


#### Министерство образования Республики Беларусь

# Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Теоретические основы электротехники»

# В. В. Соленков, Д. В. Комнатный

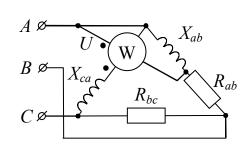
# ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

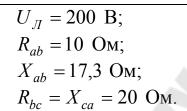
### ЗАДАЧНИК

по курсу «Теоретические основы электротехники» для студентов электротехнических и энергетических специальностей дневной и заочной форм обучения

УДК 621.3.011.7(075.8) ББК 31.211я73 С60

Рекомендовано научно-методическим советом энергетического факультета ГГТУ им. П. О. Сухого (протокол  $N_2$  7 от 30.03.2010 г.)


Рецензент: зав. каф. «Электроснабжение» ГГТУ им. П. О. Сухого канд. техн. наук, доц.  $O.~\Gamma.~III$ ироков

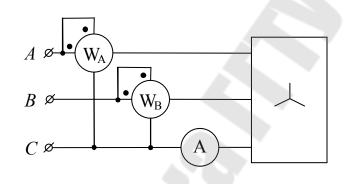

#### Соленков, В. В.

С60 Трехфазные электрические цепи: задачник по курсу «Теоретические основы электротехники» для студентов электротехн. и энергет. специальностей днев. и заоч. форм обучения / В. В. Соленков, Д. В. Комнатный. – Гомель: ГГТУ им. П. О. Сухого, 2010. – 42 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: http://lib.gstu.local. – Загл. с титул. экрана.

Содержит сорок комплектов индивидуальных заданий по курсу «Теоретические основы электротехники». Каждый вариант включает 4 задачи по расчету трехфазных электрических цепей. Для студентов электротехнических и энергетических специальностей дневной и заочной форм обучения.

УДК 621.3.011.7(075.8) ББК 31.211я73



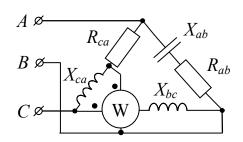



- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$R_a$$
 $X_a$ 
 $X_b$ 
 $X_b$ 

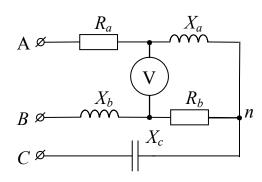
$$U_{\Phi} = 220 \text{ B};$$
  
 $R_{nN} = 20 \text{ Om};$   
 $R_a = R_b = 10 \text{ Om};$   
 $X_a = X_b = 17,3 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.




$$U_{JI} = 380 \text{ B};$$
  
 $I_{A} = 10 \text{ A};$   
 $P_{WA} = 1000 \text{ BT}.$ 

- характер симметричного приемника.
- показание ваттметра  $P_{WB}$  .


$$U_{\Phi} = 220 \, \mathrm{B};$$
  $R_1 = 8 \, \mathrm{Om}; \, X_1 = 10 \, \mathrm{Om};$   $R_2 = 30 \, \mathrm{Om}; \, X_2 = 40 \, \mathrm{Om};$ 

- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.

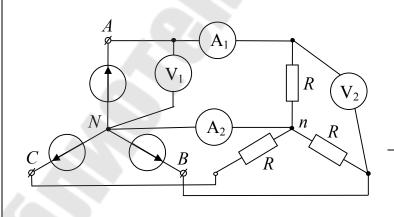


$$U_{\Phi}$$
 =150 B;   
  $R_{ab}$  = $R_{ca}$  = $X_{ab}$  = $X_{ca}$  =27 Ом;   
  $X_{bc}$  =38 Ом.

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

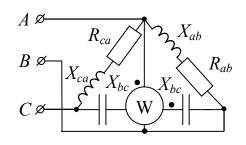


$$U_{\Phi} = 150 \text{ B};$$
  
 $X_c = 50 \text{ Om};$   
 $R_a = X_b = 30 \text{ Om};$   
 $R_b = X_a = 40 \text{ Om}.$ 


- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.

