесь $\lambda(a, b, c) = a^2 + b^2 + c^2 - 2(ab + ac + bc).$

Для адекватного описания адронных взаимодействий необходим последовательный учет промежуточных состояний. В случае распадов $K^+ \to \pi^+ l^+ l^-$ следует принимать во внимание вклады промежуточных мезонов – $a_1(1260)$, $K_1(1270)$, $\rho(770)$ (см. диаграммы на рис. 3).

Рис. 2. Диаграммы, описывающие распад $K^+ \to \pi^+ l^+ l^-$ *Fig. 2.* Diagrams describing decay $K^+ \to \pi^+ l^+ l^-$

Рис. 3. Диаграммы с промежуточными адронными состояниями, дающими вклад в амплитуды распадов $K^+ \rightarrow \pi^+ l^+ l^-$ *Fig.* 3. Diagrams with intermediate hadron states contributing to the $K^+ \rightarrow \pi^+ l^+ l^-$ decay amplitudes

Последовательный учет диаграмм, изображенных на рис. 3, приводит к изменению формфактора (3).

$$\Phi\left(\frac{q^2}{\Lambda^2}, \frac{m_K^2}{\Lambda^2}, \frac{m_\pi^2}{\Lambda^2}\right) = \Phi_1\left(\frac{q^2}{\Lambda^2}, \frac{m_K^2}{\Lambda^2}, \frac{m_\pi^2}{\Lambda^2}\right) + \Phi_2\left(\frac{q^2}{\Lambda^2}, \frac{m_K^2}{\Lambda^2}, \frac{m_\pi^2}{\Lambda^2}\right),$$

где $\Phi_1\left(\frac{q^2}{\Lambda^2}, \frac{m_K^2}{\Lambda^2}, \frac{m_{\pi}^2}{\Lambda^2}\right)$ – вклад прямых диаграмм (см. рис. 2):

$$\Phi_1 = \frac{2}{3} \left(-c_1 - 2c_2 - 2c_3 - 2c_4 \right) G_1 + \frac{4}{9} \left(-c_1 - 2c_2 + 3c_3 + 3c_4 \right) G_2 - \frac{2}{9} c_5 G_3;$$

 $\Phi_2\left(\frac{q^2}{\Lambda^2}, \frac{m_K^2}{\Lambda^2}, \frac{m_\pi^2}{\Lambda^2}\right)$ – вклад диаграмм с промежуточными состояниями, причем $\Phi_2 = \Phi_A + \Phi_P$,

$$\Phi_{\!\scriptscriptstyle A}$$
 – вклады аксиальных мезонов, $\Phi_{\!\scriptscriptstyle P}$ – вклад псевдоскалярного мезона,

$$\begin{split} \Phi_{A} &= \frac{2}{3} \big(c_{1} + 2c_{2} + 2c_{3} + 2c_{4} \big) G_{A1} + \frac{4}{9} \big(-c_{1} - 2c_{2} + 3c_{3} + 3c_{4} \big) G_{A2} - \frac{2}{9} c_{5} G_{A3}, \\ \Phi_{P} &= \frac{2}{3} \big(c_{1} + 2c_{2} + 2c_{3} + 2c_{4} \big) G_{P1} + \frac{2}{3} c_{5} G_{P3}; \end{split}$$

