УДК 621.833.001.24

ОБЪЕМ ВПАДИН МЕЖДУ ЭВОЛЬВЕНТНЫМИ ЗУБЬЯМИ ЦИЛИНДРИЧЕСКОГО КОЛЕСА

Н. И. РОГАЧЕВСКИЙ

Учреждение образования «Белорусско-Российский университет», г. Могилев, Республика Беларусь

Ключевые слова: зуб, профиль, впадина, объем, смазка.

Введение

Известно, что число узлов трения, смазываемых пластичными смазочными материалами (Литол-24, ЦИАТИМ-201, ЦИАТИМ-221, ВНИИНП-284 и др.), значительно больше, чем жидкими [1]. К таким узлам относятся зубчатые передачи, работающие при окружных скоростях до 4 м/с. При этом пластичный смазочный материал закладывают при сборке в количестве, равном трети объема впадин между зубьями венца колеса. Этот метод смазки применяют в большинстве зубчатых передач систем управления самолетов и вертолетов [1]. Таким же способом смазывают зацепления передач дрелей, перфораторов, смесителей, бытовой техники.

Однако в литературе отсутствуют формулы, определяющие объем впадин между зубьями цилиндрических, конических и червячных колес. Устранение этого пробела является актуальным.

Решению указанной задачи для цилиндрических эвольвентных (наиболее применяемых) зубчатых колес посвящена настоящая работа.

Методы исследования

Аналитические зависимости, характеризующие объем впадин между эвольвентными зубьями цилиндрических колес, получены методами геометрии, кинематики и математического анализа.

Основная часть

Объем *V* впадин между *z* зубьями цилиндрического зубчатого колеса равен произведению площади *S*, ограниченной торцовыми профилями смежных зубьев и дугой окружности радиусом r_a вершин зубьев, на длину зуба $l = \frac{b}{\cos\beta}$ и число зубьев *z* (элесь *b*, имерния зубиатого рания колеса: β , угод накнога динии зуба):

(здесь *b* – ширина зубчатого венца колеса; β – угол наклона линии зуба):

$$V = Slz$$

Площадь *S* очевидна из рассмотрения рис. 1, на котором показаны торцовые половины зуба и впадины, ограниченные угловым полушагом $\frac{\pi}{z}$ и дугой радиусом r_a вершин зубьев. Торцовый профиль половины зуба состоит из участков: F_cF – половина дуги между зубьями окружности впадин радиусом r_f ; *FL*– переходная кривая; *LB* – эвольвента; *BA* – половина дуги вершины зуба радиусом r_a . Общие точки *F*, *L*, *B* указанных кривых – особые точки профиля [2], [3]: предельная точка *F* впадины, граничная точка L, точка B вершины зуба. x_{Fc} , x_F , x_L , x_B – проекции на ось Ox (ось симметрии торцового профиля зуба), соответственно, точек F_c , F, L, B:

$$S = 2(S_{OKA} - S_{\Delta OF_c} - S_{FF_c} - S_{FL} - S_{LB} - S_{BA}),$$

где S_{OKA} – площадь сектора OKA; $S_{\Delta OF_c}$ – площадь прямоугольного треугольника $OF_c x_{Fc}$; S_{FF_c} , S_{FL} , S_{LB} , S_{BA} – площади криволинейных трапеций, ограниченных сверху, соответственно, кривыми FF_c , FL, LB, BA.

Рис. 1. Расчетная схема торцового профиля половины эвольвентного зуба

Найдем указанные площади. Площадь сектора *ОКА*, ограниченного угловым полушагом $\frac{\pi}{2}$ и дугой *КА* радиусом r_a :

$$S_{OKA} = \frac{\pi r_a^2}{2z} = \frac{0.5\pi r_a^2}{z},$$

где

$$r_{a} = m(\frac{0.5z}{\cos\beta + h_{a}^{*} + x^{*} - \delta^{*}}),$$

здесь m – модуль, мм; z – число зубьев колеса; h_a^* , δ^* – коэффициенты, соответственно, высоты головки, уменьшения высоты зуба [4]; x^* – номинальный коэффициент смещения [4],

$$x^* = x - \frac{E_{HS} + T_H}{1000m},$$

где x – коэффициент смещения; E_{HS} – наименьшее дополнительное смещение исходного контура по ГОСТ 1643–81, мкм; T_H – допуск на смещение исходного контура по ГОСТ 1643–81, мкм. Площадь прямоугольного треугольника $OF_c x_{Fc}$:

$$S_{\Delta OF_c} = 0.5r_f \cdot \sin\frac{\pi}{z}r_f \cdot \cos\frac{\pi}{z} = 0.25r_f^2 \cdot \sin\frac{2\pi}{z},$$

