УДК 658.261:621.56

ТРИГЕНЕРАЦИЯ ЭНЕРГИИ В ТУРБОДЕТАНДЕРНЫХ УСТАНОВКАХ НА ДИОКСИДЕ УГЛЕРОДА

А. В. ОВСЯННИК, Н. А. ВАЛЬЧЕНКО, П. А. КОВАЛЬЧУК, А. И. АРШУКОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Ключевые слова: тригенерационная установка, турбодетандер, продукты сгорания, электроэнергия, тепловая энергия, холод, диоксид углерода, углекислота, парогазовая установка, котел утилизатор.

Введение

В настоящее время особое внимание уделяется поиску как можно более эффективных и безопасных рабочих тел для энергетических установок прямого и обратного циклов. Одними из таких рабочих тел являются природные хладагенты, в частности, диоксид углерода. Точка зрения о вреде фреонов и пользе натуральных хладагентов в настоящее время является доминирующей как в ЕС, так и в мире. Все крупные европейские компании уже давно вписали холодильные системы на CO_2 в свои технические задания и проектные решения, а сейчас, спустя несколько лет после первых успешных внедрений таких установок, в крупных компаниях идет тиражирование ранее отработанных решений [3].

На практике это означает, что, приходя на рынки различных стран, компании приносят с собой обкатанные в Европе технические решения, среди которых находится и CO_2 [3]. И хотя при использовании диоксида углерода возникает ряд технических проблем, существуют и их решения. Еще 100 лет назад умели управляться со «стояночным давлением» и не боялись «критической точки» [3]. Не стоит бояться этого и сейчас. Можно надеяться, что системы на CO_2 по мере роста их числа и вывода из оборота фреоновых компонентов станут дешевле фреоновых аналогов и, что не менее важно, станут экологически более привлекательными и безопасными [3].

Основными преимуществами применения CO_2 в холодильной технике в сравнении с $\Gamma\Phi У$ -хладагентами является их эффективность, безопасность, экологичность и низкая стоимость, а также соответствие самым последним тенденциям в законодательстве [2].

Говоря о преимуществах CO_2 , важно отметить, что этот хладагент также имеет ряд особенностей. В отличие от традиционных хладагентов CO_2 , помимо более высокой области рабочих давлений имеет высокую критическую и низкую тройную точки. Тройную точку CO_2 (-56,6 °C; 5,2 бар), на практике связанную с выпадением «сухого льда», следует учитывать при установке и обслуживании системы. Учет критической точки CO_2 (+31,1 °C; 73,6 бар) важен как при обслуживании, так и при проектировании систем на диоксиде углерода.

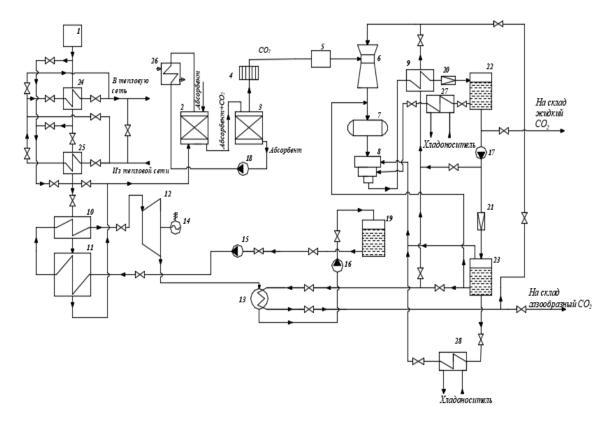
В зависимости от назначения и типа систем проектные давления CO_2 могут изменяться в диапазоне от 40 до 140 бар. При этом в промышленном холоде исполь-

зуются субкритические системы, а в коммерческом популярны как субкритические, так и транскритические установки [3].

Диоксид углерода может быть также использован как самостоятельный хладагент. Компрессорно-конденсаторные агрегаты в этом случае работают с большей эффективностью, чем агрегаты на фреонах, в холодном и умеренном климате. Все три варианта, т. е. системы непосредственного охлаждения на углеводородах, системы с промежуточным хладоносителем и парокомпрессионные системы на CO₂, технически осуществимы, что подтверждается успешной их реализацией в промышленности [2], [3].

