УДК 621.92

РАЗРАБОТКА И ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ИЗГОТОВЛЕНИЯ ШЛИФОВАЛЬНЫХ КРУГОВ ИЗ КУБИЧЕСКОГО НИТРИДА БОРА НА КЕРАМИЧЕСКОЙ СВЯЗКЕ

М. П. КУПРЕЕВ, Е. Н. ЛЕОНОВИЧ

Учреждение образования «Гомельский государственный университет имени Франциска Скорины», Республика Беларусь

Ввеление

Технический прогресс и эффективность производства в современном машиностроении неразрывно связаны с широким применением новых видов абразивных материалов и инструментов из них. Одним из таких материалов является синтетический материал на основе кубического нитрида бора — эльбор. Применяя абразивный инструмент на основе эльбора, получают оптимальные результаты при шлифовании высоколегированных, конструкционных и инструментальных сталей.

Приобретаемый предприятиями Республики Беларусь шлифовальный инструмент из кубического нитрида бора выпускается в основном в России. Вместе с тем, в Государственном научно-производственном объединении «Государственный научно-практический центр НАН Беларуси по материаловедению» отработана технология изготовления порошков кубического нитрида бора, не уступающих по качеству российским. В связи с этим разработка и исследование абразивного инструмента из производимых в Республике Беларусь порошков кубического нитрида бора является актуальной задачей.

Постановка задачи

Режущие свойства абразивного инструмента, в том числе и из порошков эльбора, напрямую зависят от связки, применяемой для закрепления зерен в рабочем слое. Экономически наиболее выгодно при изготовлении инструмента, предназначенного для операций чистого и доводочного шлифования, использовать органическую связку. Однако в процесс шлифования деталей из относительно вязких материалов (сталей, сплавов, цветных металлов), при высоких рабочих скоростях и подачах в месте контакта инструмента и обрабатываемой детали развивается значительная температура (порядка 1200 °C). Поэтому органическая связка не позволяет использовать основное преимущество эльбора перед алмазом — его термостойкость.

Возможность эффективно использовать все свойства эльбора дает керамическая связка, обладающая высокой температурой плавления, водоупорностью, химической стойкостью, жесткостью и относительно высокой прочностью на разрыв.

Принято считать, что наиболее прочное связывание зерна шлифовального материала керамической связкой обычно достигается на основе взаимодействия при высокотемпературном обжиге инструмента (1200–1300 °C). Однако в настоящее время особенности синтеза и обогащения кубического нитрида бора приводят к тому, что наиболее характерным шлифзерном являются плотные агрегаты, где мелкие кристаллы связаны, как правило, гексагональным нитридом бора. Поэтому использование активно действующих керамических связок нерационально, так как они привели бы к разложению гексагонального нитрида бора и ослаблению прочности его зерен.

Легкоплавкие керамические связки для инструмента из эльбора были разработаны на заводе «Ильич», а также в Государственном научно-исследовательском институте абразивов и шлифования [1], [2] (Российская Федерация). Обладая хорошей смачиваемостью зерен эльбора, они обеспечивают возможность получения значительной прочности инструмента при сравнительно низких температурах обжига (950–1000 °C).

Однако указанные в литературных источниках пределы варьирования концентрации компонентов и элементного состава довольно широки и не позволяют выявить оптимальные составы связок и технологические режимы изготовления на их основе инструмента из порошков кубического нитрида бора. В связи с этим целью исследований являлось изучение свойств легкоплавких керамических связок, а также режимов изготовления на их основе шлифовальных кругов из выпускаемых в Республике Беларусь порошков эльбора. Для повышения эффективности исследований работоспособность экспериментальных образцов шлифовальных кругов определялась их испытанием в условиях производства.

Методы испытаний

Наибольшее значение для производства инструмента из эльбора имеют такие физико-механические свойства керамической связки, как вязкость, термическое расширение, твердость, прочность на изгиб, смачивание эльбора.

Влияние различных оксидов на термическое расширение стекловидных связок и смачивание ими эльбора изучено в работах [3], [4]. Приведенные в них данные учитывались нами при варьировании состава керамической связки.

