## ПРИМЕНЕНИЕ РАБОЧИХ ВЕЩЕСТВ «НОВОГО ПОКОЛЕНИЯ» В ИСПАРИТЕЛЯХ ХОЛОДИЛЬНЫХ И ТЕПЛОНАСОСНЫХ УСТАНОВОК

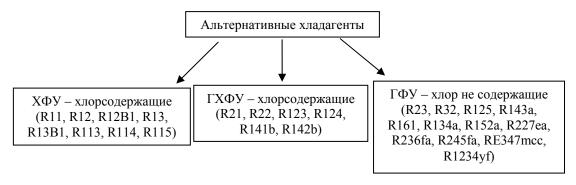
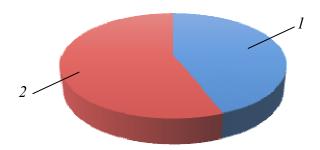
## О. А. Кныш

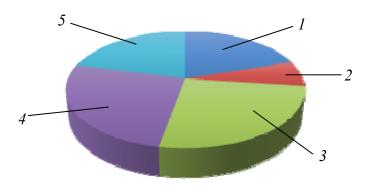
Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Е. Н. Макеева

В настоящее время выбор энергетически эффективных и экологически безопасных хладагентов является важным фактором при проектировании различных видов холодильных машин. В первую очередь это вызвано негативным влиянием некоторых хладагентов на окружающую среду, что отображено в Монреальском и Киотском протоколах. В них обосновывается необходимость применения рабочих веществ с нулевым влиянием на озоновый слой (ODP) и веществ с низким потенциалом глобального потепления (GWP). В 2015 г. Всемирной конференцией ООН по климату было подписано соглашение, целью которого является удержание глобального потепления на планете в пределах 1,5–2 °С, в связи с чем требуются решения по улучшению эффективности энергетических установок.

Целью работы является энергетическое и экологическое обоснование применения озонобезопасных хладагентов «нового поколения»; сравнение циклов холодильных и теплонасосных установок для предлагаемых озонобезопасных хладагентов R1234yf, R513a, R448a и заменяемых хладагентов R134a и R404a.



Рис. 1. Классификация альтернативных хладагентов

В качестве исследуемых рабочих веществ были выбраны хладагенты R513a, R448a, R1234yf, R134a, R404a. R513a – азеотропная смесь, предназначенная для замены R134a. Главными преимуществами хладагента является: значительное снижение общей заправки холодильных систем хладагентом одновременно с сохранением необходимого уровня безопасности, характерного для ГФУ; значительное сокращение потенциальных утечек из холодильной системы; уменьшение энергопотребления по сравнению с распространенной в настоящее время системой непосредственного кипения R134a.



*Puc. 2.* Состав смесевого хладагента R513a: 1 – R134a (44 %); 2 – R1234yf (56 %)

R448a — азеотропная смесь, предназначенная для замены R404a. Растворим в синтетических маслах. При использовании хладагента в существующих системах следует принимать во внимание температурный глайд от 5 до 6 K, так как это оказывает влияние на производительность испарителя и конденсатора.

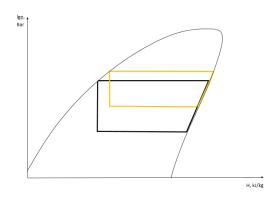


Puc.~3. Состав смесевого хладагента R448a: I-R1234yf (20 %); 2-R1234ez (7 %); 3-R32 (26 %); 4-R125 (26 %); 5-R134a (21 %)

R1234yf – прозрачный, бесцветный, сжиженный по давлением газ, нетоксичен. Классифицируется как слабовоспламеняемый, однако испытания показали, что этот газ не возгорается в обычных условиях. Распадается на безвредные компоненты и исчезает из атмосферы в течение 11 дней, в отличие от хладагента R134a, который остается в окружающей среде около 13 лет.