При применении CO_2 как хладагента для небольших систем непосредственного охлаждения годовое энергопотребление в умеренном климате обычно меньше, чем при использовании фреонов ($\Gamma\Phi Y$) [3]. Энергоэффективность стандартной системы на CO_2 выше, чем системы на $\Gamma\Phi Y$, при наружной температуре ниже 22 °C, почти эквивалентна ей при температуре от 22 до 26 °C и ниже при более высокой температуре [3]. Техническая осуществимость таких систем проверена более чем на 4000 работающих систем в Европе, еще на 1000 - в Азии и Австралии и более чем на 100 - в Северной Америке (на 2014 г.). Эффективность систем на CO_2 может быть повышена внедрением таких новых разработок, как эжекторные системы и расширительные машины (детандерные), причем настолько, что такие системы будут более эффективными даже в наиболее жарком климате [3].

Преимущества CO_2 перед $\Gamma \Phi Y$ -хладагентами, такие как эффективность, безопасность, экологичность, низкая стоимость и соответствие самым последним тенденциям в законодательстве, рассмотрены в [2].


На основании рассмотренных энергетических, технических и экологических предпосылок использования CO_2 в энергетических установках для получения электрической, тепловой энергии и холода предлагается использование диоксида углерода для получения этих видов энергии в детандерном цикле. Отличительная особенность такой установки заключается в том, что используется только один хладагент – CO_2 .

Цель работы — разработка тригенерационных установок на основе диоксида углерода с производством жидкой и газообразной углекислоты.

Схема и принцип работы установки на вторичных энергоресурсах

Схема тригенерационной установки на диоксиде углерода на вторичных энергоресурсах с производством жидкой и газообразной углекислоты представлена на рис. 1.

Принцип работы предлагаемой установки основан на использовании теплоты отходящих продуктов сгорания (металлургических, стеклоплавильных печей, котлоагрегатов и т. д.) с целью повышения энергетической эффективности теплоэнергоустановок и снижения их тепловых потерь. Кроме того, решается экологическая проблема улавливания диоксида углерода и предотвращения выброса его в окружающую среду. Предлагаемая установка может работать на вторичных энергоресурсах, которые в настоящее время используются в крайне ограниченных объемах.

 $Puc.\ 1.$ Схема тригенерационной турбодетандерной установки на вторичных энергоресурсах с производством жидкой и газообразной углекислоты: 1 – источник продуктов сгорания (ВЭР); 2 – абсорбер; 3 – десорбер; 4 – брызгоотделитель; 5 – осушитель; 6 – инжектор; 7 – ресивер; 8 – компрессор; 9 – конденсатор; 10 – перегреватель; 11 – испаритель; 12 – паровая турбина; 13 – конденсатор; 14 – электрогенератор; 15–18 – насос; 19 – сборник; 20, 21 – регулирующий вентиль; 22 – сепаратор 1; 23 – сепаратор 2; 24–26 – теплообменник; 27, 28 – испаритель

Установка подключается через теплофикационный узел, состоящий из двух теплообменников 24 и 25, к источнику продуктов сгорания или дымовых газов. В теплообменниках теплофикационного узла происходит их охлаждение до требуемой температуры, после чего продукты сгорания поступают последовательно в абсорбер 2 с поглощением газообразной углекислоты из продуктов сгорания и десорбер 3, где осуществляется выделение из абсорбента СО2. После десорбера углекислый газ поступает через брызгоотделитель 4 и осушитель 5 в инжектор 6, где инжектируется в линейный ресивер 7, при этом его давление повышается до давления всасывания в компрессоре первой ступени 8. После трехступенчатого компрессора 8 газообразный СО2 направляется в конденсатор 9, ожижается и поступает на первое дросселирование в дроссельное устройство 20, после которого температура и давление СО2 снижаются, и далее – в сепаратор 22. Отделившаяся в сепараторе жидкая фаза СО₂ поступает на второе дросселирование в дроссельное устройство 21, где опять происходит снижение температуры и давления. Жидкий диоксид углерода из сепаратора 23 подается в конденсатор 13 турбогенераторной установки, кипит, поглощая теплоту конденсации газообразного СО2 после его расширения в турбодетандере 12. Образовавшийся в результате кипения CO_2 газ направляется в инжектор 6, инжектирует газообразный СО2 после десорбера 3 и накапливается в линейном ресивере 7. Часть жидкой углекислоты после сепаратора 22 подается на конденсатор 9 для конденсации сжатой газообразной CO_2 после компрессора 8. Теплообменники 24 и 25 теплофикационного узла предназначены для подогрева сетевой воды для целей отопления и горячего водоснабжения.