Для определения вязкости связок чаще всего пользуются следующими методами: методом растекания расплава по плоскости для маловязких связок (при температуре обжига изделий) и методом деформации под нагрузкой – для высоковязких связок. Мы воспользовались методом растекания расплава по горизонтальной поверхности. Он разработан для плавящихся связок Л. Ф. Рентелем и является более точным, простым и удобным [5]. Указанным методом непосредственно определяется не вязкость расплава связки, а растекаемость (текучесть) – величина, обратная вязкости. За растекаемость принимается величина, равная $D/D_0 \times 100 \%$, где D – диаметр основания образца таблетки при заданной температуре, D_0 – исходный диаметр основания образца таблетки (при комнатной температуре).

Микротвердость связки определялась на приборе ПМТ-3 по общепринятой методике при нагрузке 0,15 кг на образцах из отожженной связки с полированной механическим способом поверхностью.

Эксперименты проводились на цилиндрических образцах (таблетках) диаметром 16 мм и высотою 16 мм. Порядок их приготовления включал следующие операции. Вначале в течение 2 часов производилось перемешивание компонентов связки в шаровой мельнице и последующее просеивание через сито с размером ячейки 0,1 мм. Затем просеянная связка слегка увлажнялась водой и из нее способом двухстороннего прессования при давлении 20 МПа формовались экспериментальные образцы. Далее отформованные цилиндрики высушивались и устанавливались на плитки из огнеупорного непористого материала. Предварительно на поверхности этих плиток была нанесена прямоугольная координатная сетка, выполненная с шагом 10 мм. Образцы в строго вертикальном положении размещались в электрической печи марки СНОЛ 1,3.

Повышение температуры в печи, начиная с 300 °C, осуществлялось со скоростью 100 градусов/час, конечная температура – 1100 °C. По мере увеличения температуры цилиндрические таблетки вначале деформировались, а затем постепенно начинали

плавиться и растекаться по огнеупорной плитке. Начало и степень их растекания зависела от состава связки. Их состояние при различных температурах фиксировалось с помощью фотосъемки. Фотографии обрабатывались, и с помощью координатной сетки определялся диаметр основания таблеток при температурах фотосъемки. После достижения в печи температуры 1100 °C она выключалась, и образцы вместе с печью охлаждались до комнатной температуры.

Определение предела прочности связки на изгиб проводилось на малогабаритных образцах размером 5 x 5 x 50 мм на испытательной машине P-0,5 по схеме, реализующей чистый изгиб в рабочей части образца (диапазон нагрузок от 0 до 980 H).

Результаты исследования и их обсуждение

Изучались керамические связки, содержащие в шихте (по массе): оксид кремния $(60-70\ \%)$ и оксид алюминия $(20-30\ \%)$ в виде порошков различной дисперсности, а также борную кислоту $-15-20\ \%$, фтористый натрий $-3-10\ \%$ и соли натрия, калия, лития - в количестве $3-8\ \%$ каждой. Борная кислота, фтористый натрий и соли натрия, калия, лития вводились в состав связок как в порошкообразном виде, так и в виде водных растворов.

Известно [1], [2], [5], что снижение температуры плавления достигается введением в керамическую связку оксида лития и фтора. Однако нет сведений о степени их влияния на свойства связки определенного состава. Это обусловило необходимость проведения эксперимента, представленного в таблице. Вначале определены начальные температуры оплавления и растекания связки следующего состава (мас. %): оксид кремния (63 %), оксид алюминия (20 %), борная кислота (15 %), натрий углекислый (12 %) (опыт 1). Этот состав принят за основу и не содержит фтор и оксид лития. Температура начала растекания этой связки достаточно высокая (около 1170 °C), что согласуется с данными литературных источников по связкам аналогичного состава.

Затем из связки был полностью исключен натрий, а вместо него введен литий в виде углекислой соли (опыты 2, 3), или фтористый натрий (опыты 4, 5). В опыте 3 массовое содержание лития в связке соответствовало содержанию в ней натрия в опыте 1.

Затем определено совместное влияние лития и фтора на плавкость связки (опыты 6, 7).

