УДК 621.9.02

ВЛИЯНИЕ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ БАЗОВЫХ ПОВЕРХНОСТЕЙ ПЛАСТИН СБОРНОГО СВЕРЛА НА СТАТИЧЕСКИЕ ПОКАЗАТЕЛИ ПРИ ВРЕЗАНИИ

М. И. МИХАЙЛОВ, Е. В. ДЕМЧУК

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Ключевые слова: сборные сверла, напряженно-деформированное состояние, композиционные покрытия, статические показатели.

Введение

Сборные сверла находят все более широкое применение в машиностроении при получении отверстий как в сплошном материале, так и в листовых конструкциях.

Рамные конструкции состоят из сварных листовых соединений, к которым крепятся механически различные элементы. В результате требуется получение точных отверстий в листовых пакетах. Обработка листовых пакетов затруднена переходными процессами. Процесс врезания недостаточно изучен из-за сложности взаимодействия инструмента и заготовки, также как и процесс выхода инструмента.

Исследования напряженного состояния сборного инструмента, выполненные в 70-е гг., производились на оптически прозрачных моделях, которые позволили определить качественный характер распределения напряжений в режущей части инструмента [1]. Однако использование плоских моделей, большая трудоемкость изготовления моделей и обработки полученных результатов не позволяет более широко использовать этот метод.

Анализ литературы по исследованиям сборного инструмента в условиях статических нагрузок выявил, что большой вклад внесли исследования жесткости в УДН им. П. Лумумбы [2]–[6]. Многими авторами жесткость сборного инструмента изучалась на специально разработанных стендах, на которых определялась доля смещения режущей кромки инструмента в результате смещения отдельных элементов или в процессе резания, а также численным моделированием. По результатам измерений перемещений оценивалось влияние жесткости отдельных элементов на суммарную жесткость инструмента. Сила, с которой нагружался инструмент, соответствовала результирующей силе резания. Перед испытаниями на жесткость производился контроль прямолинейности и шероховатости опорной поверхности пластины и гнезда в державке под пластину. Это позволяло оценивать как конструктивный вариант исполнения инструмента, так и качество его изготовления.

В процессе врезания возникают переменные силы резания, которые вызывают вибрации элементов сборного инструмента. Для уменьшения вибраций режущие пластины располагают симметрично в корпусе инструмента.

Цель работы – повышение статической точности сборных сверл.

Методика исследования

Наибольшее влияние на напряженно-деформированное состояние (НДС) инструмента оказывает расположение сменных многогранных пластин (СМП) в его корпусе и система их крепления, что создает сложные граничные условия [6]–[11]. В соответствии с этим исследование НДС сборного сверла производилось числен-

ным методом конечных элементов. При расчете зона обработки была разделена на конечные элементы (рис. 1).

Рис. 1. Расчетные модели: *a* – 3D-модель; *б* – ее конечно-элементное представление; *в* – исследуемые сечения

Основными задачами при проведении исследований были:

- построение 3D-модели инструмента в программном комплексе Ansys;

- определение статических деформаций в модели осевого инструмента;
- определение распределений напряжений и перемещений.

Для проведения расчетов была разработана 3D-модель инструмента (рис. 1, a), а также произведено ее разделение на конечные элементы (рис. 1, δ).

Исходными данными для расчетов являлись значения момента и силы резания, а также геометрические параметры инструмента, физико-механические и теплофизические свойства материала режущей части.

Параметры конечно-элементной сетки приведены в таблице.

Параметр	Значение
Тип сетки	Сетка на твердом теле
Используемое разбиение	Стандартная сетка
Сглаживание поверхности	Вкл
Проверка Якобиана	4 Points
Размер элемента	0,1 мм

Параметры конечно-элементной сетки

Разработанная модель сборного сверла и заготовки закреплялась по боковым поверхностям заготовки (рис. 1, *a*), режущие пластины закреплялись винтами, передняя и задняя поверхности контактировали с заготовкой (рис. 1, *б*, *в*). Расчеты производились поэтапно. На первом этапе выполнялись расчеты с полным контактом СМП и корпуса инструмента. На втором этапе базовые грани СМП покрывались композиционным материалом на основе эпоксидных смол с абразивным наполнителем.