Из ресивера-накопителя 19 жидкий CO_2 подается насосом 15 последовательно в испаритель 11 и перегреватель 10, где испаряется и перегревается до необходимой температуры, после чего поступает на турбодетандер 12, расширяется, конденсируется в конденсаторе 13 и насосом 16 опять подается в ресивер-накопитель 19. Турбодетандерный контур (турбодетандер 12 — испаритель 11 — перегреватель 10 — конденсатор 13 — насос 16 — ресивер-накопитель 19) может работать как на цикле с докритическими параметрами, так и на цикле с закритическими (транскритическими) параметрами. На схеме не показано охлаждение газообразного CO_2 после сжатия в первой и второй ступенях компрессора.

На рис. 2 представлены теоретические циклы турбодетандерного и углекислотного контуров в диаграмме lgp-h с полным промежуточным охлаждением.

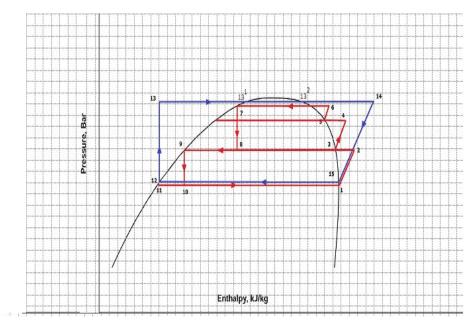


Рис. 2. Цикл турбодетандерной тригенерационной установки на диоксиде углерода

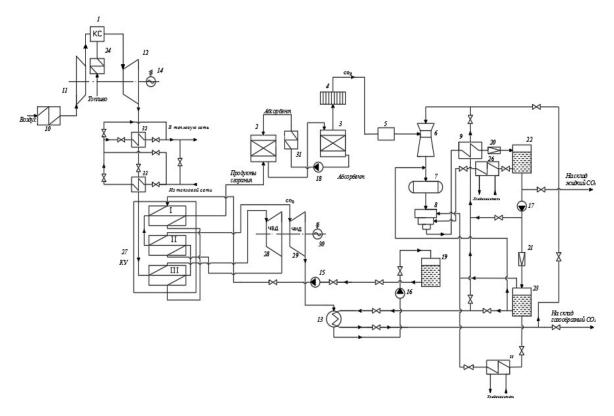
Циклы состоят из следующих процессов: 12-13 – повышение давления жидкого CO_2 в насосе 16; $13-13^1$ – нагрев жидкого CO_2 до температуры кипения в испарителе 11; 13^1-13^2 — изобарно-изотермический процесс кипения CO_2 в испарителе 11; 13-14 – перегрев газообразного CO_2 в перегревателе 10; 14-15 – адиабатное расширение газообразного CO_2 в турбодетандере 12; 15-12 — изобарно-изотермический процесс конденсации диоксида углерода в конденсаторе 13. Для холодильного цикла: процесс 1-2 — адиабатное сжатие газообразного CO_2 в компрессоре первой ступени; 2-3 — охлаждение CO_2 перед компрессором второй ступени; 3-4 — адиабатное сжатие CO_2 в компрессоре второй ступени; 4-5 — промежуточное охлаждение CO_2 перед компрессором третьей ступени; 5-6 — адиабатное сжатие CO_2 в компрессоре третьей ступени; 6-7 — охлаждение и конденсация газообразного CO_2 в конденсаторе 9; 7-8 — первое адиабатное дросселирование жидкого диоксида углерода в дросселе 20 в сепаратор 22; 9-10 — второе адиабатное дросселирование CO_2 в дросселе CO_2 в дросселе CO_2 в конденсаторе-испарителе CO_2 в сепаратор CO_2 в конденсаторе-испарителе CO_2 в дросселе CO_2 в конденсаторе-испарителе CO_2 в сепаратор CO_2 в конденсаторе-испарителе CO_2 в сепараторе-испарителе CO_2

При расчете и анализе цикла турбодетандерной установки необходимо рассмотреть прямой цикл генерации тепловой и электрической энергии в теплофикационном

контуре и в турбодетандерном контуре и обратный трехступенчатый цикл производства жидкой и газообразной углекислоты и генерации холода.