59

$$\begin{split} G_{1} &= D_{dP} \left(m_{K}^{2} \right) T_{APV} \left(m_{K}^{2}, \ m_{\pi}^{2}, \ q^{2} \right) + D_{AP} \left(m_{\pi}^{2} \right) T_{APV} \left(m_{\pi}^{2}, \ m_{K}^{2}, \ q^{2} \right); \\ G_{2} &= q^{2} D_{VV} \left(q^{2} \right) T_{PPV} \left(m_{K}^{2}, \ m_{\pi}^{2}, \ q^{2} \right); \\ G_{3} &= \left(D_{PP} \left(m_{K}^{2} \right) + D_{PP} \left(m_{\pi}^{2} \right) \right) T_{PPV} \left(m_{K}^{2}, \ m_{\pi}^{2}, \ q^{2} \right); \\ G_{41} &= -2 D_{AP} \left(m_{K}^{2} \right) T_{APV} \left(m_{K}^{2}, \ m_{\pi}^{2}, \ q^{2} \right) \frac{\Pi_{1} \left(m_{K}^{2} \right) + m_{K}^{2} \Pi_{2} \left(m_{K}^{2} \right)}{\Pi_{1} \left(m_{K}^{2} \right) - \Pi_{1} \left(m_{A}^{2} \right) + m_{K}^{2} \Pi_{2} \left(m_{K}^{2} \right)} - \\ &- 2 D_{AP} \left(m_{\pi}^{2} \right) T_{APV} \left(m_{\pi}^{2}, \ m_{\pi}^{2}, \ q^{2} \right) \frac{\Pi_{1} \left(m_{\pi}^{2} \right) + m_{\pi}^{2} \Pi_{2} \left(m_{\pi}^{2} \right)}{\Pi_{1} \left(m_{\pi}^{2} \right) - \Pi_{1} \left(m_{\pi}^{2} \right) + m_{\pi}^{2} \Pi_{2} \left(m_{\pi}^{2} \right)}; \\ G_{A2} &= q^{2} D_{VV} \left(q^{2} \right) \left(\frac{D_{AP} \left(m_{\pi}^{2} \right) T_{PPV} \left(m_{\pi}^{2}, \ m_{K}^{2}, \ q^{2} \right)}{\Pi_{1} \left(m_{\pi}^{2} \right) - \Pi_{1} \left(m_{\pi}^{2} \right) - \Pi_{1} \left(m_{\pi}^{2} \right) + m_{\pi}^{2} \Pi_{2} \left(m_{\pi}^{2} \right)}; \\ G_{A3} &= \left(D_{PP} \left(m_{\pi}^{2} \right) \right) \left(\frac{D_{AP} \left(m_{\pi}^{2} \right) T_{APV} \left(m_{\pi}^{2}, \ m_{\pi}^{2}, \ q^{2} \right)}{\Pi_{1} \left(m_{\pi}^{2} \right) - \Pi_{1} \left(m_{\pi}^{2} \right) - \Pi_{1} \left(m_{\pi}^{2} \right) - \Pi_{1} \left(m_{\pi}^{2} \right) + m_{\pi}^{2} \Pi_{2} \left(m_{\pi}^{2} \right)} \right) \right) \\ G_{A3} &= \left(D_{PP} \left(m_{\pi}^{2} \right) \right) \left(\frac{D_{AP} \left(m_{\pi}^{2} \right) T_{APV} \left(m_{\pi}^{2}, \ m_{\pi}^{2}, \ q^{2} \right)}{\Pi_{1} \left(m_{\pi}^{2} \right) - \Pi_{1} \left(m_{\pi}^{2} \right) + m_{\pi}^{2} \Pi_{2} \left(m_{\pi}^{2} \right)} \right) \right) \\ G_{P1} &= \left(m_{\pi}^{2} D_{AA}^{2} \left(m_{\pi}^{2} \right) - m_{\pi}^{2} D_{AP}^{2} \left(m_{\pi}^{2} \right) \right) \frac{T_{PPV} \left(m_{\pi}^{2}, \ m_{\pi}^{2}, \ q^{2} \right)}{2 \left(D_{PP} \left(m_{\pi}^{2} \right) - D_{PP} \left(m_{\pi}^{2} \right) \right)} \right) ; \\ G_{P3} &= \left(D_{P2}^{2} \left(m_{\pi}^{2} \right) - D_{P2}^{2} \left(m_{\pi}^{2} \right) \right) \frac{T_{PPV} \left(m_{\pi}^{2}, \ m_{\pi}^{2}, \ q^{2} \right)}{2 \left(D_{PP} \left(m_{\pi}^{2} \right) - D_{PP} \left(m_{\pi}^{2} \right) \right)} \right) \right)$$

где

$$D_{AP}(p^{2}) = -\Lambda \left(A_{0} + \mu^{2} \int_{0}^{1} du \, a \left(-u \mu^{2}\right) \sqrt{1-u}\right);$$

$$D_{VV}(p^{2}) = \frac{1}{3} \left(B_{0} + \mu^{2} \int_{0}^{1} du \, b \left(-u \mu^{2}\right) \sqrt{1-u} \left(1 + \frac{u}{2}\right)\right);$$

$$D_{PP}(p^{2}) = -\Lambda^{2} \left(B_{1} + 2\mu B_{0} + 2\mu^{2} \int_{0}^{1} du \, b \left(-u \mu^{2}\right) \sqrt{1-u}\right);$$

$$D_{AA}(p^{2}) = -\Lambda^{2} \left(2B_{1} + \frac{4}{3}\mu B_{0} + \frac{4}{3}\mu^{2} \int_{0}^{1} du \, b \left(-u \mu^{2}\right) \sqrt{(1-u)^{3}}\right)$$