где

$$r_f = m(\frac{0.5z}{\cos\beta} - h_a^* - c^* + x^*)$$

здесь c^* – коэффициент радиального зазора.

Площадь криволинейной трапеции, ограниченной сверху кривой FF_c (дугой радиусом r_f окружности впадин) [5]:

$$S_{FF_{c}} = \int_{x_{F_{c}}}^{x_{F}} y dx = \int_{x_{F_{c}}}^{x_{F}} \sqrt{r_{f}^{2} - x^{2}} dx = \left(\frac{x}{2}\sqrt{r_{f}^{2} - x^{2}} + \frac{r_{f}^{2}}{2}\arcsin\frac{x}{r_{f}}\right) \bigg|_{x_{F_{c}}}^{x_{F}} =$$
$$= \frac{x_{F}}{2}\sqrt{r_{f}^{2} - x_{F}^{2}} - \frac{x_{F_{c}}}{2}\sqrt{r_{f}^{2} - x_{F_{c}}^{2}} + \frac{r_{f}^{2}}{2}\left(\arcsin\frac{x_{F}}{r_{f}} - \arcsin\frac{x_{F_{c}}}{r_{f}}\right),$$

где x_{Fc} и x_F – соответственно, нижний и верхний пределы интеграла (проекции точек F_c и F на ось Ox).

Из рассмотрения рис. 1 очевидно, что

$$x_{Fc}=r_f\cdot\cos\frac{\pi}{z}.$$

Координату x_F точки *F* пересечения окружности впадин радиусом r_f и переходной кривой определяем в следующей последовательности.

Торцовые координаты x_c и y_c центра окружности, скругляющей вершину производящего контура инструмента, связаны с нормальными координатами x_c и y_{nc} этой же точки, найденными из рассмотрения рис. 2, следующими соотношениями:

$$x_c = m(h_a^* + c^* - \rho_f^* - x^*);$$

$$y_c = \frac{y_{nc}}{\cos\beta} = \frac{m}{\cos\beta} \left[\frac{\pi}{4} + (h_l^* - h_a^*) \operatorname{tg} \alpha + \rho_f^* \cdot \cos\alpha \right].$$

где ρ_f^* – коэффициент радиуса кривизны переходной кривой нормального исходного контура, как видно из построения рис. 2 (обозначены: l – оси симметрии профилей производящей рейки; 2 – делительная прямая; 3 – начальная прямая в станочном зацеплении), равен:

$$\rho_{f}^{*} = \frac{2h_{a}^{*} + c^{*} - h_{l}^{*}}{1 - \sin \alpha}$$

где h_l^* – коэффициент граничной высоты зуба; α – угол профиля.

Аргумент γ_F определяет точку *F*. Для вычисления величины γ_F задаем ряд последовательно уменьшающихся неотрицательных значений независимого аргумента γ

(начиная от $0,5\pi - \alpha_t$) и для каждого взятого γ , при котором $r_t \ge r_b$, здесь α_t , r_b , соответственно, торцовый угол профиля, радиус основной окружности:

$$\alpha_t = \operatorname{arctg} \frac{\operatorname{tg} \alpha}{\cos \beta}; \quad r_b = \frac{0.5mz}{\cos \beta} \cos \alpha_t$$

вычисляем следующие параметры.