Тригенерационная установка дополнительно включает в себя испарители 27 и 28. Испаритель 27 работает при температуре кипения T_{01} , соответствующей давлению насыщения P_{01} , а испаритель 28 — при температуре кипения T_{02} , соответствующей давлению P_{02} . Газообразный CO_2 из сепаратора 22 и испарителя 27 и из сепаратора 23 и испарителя 28 поступает соответственно на вторую и первую ступени компрессора 8.

Совершенствование и повышение энергетической эффективности теплоэнергоустановок связано с разработкой и внедрением парогазовых установок (ПГУ) утилизационного типа. При этом, в частности, достигается высокое значение КПД по отпуску электрической энергии. Кроме того, дополнительными преимуществами ПГУ с котлами утилизаторами являются низкий уровень выбросов NO_x в атмосферу и малая потребность установки в охлаждающей воде [11]–[13].


Одним из основных направлений совершенствования парогазовых энергоустановок является внедрение промежуточного перегрева пара (газа), частично отработавшего в турбодетандере [14], [15]. Это позволяет повысить КПД турбодетандера за счет подвода к газу дополнительного количества теплоты, в результате чего возрастает полезный теплоперепад в турбодетандере. Это приводит к росту электрической мощности турбодетандерной установки и увеличению отпуска электрической энергии. Кроме того, увеличивается степень сухости газообразного диоксида углерода на лопатках последней ступени турбодетандера, что повышает надежность и долговечность работы его лопаток [11].

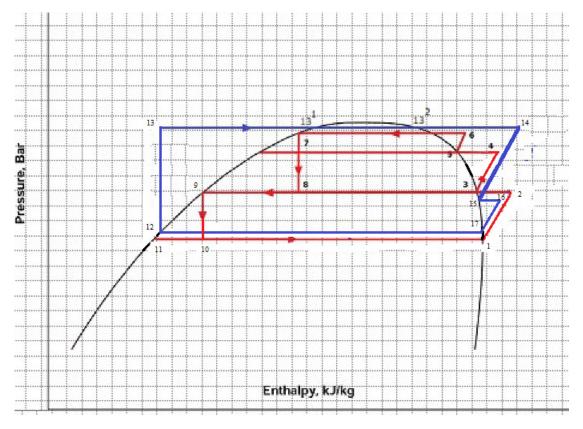
Необходимо отметить еще одно обстоятельство, влияющее на работу ПГУ с котлом утилизатором. Использование в турбодетандерных установках в качестве рабочего тела диоксида углерода позволяет проводить процессы парообразования и перегрева при более низких температурах газа после газовой турбины, что значительно снижает температурные напряжения в лопаточном аппарате турбодетандера и повышает надежность и долговечность его работы. Кроме того, снижение температуры газов после газовой турбины приводит к увеличению полезного теплоперепада в ГТУ. При этом увеличивается ее электрическая мощность и отпускаемая электрическая энергия газотурбинной установки.

В теплообменник 24 (рис. 3) подается топливо, где оно впоследствии нагревается и подается в камеру сгорания (КС) 1, туда же через теплообменник 10 и турбокомпрессор 11 подается воздух. В КС 1 топливовоздушная смесь сгорает и образует дымовые газы. Дымовые газы поступают в газовую турбину 12. Электрогенератор 14 преобразует механическую энергию вращения турбины в электроэнергию. Отработанные дымовые газы из ГТУ поступают в сетевые подогреватели 32, 33, затем в котел утилизатор 27 на ступень III, где они подогревают газообразный СО₂, направляющийся на части высокого давленич (ЧВД) турбины 28. После ступени III дымовые газы направляются в ступень II, где подогревают газообразный СО₂, направляющийся на части низкого давления (ЧНД) турбины 29. Электрогенератор 30 преобразует механическую энергию вращения вала турбины в электроэнергию.