Здесь обозначено

$$A_0 \equiv \int_0^\infty du \, a(u), \ B_0 \equiv \int_0^\infty du \, b(u), \ B_1 \equiv \int_0^\infty du \, ub(u),$$
$$\mu^2 \equiv \frac{p^2}{4\Lambda^2}, \ Q \equiv \frac{p_1^2 \alpha_1 \alpha_3 + p_2^2 \alpha_2 \alpha_3 + q^2 \alpha_1 \alpha_2}{\Lambda^2}.$$

Учет промежуточного $\rho(770)$ -мезона сводится к умножению всех матричных элементов на величину

$$\frac{m_{\rho}^2\Pi_2(m_{\rho}^2)}{m_{\rho}^2\Pi_{VV}(m_{\rho}^2)-q^2\Pi_2(q^2)}.$$

Найденные бренчинги распадов $K^+ \to \pi^+ e^+ e^-$ и $K^+ \to \pi^+ \mu^+ \mu^-$ с учетом только диаграмм, изображенных на рис. 2, и с учетом диаграмм с промежуточными мезонами приведены в табл. 3.

Таблица З

Значения бренчингов $Br(K^+ \to \pi^+ l^+ l^-)$, полученных в МКК без учета (Br_1) и с учетом (Br_2) промежуточных адронных состояний, ×10⁻⁷

Table 3

The values of the brandings $Br(K^+ \rightarrow \pi^+ l^+ l^-)$ obtained in the QCM,

excluding (Br_1) and taking (Br_2) into account intermediate hadron states, $\times 10^{-7}$

Распад	Br _{эксперим}	Br_1	Br ₂
$K^+ \rightarrow \pi^+ e^+ e^-$	3,11 ± 0,12 [11]	$5,58\pm0,56$	$3,23 \pm 0,56$
$K^+ ightarrow \pi^+ \mu^+ \mu^-$	0,962 ± 0,025 [12]	1,15 ± 0,12	0,73 ± 0,14

Из табл. 3 видно, что значение Br_1 , определенное без учета промежуточных адронных состояний, превосходит экспериментальное примерно в 1,5 раза, что согласуется с результатами, полученными в других подходах. Учет промежуточных мезонов приводит к значению Br_2 , которое лучше согласуется с имеющейся экспериментальной картиной.

Особый интерес к распаду $K^+ \to \pi^+ l^+ l^-$ обусловлен еще и тем, что вклад в его амплитуду может давать бозон Хиггса.

Puc. 4. Диаграммы, описывающие вклад бозона Хиггса в распад $K^+ \to \pi^+ l^+ l^-$ *Fig. 4.* Diagrams describing the Higgs boson contribution to decay $K^+ \to \pi^+ l^+ l^-$

С учетом диаграмм, приведенных на рис. 4, вклад бозона Хиггса в ширину распада $K^+ \rightarrow \pi^+ l^+ l^-$ можно представить в виде

$$\Gamma_{\rm H} \left(K^+ \to \pi^+ e^+ e^- \right) = \frac{G_F^2 \alpha^2}{128 \pi^3 m_K^3} V_{ud}^2 V_{us}^2 \frac{9 h_K h_\pi}{32 \pi^2} \Lambda^4 \times \\ \times \int_{4m_e^2}^{(m_K - m_\pi)^2} dq^2 q^2 \lambda^{3/2} \left(1, \frac{m_K^2}{q^2}, \frac{m_\pi^2}{q^2} \right) \lambda^{1/2} \left(1, \frac{m_e^2}{q^2}, \frac{m_e^2}{q^2} \right) \frac{g_H^2}{\left(m_H^2 - q^2 \right)^2} \left| \Lambda^2 \Phi_{\rm H} \left(\frac{q^2}{\Lambda^2}, \frac{m_K^2}{\Lambda^2}, \frac{m_\pi^2}{\Lambda^2} \right) \right|^2 \right|^2$$

Ввиду большой массы $m_{H} \cong 125$ Г
эВ и маленькой константы взаимодействия Хиггса с фермионами

 $g_{Hff} = \frac{m_f}{v}$, где $v = \left(\sqrt{2}G_F\right)^{-1/2} \approx 246$ ГэВ, вклад в ширину распада $K^+ \to \pi^+ l^+ l^-$ пренебрежимо мал.

