ТРЕХМЕРНЫЕ СВОЙСТВА ТЕПЛОВОГО ПОТОКА НА ФАЗОВОЙ ГРАНИЦЕ КРИСТАЛЛИЗАЦИИ

В. А. Климович

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель И. А. Концевой

Процессы высокоскоростной кристаллизации глубоко переохлажденного расплава служат основой перспективных способов получения материалов с новыми функциональными свойствами. В настоящее время в экспериментальных условиях достигнуты скорости роста 20–70 м/с при глубине переохлаждения расплава до 300 К. В данной работе рассматривается рост кристалла из однокомпонентного переохлажденного расплава с позиций теории локально-неравновесного теплопереноса. В общей постановке трехмерная нестационарная задача очень сложна. Здесь мы применяем более простой (полуобратный) подход к проблеме, позволяющий выяснить многие существенные детали процесса формирования теплового поля на поверхности роста кристалла, а именно: рассматриваем фазовую границу стационарной геометрической формы, перемещающуюся с постоянной скоростью. Этот случай характерен для стадии установившегося во времени режима роста.

Релаксационная модель Максвелла переноса тепла в неподвижной среде состоит из уравнения для теплового потока и уравнения баланса энергии:

$$\mathbf{q} + \gamma \frac{\partial \mathbf{q}}{\partial t} = -\lambda \operatorname{grad} T; \quad \frac{\partial u}{\partial t} + \operatorname{div} \mathbf{q} = q_{v}; \quad du(T) / dt = c,$$

где T – температура; $\mathbf{q}(q_1, q_2, q_3)$ – вектор удельного теплового потока; λ – коэффициент теплопроводности; c – объемная теплоемкость; γ – время релаксации теплового потока; q_v – мощность внутренних источников энергии; u – плотность энергии. В трехмерном пространстве (x, y, z) фазовую границу ($\Phi \Gamma$) кристаллизации моделируем поверхностью сильного разрыва теплового поля. На поверхности сильного разрыва f(x, y, z, t) = 0 условия динамической совместности получаем обычным образом:

$$N(u_{j} - u_{*}) - Q = (\mathbf{qn})_{j} = (\mathbf{qn})_{*}; \quad (\mathbf{qs})_{j} = (\mathbf{qs})_{*}; \quad (\mathbf{qb})_{j} = (\mathbf{qb})_{*}; \quad (1)$$

$$N = -\frac{\partial f / \partial t}{|\text{grad}f|}; \quad Q = L\left(N + \gamma_j \frac{dN}{dt}\right).$$

где (1) – баланс энергии на $\Phi\Gamma$ и условия непрерывности касательных и бинормальных к $\Phi\Gamma$ компонент вектора теплового потока; L – теплота фазового перехода единицы объема вещества; N = Nn – скорость перемещения $\Phi\Gamma$. Звездочкой отмечены параметры расплава; индекс j указывает, что значение функции определено на правой стороне разрыва, в твердой фазе. Подробности вывода и обсуждение соотношений (1) даны в [1]. Отметим, что при записи формул (1) используется ортогональный базис s, n, b, соответствующий касательной, главной нормали и бинормали к поверхности $\Phi\Gamma$.

Следуя работе [2], обсудим вопрос о влиянии морфологических свойств поверхности роста на характер распределения теплового потока $\mathbf{q}_* = \mathbf{q}_*^{(s)} + \mathbf{q}_*^{(n)}$, поступающего из жидкой к твердой фазе. Для касательной и нормальной компонент имеем формулы:

$$\mathbf{q}_{*}^{(s)} = \mathbf{q}_{*} \cos \beta_{*}; \ \mathbf{q}_{*}^{(n)} = \mathbf{q}_{*} \sin \beta_{*},$$

см. формулы (1). Пусть поверхность $\Phi\Gamma$ имеет вид $f(x, y, z, t = t_0) = 0$, $t_0 \ge 0$, тогда, запишем:

$$\sin \beta_* = \frac{\partial f / \partial x}{|\operatorname{grad} f|}; \quad \cos \beta_* = \left[1 - \sin^2 \beta_*\right]^{1/2} = \frac{\left[\left(\partial f / \partial y\right)^2 + \left(\partial f / \partial z\right)^2\right]^{1/2}}{|\operatorname{grad} f|}.$$

Рассмотрим характерные примеры поверхности роста. Расчеты проведены в безразмерных переменных и представлены на рис. 1–3.

Рис. 1. Влияние заострения вершины дендрита на распределение нормальной и касательной компонент теплового потока **q**_{*}. Двуполостный гиперболоид: A₁ = 1; A₂ = 1; A₃ = 2

Рис. 2. Влияние заострения вершины дендрита на распределение нормальной и касательной компонент теплового потока \mathbf{q}_{\star} .

Гиперболический параболоид: $A_1 = 1$; $A_2 = 1$; $A_3 = 2$

Рис. 3. Влияние заострения вершины дендрита на распределение нормальной и касательной компонент теплового потока \mathbf{q}_{\star} .

Однополостный гиперболоид: $A_1 = 1$; $A_2 = 1$; $A_3 = 1,5$

Пример 1. В качестве выпуклой поверхности возьмем двуполостный гиперболоид:

$$f \equiv \frac{x^2}{A_1^2} - \frac{y^2}{A_2^2} - \frac{z^2}{A_3^2} - 1 = 0.$$

Здесь мы работаем с одной из двух разобщенных полостей. Для сравнения приведем пример расчета для $\Phi\Gamma$, имеющей вогнутость. Такой случай относится к стадии втягивания внутрь вершины дендрита, т. е. это состояние поверхности роста, предшествующее расщеплению вершины. Подробности, относящиеся к изменению отсчета углов β_* , β_i очевидны и здесь не приводятся.

Пример 2. Гиперболический параболоид:

$$f \equiv x - \frac{y^2}{2A_2} + \frac{z^2}{2A_3} = 0; A_2 > 0, A_3 > 0.$$

Пример 3. Однополостный гиперболоид:

$$f \equiv \frac{x^2}{A_1^2} - \frac{y^2}{A_2^2} - \frac{z^2}{A_3^2} + 1 = 0.$$

В этом случае расчеты проведены для части поверхности, показанной на рис. 3, а.

Хорошо видно, что по мере возрастания кривизны на вершине дендрита резко увеличивается нормальная к поверхности роста компонента $q_*^{(n)}$. Эта закономерность отчетливо прослеживается для всех рассмотренных примеров.

Работа выполнена в рамках госпрограммы «Энергетические системы, процессы и технологии». Научный руководитель проекта – профессор О. Н. Шабловский.

Литература

- Шабловский, О. Н. Тепловая градиентная катастрофа и рост двумерного свободного дендрита в переохлажденном расплаве / О. Н. Шабловский // Прикладная физика. 2007. № 3. С. 29–37.
- Шабловский, О. Н. Локально-неравновесные свойства фазовой границы высокоскоростной кристаллизации переохлажденного расплава. Ч. 2. Формирование теплового потока на поверхности дендрита / О. Н. Шабловский, Д. Г. Кроль, И. А. Концевой // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. – 2017. – № 4. – С. 75–83.
- Шабловский, О. Н. Эволюция и неустойчивость линии роста дендрита в переохлажденном расплаве / О. Н. Шабловский, Д. Г. Кроль, И. А. Концевой // Ученые зап. Забайкал. гос. ун-та. Физика. Математика. Техника. Технология. – 2018. – Т. 13, № 4. – С. 56–68.