После котла утилизатора продукты сгорания поступают последовательно в абсорбер 2 с поглощением газообразной углекислоты из продуктов сгорания и десорбер 3, где осуществляется выделение из абсорбента CO_2 . После десорбера углекислый газ поступает через брызгоотделитель 4 и осущитель 5 в инжектор 6, где инжектируется в линейный ресивер 7, при этом его давление повышается до давления всасывания в компрессоре первой ступени 8. После трехступенчатого компрессора 8 газообразный CO_2 направляется в конденсатор 9, ожижается и поступает на

первое дросселирование в дроссельное устройство 20, после которого температура и давление CO_2 снижаются, и далее — в сепаратор 22. Отделившаяся в сепараторе жидкая фаза CO_2 поступает на второе дросселирование в дроссельное устройство 21, где опять происходит снижение температуры и давления. Жидкий диоксид углерода из сепаратора 23 подается в конденсатор-испаритель 13 турбогенераторной установки, кипит, поглощая теплоту конденсации газообразного CO_2 после его расширения в ЧВД 28 и ЧНД 29. Образовавшийся в результате кипения CO_2 газ направляется в инжектор 6, инжектирует газообразный CO_2 после десорбера 3 и накапливается в линейном ресивере 7. Часть жидкой углекислоты после сепаратора 22 подается на конденсатор 9 для конденсации сжатой газообразной CO_2 после компрессора 8.

Puc. 3. Схема тригенерационной парогазовой турбодетандерной установки с котлом утилизатором:


1 – камера сгорания; 2 – абсорбер; 3 – десорбер; 4 – брызгоотделитель; 5 – осушитель;
6 – инжектор; 7 – ресивер; 8 – компрессор; 9 – конденсатор; 10 – воздухоподогреватель;
11 – турбокомпрессор; 12 – газовая турбина; 13 – конденсатор-испаритель;
14, 30 – электрогенератор; 15–18 – насос; 19 – сборник; 20, 21 – регулирующий вентиль; 22 – сепаратор 1; 23 – сепаратор 2; 24, 31–33 – теплообменник;
25, 26 – испаритель; 27 – котел утилизатор; 28, 29 – ЧВД и ЧНД турбины соответственно

Из ресивера-накопителя 19 жидкий CO_2 подается насосом 15 последовательно в испаритель I котла утилизатора 27, где испаряется, после чего поступает в ступень III котла утилизатора 27, где парообразный CO_2 перегревается и отправляется на ЧВД турбины 28. После ЧВД CO_2 поступает в ступень II котла утилизатора 27, где осуществляется второй перегрев, после чего CO_2 поступает на ЧНД турбины 29. Затем CO_2 конденсируется в конденсаторе 13 и насосом 16 опять подается в ресивернакопитель 19. Турбодетандерный контур (ЧВД 28 и ЧНД 29 – котел утилизатор 27 – конденсатор-испаритель 13 – насос 16 – ресивер-накопитель 19) может работать как на цикле с докритическими параметрами, так и на цикле с закритическими (транс-

критическими) параметрами. На схеме не показано охлаждение газообразного ${\rm CO_2}$ после сжатия в первой и второй ступенях компрессора.

На рис. 4 показаны циклы описанной установки.

Циклы состоят из следующих процессов: 12–13 – повышение давления жидкого CO_2 в насосе 16; $13-13^1$ – нагрев жидкого CO_2 до температуры кипения в испарителе I; 13¹–13² – изобарно-изотермический процесс кипения CO₂ в испарителе I; 13–14 – перегрев газообразного CO₂ в пароперегревателе III котла утилизатора 27; 14–15 – адиабатное расширение газообразного СО₂ в ЧВД 28; 15–16 – второй перегрев газообразного CO₂ в ступени II котла утилизатора 27; 16-17 - адиабатное расширение газообразного СО2 в ЧНД 29; 17-12 - изобарно-изотермический процесс конденсации диоксида углерода в конденсаторе-испарителе 13. Для холодильного цикла: процесс 1–2 – адиабатное сжатие газообразного СО₂ в компрессоре первой ступени; 2-3 – охлаждение СО₂ перед компрессором второй ступени; 3-4 – адиабатное сжатие СО₂ в компрессоре второй ступени; 4–5 – промежуточное охлаждение СО₂ перед компрессором третьей ступени; 5-6 – адиабатное сжатие СО₂ в компрессоре третьей ступени; 6–7 – охлаждение и конденсация газообразного СО₂ в конденсаторе 9; 7–8 – первое адиабатное дросселирование жидкого диоксида углерода в дросселе 20 в сепаратор 22; 9-10 – второе адиабатное дросселирование CO_2 в дросселе 21 в сепаратор 23; 11-1 – кипение жидкого CO_2 в конденсаторе-испарителе 13.