Рис. 2. Схема нормального профиля производящей рейки

Координаты *x*₁₀ и *y*₁₀ переходной кривой профиля зубьев производящей рейки в торцовой плоскости:

$$\gamma_o = \operatorname{arctg} \frac{\operatorname{tg} \gamma}{\cos \beta}; \tag{1}$$

$$x_{to} = x_c + m\rho_f^* \cdot \cos\gamma_0; \qquad (2)$$

$$y_{to} = y_c - \frac{m\rho_f^* \cdot \sin \gamma_0}{\cos \beta}.$$
 (3)

Угол скатывания рейки ф и координаты x_t и y_t переходной кривой профиля зубьев зубчатого колеса в торцовой плоскости:

$$\varphi = \frac{y_{t0} + x_{t0} \cdot \operatorname{tg} \gamma}{r}; \tag{4}$$

$$x_t = (r - x_{t0})\cos\varphi + x_{t0} \cdot \operatorname{tg} \gamma \cdot \sin\varphi;$$
(5)

$$y_t = (r - x_{t0})\sin\varphi - x_{t0} \cdot tg\gamma \cdot \cos\varphi, \qquad (6)$$

где *r* – радиус делительной окружности зубчатого колеса,

$$r = \frac{0.5mz}{\cos\beta}.$$

Эти уравнения устанавливают связь между координатами любой точки Т₀ торцового профиля переходной кривой зуба производящей рейки x_{t0}, y_{t0} и координатами соответствующей точки Т торцового профиля переходной кривой обрабатываемого зуба x_t , y_t , которая вытекает из построения рис. 3. На рис. 3 показана подвижная система координат $x_{t0}O_0y_{t0}$, связанная с производящей рейкой. Начало координат O_0 лежит на начальной прямой производящей рейки. Ось $O_0 y_{t0}$ направлена по начальной прямой. Ось О₀x_{t0} является осью симметрии впадины между зубьями производящей рейки. γ – угол между осью $O_0 x_{t0}$ и нормалью к профилю производящей рейки в точке T_0 . $x_t O_0 y_t$ – система неподвижных осей, связанная с обрабатываемым зубчатым колесом. Начало координат О совпадает с центром торцового профиля зубчатого колеса. *Ох,* является осью симметрии обрабатываемого зуба. *М* – точка пересечения нормали к профилю производящей рейки с начальной прямой рейки. В начальный момент движения обкатки производящей рейки оси Ox_t и O_0x_{t0} направлены по одной прямой, т. е. точка O₀ находится в точке P_t. Уравнение (4) выводится из математической записи равенства длины отрезка прямой O_0M и длины дуги P_tM делительной окружности. Точка T₀ соприкасается с точкой T тогда, когда точка M касается делительной окружности заготовки в процессе качения по ней начальной прямой рейки. Проецируя точку T на оси Ox_t и Oy_t , получаем выражения (5) и (6).

Рис. 3. Схема установления связи между координатами x_{t0} , y_{t0} и x_t , y_t

Торцовый профиль переходной кривой обрабатываемого зуба в полярной системе координат:

$$r_t = \sqrt{x_t^2 + y_t^2},$$

$$\psi_t = \operatorname{arctg} \frac{y_t}{x_t}.$$

Условие, определяющее точку F пересечения окружности впадин радиусом r_f и переходной кривой:

$$\Delta r = r_t - r_f. \tag{7}$$

Уравнение (7) вытекает из построения рис. 4, на нем показан торцовый профиль зуба рассматриваемого зубчатого колеса. $x_t Oy_t$ – система координат, связанная с зубчатым колесом. Начало координат O помещено в центре торцового сечения зубчатого колеса. Ось Ox_t является осью симметрии зуба. x_t , y_t и r_t , ψ_t – декартовые и полярные координаты точки на переходной кривой профиля зуба зубчатого колеса в торцовой плоскости. Рассматриваем разность радиуса r_t окружности точек переходной кривой профиля зуба и радиуса r_f окружности впадин, ее характеризует уравнение (7). Указанные радиусы совпадают в точке F, имея общий для них радиусвектор r_F , т. е. $\Delta r = 0$.

Таким образом наибольшее значение γ , при котором получают $\Delta r = 0$, и есть искомая величина γ_F .

Рис. 4. Расчетная схема определения точки пересечения окружности впадин и переходной кривой

При $\gamma = \gamma_F$ соответствующие функции аргумента γ снабжаем индексом *F*, т. е. получаем искомые декартовые x_F , y_F и полярные r_F , ψ_F координаты точки *F*.