Номер	Содержание в связке, мас. %			Температура, °С		Разность температур
	NaHCO ₃	Li ₂ CO ₃	NaF	Начало оплавления образца	Начало растекания	начала растекания и оплавления, °C
1	12	_	_	1100	1170	70
2	_	7	_	1095	1105	10
3	_	18	_	1045	1055	10
4	_	-	6	990	1100	110
5	_	-	12	880	930	50
6	_	7	6	810	820	10
7		1./	12	800	210	10

Влияние лития и фтористого натрия на плавкость керамической связки

Установлено, что литий уменьшает температуру плавления связки на 50–100 °C по сравнению с натрием и значительно снижает ее вязкостные свойства. Так, в опытах 1 и 3 количество вводимых в состав связки лития и натрия было одинаковым, а температура оплавления и растекания связки с литием была на 50–100 °C меньше и разность температур начала растекания и оплавления связки составляет 10 °C, а не 70 °C, как в опыте 1 с натрием. Это, по-видимому, обусловлено тем, что ионы лития имеют меньший ионный радиус по сравнению с ионами натрия, поэтому они легче встраиваются в неупорядоченную решетку многокомпонентной стекловидной связки.

Фтор еще в большей степени, чем литий, снижает температуру начала плавления связки. Так в опытах 1 и 4 количество натрия было одинаковым, но присутствие в опыте 4 фтора снизило температуру начала ее оплавления до 990 °С. Но связки с фтором (опыты 4, 5) отличаются более высокой температурой растекания, что характеризует их как более вязкие.

Совместное введение в связку лития и фтористого натрия снижает температуру ее растекания до 800–820 °С (опыты 6, 7). При этом, хотя в опыте 7 указанных компонентов было введено в 2 раза больше, чем в опыте 6, снижение температуры растекания оказалось незначительным. Это свидетельствует о наличии предельной концентрации этих элементов в связке.

Используя полученные данные, для изготовления инструмента из эльбора были выбраны два состава керамической связки, отличающиеся концентрацией углекислого лития и фтористого натрия. Содержание компонентов в них соответствовало составу, указанному в начале раздела. Условно эти связки были названы С10 и С11.

На рис. 1 представлено состояние связок С10 и С11 при различных температурах.

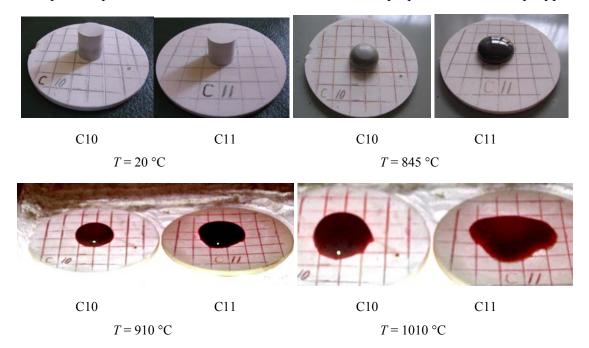


Рис. 1. Состояние керамических связок С10 и С11 при различных температурах в печи

Воспользовавшись полученными результатами наблюдения, была определена зависимость текучести керамических связок С10 и С11 от температуры (рис. 2).

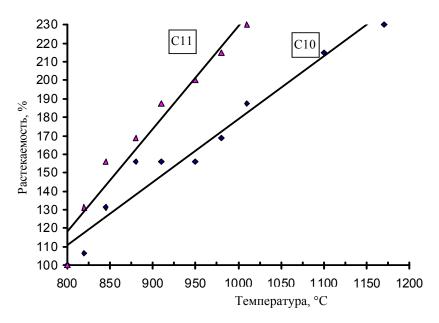


Рис. 2. Изменение текучести связок с повышением температуры обжига

Как видно из рис. 2, связка C11 более легкоплавкая, чем связка C10. В интервале температур 800–1100 °C нарастание текучести происходит быстрее у связки C11 и медленнее у связки C10.

Известно, что абразивные инструменты на плавящихся связках должны обжигаться при тех температурах, при которых их текучесть составляет 150–230 %. С учетом этого из рис. 2 видно, что для связки С11 наиболее оптимальный интервал термообработки изделий должен находиться в пределах 850–1000 °C, а для связки C10-1000–1100 °C.