Puc. 4. Цикл турбодетандерной тригенерационной установки на диоксиде углерода с двукратным перегревом

Термодинамический расчет

Удельная работа сжатия газообразного СО₂ в трехступенчатом компрессоре:

$$l_s^k = (h_2 - h_1) + (h_4 - h_3) + (h_6 - h_5).$$

Удельная работа расширения газообразного СО2 в турбодетандере:

– для схемы с однократным перегревом (рис. 2):

$$l_s^d = (h_{14} - h_{15});$$

– для схемы с котлом утилизатором и двукратным перегревом (рис. 4):

$$l_{s,2}^d = (h_{14} - h_{15}) + (h_{16} - h_{17}).$$

Теоретическая (адиабатная) мощность сжатия СО2 в компрессоре:

$$N_t^k = G_d^k l_s^k$$
.

Индикаторная мощность, потребляемая компрессором:

$$N_i^k = N_t^k / \eta_i = G_d^k l_s^k / \eta_i,$$

где η_i – индикаторный КПД компрессора.

Эффективная мощность (на валу) компрессора:

$$N_{\rm B}^k = N_i^k / \eta_{\rm M} = G_d^k l_s^k / \eta_i \eta_{\rm M},$$

где $\eta_{_{M}}$ – механический КПД компрессора, учитывающий трение.

Электрическая мощность, потребляемая компрессором из сети:

$$N_{\scriptscriptstyle 9}^k = N_{\scriptscriptstyle e}^k \, / \, \eta_{\scriptscriptstyle \Pi} \eta_{\scriptscriptstyle {
m JB}} = G_d^k l_{\scriptscriptstyle S}^k \, / \, \eta_i \eta_{\scriptscriptstyle {
m M}} \eta_{\scriptscriptstyle {
m \Pi}} \eta_{\scriptscriptstyle {
m JB}},$$

где $\eta_{_{\Pi}}$ – КПД передачи; $\eta_{_{\Pi B}}$ – КПД электродвигателя компрессора.

Электрическая мощность, полученная в генераторе турбодетандера:

– для схемы с однократным перегревом (рис. 2):

$$N_{\mathfrak{I}}^{d} = N_{t}^{d} / \eta_{i} \eta_{\mathsf{M}} \eta_{\mathsf{\Pi}} \eta_{\mathsf{\Gamma}} = G_{d}^{d} l_{s}^{d} / \eta_{i} \eta_{\mathsf{M}}^{d} \eta_{\mathsf{\Pi}} \eta_{\mathsf{\Gamma}};$$

– для схемы с котлом утилизатором и двукратным перегревом (рис. 4):

$$N_{\mathfrak{I},2}^d = N_t^d / \eta_i \eta_{\scriptscriptstyle \mathrm{M}} \eta_{\scriptscriptstyle \mathrm{\Pi}} \eta_{\scriptscriptstyle \mathrm{\Gamma}} = G_d^d l_{s,2}^d / \eta_i \eta_{\scriptscriptstyle \mathrm{M}}^d \eta_{\scriptscriptstyle \mathrm{\Pi}} \eta_{\scriptscriptstyle \mathrm{\Gamma}},$$

где G_d^d — действительный расход CO_2 через турбодетандер; $\eta_{\scriptscriptstyle \Pi}$ — КПД генератора; $\eta_{\scriptscriptstyle M}^d$ — механический КПД турбодетандера.