Заключение

Фитированием по основным константам низкоэнергетических каонных распадов (f_{π} – константы слабого распада $K \to \mu\nu$; $g_{\varphi\gamma}$ – константы перехода $\varphi \to \gamma$; $g_{K^*K\gamma}$ – константы радиационного распада $K^* \to K\gamma$; $g_{K^*K\pi}$ и $g_{\varphi KK}$ – константы сильных распадов $K^* \to K\pi$ и $\varphi \to K\overline{K}$) получен параметр, характеризующий область конфайнмента странного кварка. Оказалось, что наилучшее согласие (в смысле наименьшего суммарного отклонения) достигается при $\Lambda_s = 505$ МэВ.

Определены параметры λ'_{+} , λ'_{-} , λ'_{0} и показано, что учет промежуточного векторного мезона K^{*} значительно приближает полученные значения к экспериментальным. Также с 10 % точностью удалось воспроизвести киральное соотношение Каллана – Треймана – Матура – Окубо – Пандита.

Вычислены бренчинги распадов $K^+ \to \pi^+ e^+ e^-$ и $K^+ \to \pi^+ \mu^+ \mu^-$. Установлено, что последовательный учет промежуточных векторных, псевдоскалярных и аксиальных мезонов приводит к значительному уменьшению бренчингов, что хорошо согласуется с экспериментальными данными.

Библиографические ссылки/References

1. Buchalla G, Komatsubara TK, Muheim F, Silvestrini L, Artuso M, Asneret DM, et al. *B*, *D* and *K* decays. *European Physical Journal C*. 2008;57(1–2):309–492. DOI: 10.1140/epjc/s10052-008-0716-1.

2. Portoles J. Important rare kaon decays. Nuclear Physics B: Proceedings Supplements. 2012;225–227:254–259. DOI: 10.1016/j. nuclphysbps.2012.02.053.

3. Komasubara TK. Experiments with K-meson decays. Progress in Particle and Nuclear Physics. 2012;67:995–1018. DOI: 10.1016/j.ppnp.2012.04.001.

4. Callan CG, Treiman SB. Equal time commutators and K-meson decays. *Physical Review Letters*. 1966;16:153–157. DOI: 10.1103/PhysRevLett.16.153.

5. Mattur V, Okubo S, Pandit L. Algebra of currents and K_{l_3} decay. *Physical Review Letters*. 1966;16(9):371–374. DOI: 10.1103/PhysRevLett.16.371.

6. Efimov GV, Ivanov MA. The Quark Confinement Model of Hadrons. London: IOP Publishing Ltd.; 1993.

7. Beringer J, Arguin J-F, Barnett RM, Copic K, Dahl O, Groom DE, et al. Review of particle physics particle data group. *Physical Review D*. 2012;86(1):010001. DOI: 10.1103/PhysRevD.86.010001.

8. Obraztsov V, «OKA» collaboration. High statistics measurement of the $K^+ \rightarrow \pi^0 e^+ \nu$ (Ke3) decay formfactors. *Nuclear and Particle Physics Proceedings*. 2016;273–275:1330–1333. DOI: 10.1016/j.nuclphysbps.2015.09.213.

9. Shifman MA, Vainstein AI, Zakharov VI. Asymptotic freedom, light quarks and the origin of the $\Delta T = \frac{1}{2}$ rule in the non-lep-

tonic decays of strange particles. *Nuclear Physics B*. 1976;120:316–324. DOI: 10.1016/0550-3213(77)90046-3. 10. Gilman FJ, Wise MB. $K \rightarrow \pi e^+e^-$ in the Six Quark Model. *Physical Review D*. 1980;21:3150.

11. Batley JR, Culling AJ, Kalmus G, Lazzeroni C, Munday DJ, Slater MW, et al. [NA48/2 collaboration]. Precise measurement of the $K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$ decay. *Physics Letters B*. 2009;677(5):246–254. DOI: 10.1016/j.physletb.2009.05.040.

12. Batley JR, Kalmus G, Lazzeroni C, Munday DJ, Slater MW, Wotton SA, et al. [NA48/2 collaboration]. New measurement of the $K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ decay. *Physics Letters B*. 2011;697:107–115. DOI: 10.1016/j.physletb.2011.01.042.

Статья поступила в редколлегию 07.12.2018. Received by editorial board 07.12.2018.