Площадь S_{FL} криволинейной трапеции, ограниченной сверху кривой *FL* (переходной кривой торцового профиля зуба):

$$S_{FL} = \int_{x_F}^{x_L} y(x) dx,$$

где x_F и x_L – соответственно, нижний и верхний пределы интеграла (проекции точек *F* и *L* на ось *Ox*).

Определяем координату x_L точки *L* пересечения переходной кривой и эвольвенты профиля зуба (граничной точки) по алгоритму работы [2].

Функцию y = y(x), описывающую переходную кривую торцового профиля зуба, с целью ее интегрирования в явном виде получить не удается. Поэтому интегрируем ее приближенно, используя формулу трапеций [6]:

$$S_{FL} = \int_{x_F}^{x_L} y(x) dx \approx h \left\{ \frac{[y(x_F) + y(x_L)]}{2} + y(x_1) + y(x_2) + y(x_3) + y(x_4) + y(x_5) \right\},$$

где $h = \frac{x_L - x_F}{6}$; $x_1 = x_F + h$; $x_2 = x_F + 2h$; $x_3 = x_F + 3h$; $x_4 = x_F + 4h$; $x_5 = x_F + 5h$.

Значения функций $y(x_F)$ и $y(x_L)$ вычислили ранее при определении границ интегрирования x_F (см. выше) и x_L (по алгоритму работы [2]).

Значение $y(x_1)$ определяем следующим образом. В уравнении (5) присваиваем $x_t = x_1$, решаем его совместно с равенствами (2), (3) и (1), вычисляя γ_0 , после чего находим значение $y(x_1) = y_t$ из равенства (6). Указанную процедуру повторяем при $x_t = x_2...x_5$, определяя, соответственно, $y(x_2) ... y(x_5)$.

Площадь *S*_{*LB*} криволинейной трапеции, ограниченной сверху кривой *LB* (эвольвентой торцового профиля зуба):

$$S_{LB} = \int_{x_L}^{x_B} y(x) dx \, ,$$

где x_B – верхний предел интеграла (проекция на ось Ox точки B пересечения эвольвенты и дуги радиусом r_a окружности вершин зубьев). Координата x_B очевидна из рассмотрения рис. 1:

$$x_B = r_a \cdot \cos \psi_a \,,$$

где ψ_a – половина угловой толщины вершины зуба [4],

$$\psi_a = \frac{2\pi + 2x^* \cdot tg\alpha}{z} + tg\alpha_t - \alpha_t - tg\alpha_a + \alpha_a,$$

здесь α_a – угол профиля эвольвенты в точке *B* на вершине зуба,

$$\alpha_a = \arccos \frac{r_b}{r_a}.$$

Уравнение эвольвенты в явном виде y = f(x) получить невозможно. Поэтому будем использовать параметрические уравнения этой кривой, очевидные из рассмотрения рис. 5:

$$x = r_b [\mathbf{v} \cdot \sin(\mathbf{v} - \boldsymbol{\psi}_b) + \cos(\mathbf{v} - \boldsymbol{\psi}_b)];$$
(8)

$$y = r_b [v \cdot \cos(v - \psi_b) - \sin(v - \psi_b)], \qquad (9)$$

где ψ_b – половина основной угловой толщины зуба [4],

$$\Psi_b = \frac{\frac{\pi}{2} + 2x^* \cdot \mathrm{tg}\alpha}{z} + \mathrm{tg}\,\alpha_t - \alpha_t.$$

Рис. 5. Схема установления параметрических уравнений эвольвенты зуба

Площадь *S*_{*LB*} криволинейной трапеции, ограниченной сверху кривой *LB* (эвольвентой торцового профиля зуба, описанной указанными выше параметрическими уравнениями), выражается формулой [7]:

$$S_{LB} = \int_{\lambda}^{\mu} y(\mathbf{v}) x'(\mathbf{v}) d\mathbf{v} , \qquad (10)$$

где λ и μ – соответственно, нижний и верхний пределы интеграла (границы угла ν при $r_y = r_L$ и $r_y = r_B$, см. рис. 5).