Увеличение мощности электрогенератора за счет двукратного перегрева:

$$\Delta N_2 = N_{2,2}^d - N_2^d = G_d^d (l_{s,2}^d - l_s^d) / \eta_i \eta_M^d \eta_\Pi \eta_\Gamma.$$

Предлагаемые установки предназначены в основном для производства электроэнергии на собственные нужды, поэтому они должны оцениваться по тому, насколько покрываются потребности производства выработанной электроэнергией. Излишки выработанной электроэнергии могут поступать во внешнюю сеть, а недостаток электроэнергии может покрываться из внешней сети.

Турбодетандерные установки могут работать и в режиме тригенерации энергии (рис. 1, 3), если включить в схемы испарители на первой и второй ступенях компрессора. Таким образом, холод может быть получен в двух испарителях: на более низ-

ком температурном уровне при температуре кипения T_{01} в испарителе 25 (рис. 3) и на высоком температурном уровне при температуре кипения T_{02} в испарителе 26 (рис. 3). Удельная массовая холодопроизводительность испарителя 25 q_{01} определится как:

$$q_{01} = h_{10} - h_1$$

а испарителя 26 как:

$$q_{02} = h_8 - h_3$$
.

Эксергетический КПД установок определяется по известному выражению [4]:

$$\eta_e = \frac{\sum E_{\text{вых}}}{\sum E_{\text{вх}}},\tag{13}$$

где $\sum E_{\text{вых}}$ — сумма эксергий всех полезно используемых потоков на выходе из установки [1]; $\sum E_{\text{вх}}$ — сумма эксергий всех потоков на входе в установку.

Под полезно используемыми потоками эксергии понимаются электроэнергия, тепловая энергия и холод.

Входящими потоками для схемы (рис. 1) являются: поток вторичных энергоресурсов в теплообменники теплоснабжения 24, 25 $E_{\text{вт.т.т}}$; поток эксергии в теплообменник контура генерации электроэнергии 10 $E_{\text{вт.т.э}}$; потоки хладоносителей в испарители 27 и 28 $E_{\text{хл.}}$.

Входящими потоками эксергии для установки (рис. 3) будут: поток эксергии в ГТУ $E_{\text{т.э}}^{\text{ГТУ}}$; поток эксергии в теплообменник теплоснабжения $E_{\text{т.т}}$; поток эксергии в турбодетандерный блок $E_{\text{т.э}}^{\text{ТД}}$; потоки эксергии в испарители $E_{\text{хл}}$.

Выходящими потоками эксергии для тригенерационной установки (рис. 1) будут: эксергия из контура теплоснабжения $E_{\text{теп}}$; эксергия, полученная в турбодетандере $E_{\text{эл}}$; эксергии, выходящие из испарителей 27 и 28 $E_{\text{хол}}$.

Выходящими потоками эксергии для тригенерационной установки (рис. 3) будут: эксергия, полученная в теплообменниках 32, 33 $E_{\rm теn}$; эксергия, полученная в турбодетандере и в ГТУ $E_{\rm эл}^{\rm TД}$, $E_{\rm эл}^{\rm ГТУ}$; эксергии, выходящие из испарителей 25 и 26 $E_{\rm хол}$.

Таким образом, эксергетические КПД тригенерационных установок:

– для схемы на рис. 1:

$$\eta_e = \frac{\sum E_{\text{вых}}}{\sum E_{\text{вх}}} = \frac{E_{\text{теп}} + E_{\text{эл}} + E_{\text{хол}}}{E_{\text{вт.т.т}} + E_{\text{вт.т.э}} + E_{\text{хл}}};$$
(1)

– для схемы на рис. 3:

$$\eta_e = \frac{\sum E_{\text{вых}}}{\sum E_{\text{вх}}} = \frac{E_{\text{теп}} + E_{\text{эл}}^{\text{ГТУ}} + E_{\text{эл}}^{\text{ТД}} + E_{\text{хол}}}{E_{\text{т.т}} + E_{\text{т.9}}^{\text{ГТУ}} + E_{\text{т.9}}^{\text{ТД}} + E_{\text{хл}}}.$$
 (2)

Анализ формул (1) и (2) показывает, что эксергетический КПД ПГУ с котлом утилизатором больше, чем аналогичный КПД в схеме с вторичными энергоресурсами.