Таблица 1
Теплофизические и экологические показатели исследуемых хладагентов

| Показатели                               | R513a  | R134a | R404a | R1234yf | R448a  |
|------------------------------------------|--------|-------|-------|---------|--------|
| Молекулярная масса, г/моль               | 108,4  | 102   | 97,6  | 114,04  | 86,3   |
| Температура кипения при 0,1013 МПа, °C   | -28    | -26,1 | -46,3 | -29,49  | -46,12 |
| Критическая температура, °С              | 96,5   | 101   | 72    | 94,7    | 82,68  |
| Критическое давление, МПа                | 3,766  | 4,07  | 3,78  | 3,382   | 4,595  |
| Критическая плотность, кг/м <sup>2</sup> | 490,89 | 512   | 484,5 | 476     | 477    |


Окончание табл. 1

| Показатели                                                                 | R513a  | R134a       | R404a  | R1234yf | R448a  |
|----------------------------------------------------------------------------|--------|-------------|--------|---------|--------|
| Скрытая теплота парообразования при температуре кипения, кДж/кг            | 192,2  | 215,9–217,1 | 175,28 | 195,4   | 241,48 |
| Удельная теплоемкость при 25 °C, кДж/(кг·К): жидкости/пара при давлении    | 1,406  | 1,46        | 1,502  | 1,383   | 1,555  |
| 0,1013 МПа                                                                 | 0,822  | 0,858       | 0,871  | 0,905   | 0,85   |
| Плотность насыщенного пара при температуре 25 °C, кг/м <sup>3</sup>        | 35,4   | 5,28        | 5,3    | 5,98    | 4,703  |
| Плотность насыщенной жидкости при температуре 25 °C, $\kappa \Gamma / M^3$ | 1140   | 1206        | 1010   | 1092    | 1097   |
| Коэффициент теплопроводности при 25 °C, $10^{-3}$ Па · с:                  | 0,0702 | 0,082       | 0,0746 | 0,064   | 0,081  |
| жидкости/пара при давлении 0,1013 МПа                                      | 0,0136 | 0,0145      | 0,012  | 0,014   | 0,014  |
| Класс безопасности (стандарт ASHRAE* 34)                                   | A1     | A1          | A1     | A2L     | A1     |
| ODP                                                                        | 0      | 0           | 0      | 0       | 0      |
| GWP AR4                                                                    | 600    | 1430        | 3922   | 4       | 1273   |
| COP, %                                                                     | 108    | 108         | 100    | 107     | 108    |

## Исходные данные

Для построения циклов процессов, характеризующих работу холодильных установок, были приняты следующие температуры: температура кипения -15 °C, температура конденсации 30 °C.

Для построения циклов процессов, характеризующих работу теплонасосных установок: температура кипения 5 °C, температура конденсации 40 °C.



Puc. 4. Цикл холодильной и теплонасосной установки на примере хладагента R1234yf

Было осуществлено сравнение циклов холодильных и теплонасосных установок для предлагаемых озонобезопасных хладагентов R1234yf, R513a, R448a и заменяемых хладагентов R134a, R404a.

 Таблица 2

 Результаты сравнения циклов холодильных и теплонасосных установок

|           | Показатель                                               |     |                                        |     |                                                                               |       |                         |  |
|-----------|----------------------------------------------------------|-----|----------------------------------------|-----|-------------------------------------------------------------------------------|-------|-------------------------|--|
| Хладагент | Удельная массовая холодопроизводительность, $q_0$ кДж/кг |     | Удельная работа сжатия, $l_k$ , кДж/кг |     | $\mathbf{X}$ олодильный коэффициент, $\mathbf{\varepsilon} = \frac{q_0}{l_k}$ |       | $COP = \varepsilon + 1$ |  |
|           | XM                                                       | ТНУ | XM                                     | ТНУ | XM                                                                            | ТНУ   | ТНУ                     |  |
| R134a     | 145                                                      | 142 | 25                                     | 19  | 5,8                                                                           | 7,47  | 8,47                    |  |
| R404a     | 115                                                      | 107 | 22                                     | 21  | 5,3                                                                           | 5,1   | 6,1                     |  |
| R1234yf   | 114                                                      | 112 | 28                                     | 21  | 4,1                                                                           | 5,33  | 6,33                    |  |
| R513a     | 129                                                      | 126 | 26                                     | 20  | 4,96                                                                          | 5,6   | 6,6                     |  |
| R448a     | 153                                                      | 148 | 22                                     | 14  | 6,96                                                                          | 10,57 | 11,57                   |  |

Как следует из табл. 2, предлагаемые озонобезопасные хладагенты практически не уступают заменяемым хладагентам по основным показателям эффективности работы холодильной машины: удельной массовой холодопроизводительности и холодильного коэффициента. При использовании предлагаемых хладагентов массовый расход уменьшится в 1,8 раза, потребляемая мощность теплонасосных и холодильных систем уменьшится в 1,4 раза, однако стоимость данных хладагентов в 10 раз больше уже используемых хладагентов.