Проведенные исследования позволяют прогнозировать оптимальную температуру спекания шлифовальных кругов из эльбора. Известно, что в эльборовых кругах до 50 % по массе содержится мелкозернистый порошок электрокорунда или карбида кремния. Поэтому в процессе обжига изделий вязкость реакционно-способных связок будет меняться – сначала она должна падать, а затем повышаться за счет обогащения $A1_2O_3$ (при растворении корунда) и далее, при значительном повышении температуры, может опять падать. Исходя из сказанного, установленное изменение вязкости у чистых связок С10 и С11 (исходного состава) может не отражать действительных значений величины вязкости связки в изделиях при их обжиге. Однако, зная реакционную способность исследуемой связки и изменение ее вязкости с развитием температуры, можно судить о поведении этой связки в процессе обжига шлифовальных кругов. Предполагается, что менее активная связка С10 будет в меньшей степени растворять мелкозернистый электрокорунд, а значит и меньше будет «засаливаться» инструмент на ее основе. Изделия, приготовленные на такой связке, будут менее чувствительны к колебаниям температуры обжига, так как нарастание текучести у этой связки более плавное. Но есть опасность, что она не сможет обеспечить необходимой прочности инструмента, и он может «сыпаться» и разрываться.

Для связки C11 есть опасность «застекловывания» шлифовальных кругов, изготовленных на ее основе, при более высоких температурах их спекания.

Микротвердость связок составляет 4,2–6,5 ГПа, предел прочности при изгибе – 0.07–0.14 ГПа.

На связках C10 и C11 изготовлены экспериментальные образцы шлифовальных кругов типа ПП различных размеров в количестве 60 шт. с 50%-й концентрацией ку-

бического нитрида бора. Использовался порошок эльбора марки ЛКВ 40 зернистостью 40–50 мкм, 50–63 мкм, 63–80 мкм, 80–100 мкм, произведенный в Государственном научно-производственном объединении «Государственный научно-практический центр НАН Беларуси по материаловедению». Температура спекания кругов составляла 1000 °С, продолжительность выдержки при этой температуре – 10 минут. Образцы эльборовых шлифовальных кругов испытывались на ПО «МТЗ». Установлено, что обе связки обеспечивают необходимую работоспособность изготовленного на их основе инструмента. Но инструмент на связке С11 отличается повышенной стойкостью. Это, по-видимому, обусловлено тем, что при 1000 °С связка С11 характеризуется большей текучестью, и это способствует более прочному связыванию и закреплению порошка эльбора в объеме шлифовального круга.

Заключение

Изучены свойства керамической связки, содержащей в шихте (по массе): оксид кремния -60–70 %, оксид алюминия -20–30 %, борную кислоту -15–20 %, фтористый натрий -3–10 %, а также соли натрия, калия, лития - в количестве 3–8 % каждой. Установлено, что литий уменьшает температуру плавления связки на 50–100 градусов. Фтористый натрий еще в большей степени, чем литий, снижает температуру начала плавления связки. Совместное введение в связку лития и фтористого натрия уменьшает температуру ее плавления до 800 °C.

Определен состав связки, обладающей 230%-й текучестью при 1000 °С и обеспечивающей повышенную стойкость инструмента из кубического нитрида бора. Высокие прочностные и режущие свойства шлифовальных кругов на этой связке подтверждены результатами производственных испытаний.

Литература

- 1. Эфрос, М. Г. Керамическая связка для инструмента из эльбора / М. Г. Эфрос, В. С. Миронюк, Б. А. Брянцев // Химия и технология силикат. материалов. Ленинград : Наука, 1971. С. 17–23.
- 2. Эфрос, М. Г. Современные абразивные инструменты / М. Г. Эфрос, В. С. Миронюк; под ред. З. И. Кремня. 3-е изд., перераб. и доп. Ленинград: Машиностроение, 1987. С. 31–34, 76–83.
- 3. Пащенко, А. А. Взаимодействие алмаза, кубического нитрида бора и графита с расплавами стекла / А. А. Пащенко, Б. М. Емельянов, А. Е. Шило. Москва : ДАН СССР, 1970. Т. 190, № 3. С. 645–647.
- 4. Цывьян, А. М. Выбор состава связки для абразивного инструмента из электрокорунда / А. М. Цывьян // Стекло и керамика. -2001. № 1. C. 28–30.
- 5. Любомудров, В. Н. Абразивные инструменты и их изготовление / В. Н. Любомудров, Н. Н. Васильев, Б. Н. Фальковский. Москва : Машгиз, 1991. С. 42–51, 126.

Получено 23.10.2008 г.