Величины λ и μ определяем методом последовательных приближений [8] из уравнений:

$$x_{L} = r_{b} [\lambda \cdot \sin(\lambda - \psi_{b}) + \cos(\lambda - \psi_{b})];$$

$$x_{B} = r_{b} [\mu \cdot \sin(\mu - \psi_{b}) + \cos(\mu - \psi_{b})].$$

Подставляя в равенство (7) вместо y(v) зависимость (6), а вместо x'(v)dv выражение, полученное от дифференцирования по dv функции (5):

$$x^{\nu}(v)dv = r_{b}v \cdot \cos(v - \psi_{b})dv,$$

после интегрирования по частям алгебраических и тригонометрических преобразований получаем:

$$S_{LB} = \frac{r_b^2}{2} \left\{ \frac{\mu^3}{3} + \mu \cdot \cos[2(\mu - \psi_b)] + 0.5(\mu^2 - 1)\sin[2(\mu - \psi_b)] - \frac{\lambda^3}{3} - \lambda \cdot \cos[2(\lambda - \psi_b)] - 0.5(\lambda^2 - 1)\sin[2(\lambda - \psi_b)] \right\}.$$

Площадь S_{BA} криволинейной трапеции, ограниченной кривой *BA* (дугой радиусом r_a окружности вершин зубьев) [5]:

$$S_{BA} = \int_{x_B}^{x_A} y dx = \int_{x_B}^{x_A} \sqrt{r_a^2 - x^2} dx = \left(\frac{x}{2}\sqrt{r_a^2 - x^2} + \frac{r_a^2}{2}\arcsin\frac{x}{r_a}\right) \Big|_{x_B}^{x_A} =$$

$$= \frac{x_A}{2}\sqrt{r_a^2 - x_A^2} - \frac{x_B}{2}\sqrt{r_a^2 - x_B^2} + \frac{r_a^2}{2}\left(\arcsin\frac{x_A}{r_a} - \arcsin\frac{x_B}{r_a}\right) =$$

$$= \frac{r_a^2}{2}\left(\frac{\pi}{2} - \arcsin\frac{x_B}{r_a}\right) - \frac{x_B}{2}\sqrt{r_a^2 - x_B^2},$$

где x_B и x_A – соответственно, нижний и верхний пределы интеграла (проекции точек *B* и *A* на ось *Ox* (рис. 1)). Из рассмотрения рис. 1 очевидно, что $x_A = r_a$.

Заключение

Предложенный алгоритм расчета определяет достоверные значения объема впадин между зубьями венца колеса. Последнее позволяет закладывать правильный объем пластичного смазочного материала при сборке передачи, а значит – повысить качество ее работы.

Литература

- 1. Детали машин и основы конструирования : учеб. для вузов / Г. И. Рощин [и др.]; под ред. Г. И. Рощина, Е. А. Самойлова. М. : Дрофа, 2006. 415 с.
- 2. Рогачевский, Н. И. Параметры особых точек профиля эвольвентных зубьев / Н. И. Рогачевский // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. – 2010. – № 2. – С. 3–8.
- Цилиндрические эвольвентные зубчатые передачи внешнего зацепления. Расчет геометрии : справ. пособие / И. А. Болотовский [и др.]. – М. : Машиностроение, 1974. – 160 с.
- 4. Андожский, В. Д. Теория определения размера по роликам / В. Д. Андожский, Н. И. Рогачевский. Могилев. машиностр. ин-т. Могилев, 1981. 75 с. : ил. Библиогр. : 6 назв. Деп. в БелНИИНТИ 23.05.81, № 302.
- 5. Воднев, В. Т. Основные математические формулы : справочник / В. Т. Воднев, А. Ф. Наумович, Н. Ф. Наумович ; под ред. Ю. С. Богданова. Минск : Выш. шк., 1988. 269 с.
- 6. Пискунов, Н. С. Дифференциальное и интегральное исчисления. Т. 1 / Н. С. Пискунов. М. : Наука, 1978. 456 с. : ил.
- 7. Сухая, Т. А. Задачи по высшей математике : учеб. пособие / Т. А. Сухая, В. Ф. Бубнов. Минск : Выш. шк., 1993. 416 с.
- Гусак, А. А. Справочник по высшей математике / А. А. Гусак, Г. М. Гусак. Минск : Навука і тэхніка, 1991. – 480 с.

Получено 04.09.2018 г.