Заключение

На основании вышеизложенного можно сделать следующие выводы:

1. Предложены технологические схемы турбодетандерных тригенерационных установок с циклом на основе диоксида углерода и производством жидкой и газооб-

разной углекислоты, работающие на докритических параметрах. Холод, произведенный на тригенерационных установках, может быть использован в летний период при хладоснабжении систем вентиляции и кондиционирования воздуха промышленных и общественных зданий и сооружений, а также для целей охлаждения, замораживания и хранения продукции различного назначения.

2. Приведена методика термодинамического расчета циклов установок и их эксергетический анализ. Эксергетический КПД тригенерационной установки с ПГУ с котлом утилизатором больше эксергетического КПД установки на вторичных энергоресурсах за счет большего количества выработанной электроэнергии при одинаковых начальных и конечных параметрах.

Литература

- 1. Клименко, А. В. Возможность применения холода и дополнительной электроэнергии на тепловой электростанции / А. В. Клименко, В. С. Агабабов, П. Н. Борисова // Теплоэнергетика. 2017. № 6. С. 30–37.
- 2. Преимущества CO_2 в холодильной технике / По материалам JARN // Холодил. техника. -2016. -№ 3. C. 25.
- 3. Современные альтернативные хладагенты на длительную перспективу и их возможные области применения / По материалам JARN // Холодил. техника. $2016. N_{\odot} 6. C. 4-9.$
- 4. Бродянский, В. М. Эксергетический метод термодинамического анализа / В. М. Бродянский. М.: Энергия, 1973. 295 с.
- 5. Агабабов, В. С. О применении детандер-генераторных агрегатов в газовой промышленности / В. С. Агабабов // Энергосбережение и энергосберегающие технологии в энергетике газовой промышленности : сб. материалов НТС ОАО «Газпром». М., 2001. Т. 2. С. 50–53.
- 6. Агабабов, В. С. Бестопливные установки для производства электроэнергии, теплоты и холода на базе детандер-генераторных агрегатов / В. С. Агабабов // Новости теплоснабженпия. 2009. № 1. С. 48–50.
- 7. Бестопливная установка для централизованного комбинированного электро- и хладоснабжения: пат. № 158931 Рос. Федерация / В. С. Агабабов, Ю. О. Байдакова, А. В. Клименко, У. И. Смирнова, Р. Н. Такташев. Приоритет 26.06.15 // Б. И. 2015. № 18.
- 8. Овсянник, А. В. Моделирование процессов теплообмена при кипении жидкостей / А. В. Овсянник. Гомель: ГГТУ им. П. О. Сухого, 2012. 284 с.
- 9. Беспалов, В. В. Исследование и оптимизация глубины утилизации тепла дымовых газов в поверхностных теплообменниках / В. В. Беспалов, В. И. Беспалова, Д. В. Мельников // Теплоэнергетика. − 2017. − № 9. − С. 64–70.
- 10. Беспалов, В. В. Технология осушения дымовых газов ТЭС с использованием теплоты конденсации водяных паров / В. В. Беспалов // Изв. ТПУ. 2010. Т. 316. № 4. С. 56–59.
- 11. Кудинов, А. А. Двукратный промежуточный перегрев водяного пара в зоне высоких температур и в хвостовой части трехконтурного котла утилизатора / А. А. Кудинов, К. Р. Хусаинов // Промышл. энергетика. 2018. № 2. С. 21—28.
- 12. Кудинов, А. А. Энергосбережение в теплоэнергетике и теплотехнологиях / А. А. Кудинов, С. К. Зиганшина. М.: Машиностроение, 2011. 374 с.

- 13. Усов, С. В. Анализ технико-экономических показателей Сызранской ТЭЦ после ее модернизации с установкой ПГУ-200 / С. В. Усов, А. А. Кудинов // Энергетик. -2013. -№ 12. С. 28–36.
- 14. Турбины тепловых и атомных электрических станций : учеб. для вузов / А. Г. Костюк [и др.]. М. : МЭИ, 2001. 488 с.
- 15. Кудинов, А. А. Оценка эффективности ПГУ-800 Киришской ГРЭС с трехконтурным котлом утилизатором / А. А. Кудинов, К. Р. Хусаинов // Энергосбережение и водоподготовка. 2016. № 4 (102). С. 38–46.

Получено 06.03.2019 г.