Основная часть

Результаты расчетов приведены на рис. 2–7. На рис. 2 приведены картины распределения эквивалентных напряжений в зоне обработки в первом сечении центральной пластины сверла (рис. 1, ϵ). Как видно на рис. 2, a, максимальные эквивалентные напряжения распределены в режущем зубе по передней и задней поверхностям, а также в заготовке. Применение композиционного покрытия привело к росту напряжений в 1,113 раз (рис. 2, δ). Кроме этого зона максимальных напряжений неравномерно распределена вдоль режущей кромки (рис. 2, ϵ –d), что связано с особенностями процесса сверления.

ВЕСТНИК ГГТУ ИМ. П. О. СУХОГО № 3 • 2019

a)

б)

в)

г)

 ∂)

Рис. 2. Картины эквивалентных напряжений: a - в сечении *l* с полным контактом; $\delta - в$ сечении *l* с композиционным покрытием; $e-\partial$ – в сечениях 2–4 с полным контактом; e – в поперечном сечении сверла

На рис. З приведены картины распределения нормальных напряжений по оси Х в зоне обработки в первом сечении центральной пластины сверла. Как видно на рис. 3, а, максимальные нормальные напряжения по оси Х распределены в режущем зубе по передней и задней поверхностям, а также в заготовке. Однако характер распределения этих напряжений отличаются тем, что зона максимальных напряжений смещена относительно режущей кромки, а также расположена со смещением в заготовке. Применение композиционного покрытия привело к росту напряжений в 1,008 раз. Кроме этого зона максимальных напряжений неравномерно распределена вдоль режущей кромки (рис. 3, в-д), в периферийных точках кромки уровень напряжений повышается, но снижается по передней поверхности. В заготовке уровень напряжений растет под задней поверхностью и снижается на ней.

Рис. 3. Картины нормальных напряжений по оси *OX*: a - в сечении *l* с полным контактом; $\delta - в$ сечении *l* с композиционным покрытием; $e - \partial - в$ сечениях 2–4 с полным контактом

На рис. 4 приведены картины распределения перемещений по оси *X* в зоне обработки в первом сечении центральной пластины сверла.

Рис. 4. Картины перемещений по оси *OX*: a - в сечении *l* с полным контактом; $\delta - в$ сечении *l* с композиционным покрытием; $e - \partial - в$ сечениях 2–4 с полным контактом

Как видно на рис. 4, *a*, максимальные перемещения по оси X получает зуб по передней и задней поверхностям. Применение композиционного покрытия привело к росту перемещений в 1,016 раз (рис. 4, δ). Кроме этого зона максимальных перемещений неравномерно распределена вдоль режущей кромки (рис. 4, *в*– ∂), так в периферийных точках кромки уровень перемещений снижается и они изменяют знак, т. е. пластина поворачивается.

На рис. 5 приведены картины распределения перемещений по оси Y в зоне обработки в первом сечении центральной пластины сверла. Как видно на рис. 5, a, максимальные перемещения по оси Y получает зуб по передней и задней поверхностям (рис. 5, δ). Применение композиционного покрытия привело к росту перемещений в 1,63 раза. Кроме этого зона максимальных перемещений неравномерно распределена вдоль режущей кромки (рис. 5, e-d), так в периферийных точках кромки уровень перемещений снижается и они изменяют свой знак, т. е. пластина поворачивается.

На рис. 6 приведены картины распределения перемещений по оси Z в зоне обработки в первом сечении центральной пластины сверла. Как видно на рис. 6, a, максимальные перемещения по оси Z получает корпус сверла и незначительная зона в вершине зуба по передней и задней поверхностям. Применение композиционного покрытия привело к росту перемещений в заготовке. Кроме этого зона максимальных перемещений неравномерно распределена вдоль режущей кромки (рис. 6, e-d), так в периферийных точках кромки уровень перемещений снижается и они изменяют знак, т. е. пластина изменяет свое пространственное положение.

Рис. 5. Картины перемещений по оси *OY*: a - в сечении *l* с полным контактом; $\delta - в$ сечении *l* с композиционным покрытием; $b - \partial - в$ сечениях 2–4 с полным контактом

в)

Рис. 6. Картины перемещений по оси *OZ*: *a* – в сечении *l* с полным контактом; δ – в сечении *l* с композиционным покрытием; *в*– ∂ – в сечениях 2–4 с полным контактом

На рис. 7 приведена картина распределения эквивалентных перемещений в поперечном сечении сверла.

Рис. 7. Картина эквивалентных перемещений

Заключение

Используя нагрузки, соответствующие современным режимам резания, получены распределения эквивалентных напряжений и перемещений в корпусе и элементах крепления пластин сборных сверл, численные значения которых позволяют оптимизировать конструкцию инструмента и режимы обработки.

Литература

1. Остафьев, В. А. Расчет динамической прочности режущего инструмента / В. А. Остафьев. – М. : Машиностроение, 1979. – 168 с.

- Хамуда, С. Н. Экспериментальное исследование жесткости сборных торцевых фрез по их статическим харастеристикам / С. Н. Хамуда, К. Г. Громаков, А. Д. Шустиков // Исследования процессов обработки металлов и динамики технологического оборудования. – М., 1982. – С. 44–49.
- 3. Шустиков, А. Д. Анализ качества сборных проходных резцов / А. Д. Шустиков. М. : НИИМаш, 1981. 40 с.
- 4. Способ контроля качества инструмента : а. с. 2895679 СССР : МКИ5 В23В / А. Д. Шустиков [и др.] ; дата публ.: 07.12.1981.
- 5. Вольвачев, Ю. Ф. Оценка качества сборных проходных резцов по статическим и динамическим характеристикам на полуавтоматических испытательных стендах : автореф. дис. ... канд. техн. наук : 05.03.01 / Ю. Ф. Вольвачев ; Мосстанкин. М., 1953. 18 с.
- 6. Малыгин, В. И. Модель напряженно-деформированного состояния режущего элемента сборного инструмента / В. И. Малыгин, Н. В. Лобанов // Вестн. машиностроения. – 2000. – № 2. – С. 22–26.
- Гречишников, В. А. Исследование деформированного состояния сборного режущего элемента методом конечных элементов / В. А. Гречишников, С. В. Лукина, А. И. Веселов // Конструкторско-технологическая информатика 2000 : материалы IV Междунар. конгр., Москва, 2000 г. / МГТУ. М., 2000. Т. 1. С. 158–160.
- Когель, И. З. Исследование жесткости узлов крепления пластин твердого сплава в корпусе инструмента и ее влияние на стойкость лезвия при торцевом фрезеровании : автореф. дис. ... канд. техн. наук : 05.03.01 / И. З. Когель ; Мосстанкин. – М., 1985. – 22 с.
- 9. Systeme d'outil equilibre multi-fonctions. TraMetal; Revue technique mensuelle du travail des metaux. 2000. № 51. P. 14–16.
- Лукина, С. В. Система автоматизированного проектирования сборного режущего инструмента / С. В. Лукина // Конструкторско-технологическая информатика 2000 : материалы IV Междунар. конгр., Москва, 2000 г. / МГТУ. – Т. 2. – М., 2000. – С. 33–36.
- Михайлов, М. И. Сборный металлорежущий механизированный инструмент: Ресурсосберегающие модели и конструкции / М. И. Михайлов ; под ред. Ю.М. Плескачевского. – Гомель : ГГТУ им. П. О. Сухого, 2008. – 339 с.

Получено 09.09.2019 г.