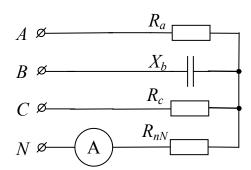
$$A \varnothing \bullet W_{B}$$

$$C \varnothing \bullet W_{C}$$


$$U_{JI} = 380 \text{ B};$$
  
 $P_{WB} = 418 \text{ BT};$   
 $P_{WC} = 836 \text{ BT}.$ 

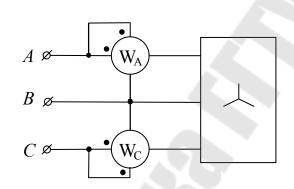
- параметры симметричного приемника.
- показания ваттметров после короткого замыкания фазы «а».




Фазная ЭДС трёхфазного симметричного генератора содержит первую и третью гармоники  $I_{A1} = I_{A2} = 6$  A; R = 25 Ом.

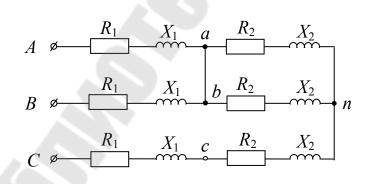
Определить показания вольтметров  $V_1$  и  $V_2$ .




$$U_{\phi} = 173 \text{ B};$$
  
 $R_{ab} = X_{ab} = X_{bc} = 20 \text{ Om};$   
 $R_{ca} = X_{ca} = 34,6 \text{ Om}.$ 

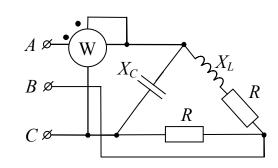
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

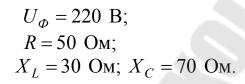



$$U_{\phi} = 150 \text{ B};$$
  
 $R_a = X_b = R_c = R_{nN} = 25 \text{ Om}.$ 

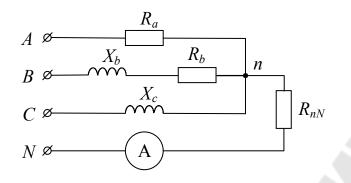
- 1. Рассчитать линейные токи.
- 2. Определить показание амперметра.




$$U_{\Phi} = 220 \text{ B};$$
  
 $P_{WA} = 500 \text{ BT};$   
 $P_{WC} = 1000 \text{ BT}.$ 


Как изменятся показания ваттметров после обрыва фазы «с»?

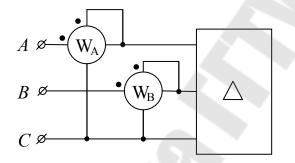



$$U_{\Phi} = 220 \, \mathrm{B};$$
  
  $R_1 = 10 \, \mathrm{Om}; \, X_1 = 15 \, \mathrm{Om};$   
  $R_2 = 30 \, \mathrm{Om}; \, X_2 = 40 \, \mathrm{Om};$ 

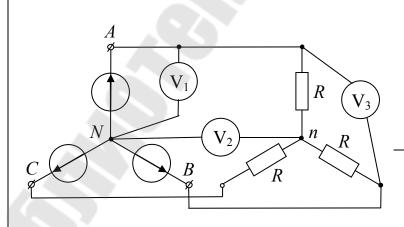
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.





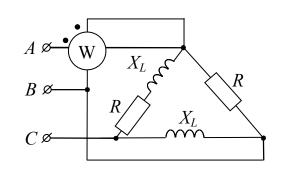

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.




$$U_{\phi} = 380 \text{ B};$$
  
 $R_a = X_c = 40 \text{ Om};$   
 $R_{nN} = 20 \text{ Om};$   
 $R_b = X_b = 25 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание амперметра.

$$U_{\mathcal{I}} = 120 \text{ B}; \ I_{\mathcal{I}} = 5 \text{ A}; \ P_{WA} + P_{WB} = 330 \text{ Bt}.$$



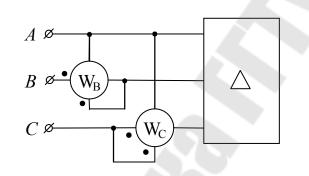

- 1. Определить параметры симметричного активно-емкостного приемника.
- 2. Определить показание каждого ваттметра.



Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники  $U_{V1}$  = 120 B;  $U_{V2}$  = 48 B.

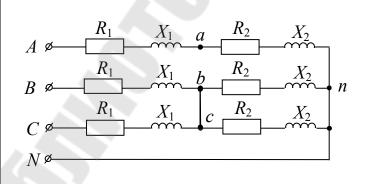
Определить показание вольтметра  $V_3$ .




$$U_{JI} = 380 \text{ B};$$
  
 $R = 20 \text{ Om};$   
 $X_L = 35 \text{ Om}.$ 

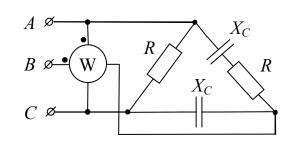
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$A \bowtie X_a R_c \qquad X_b \\ B \bowtie X_c \qquad V \qquad R_b \\ C \bowtie \qquad V$$


$$U_{\Phi} = 200 \text{ B};$$
  $X_a = 50 \text{ Ом};$   $R_b = R_c = X_b = X_c = 40 \text{ Ом}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.




$$U_{\Phi} = 220 \text{ B};$$
  
 $P_{WA} - P_{WB} = 3670 \text{ Bt}.$ 

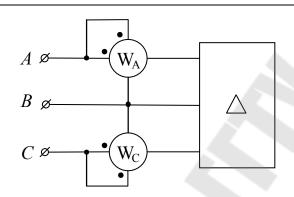
- 1. Определить характер и параметры симметричного приемника.
- 2. Определить показание каждого ваттметра.



$$U_{\Phi} = 220 \text{ B};$$
  
 $R_1 = X_1 = 10 \text{ Oм};$   
 $R_2 = 30 \text{ Oм}; X_2 = 40 \text{ Oм}.$ 

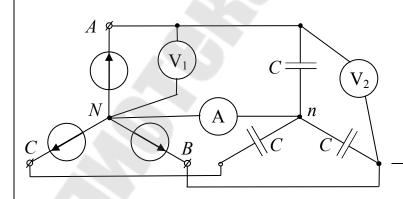
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.




$$U_{\phi} = 127 \text{ B};$$
  
 $R = X_C = 20 \text{ Ом.}$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

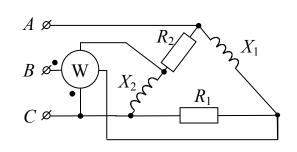
$$A \varnothing \longrightarrow X_b$$
 $A \varnothing \longrightarrow X_b$ 
 $A \varnothing \longrightarrow X_c$ 
 $A \varnothing$ 


$$U_{\phi} = 150 \text{ B};$$
  
 $R_a = X_b = 50 \text{ Om};$   
 $X_c = 25 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.



$$U_{\mathcal{I}} = 127 \text{ B}; \quad I_{\mathcal{I}} = 10 \text{ A};$$
 
$$P_{WA} + P_{WC} = 0.$$


- 1. Определить показание каждого ваттметра.
- 2. Как изменятся показания приборов после обрыва фазы «bc»?

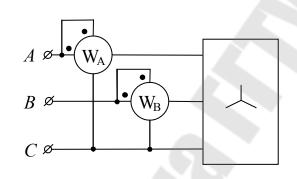


Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники.

$$\frac{1}{\omega C}$$
 = 60 Ом;  $U_{V1}$  = 170 В;  $I_A$  = 10 А.

Определить показание вольтметра  $V_2$ .



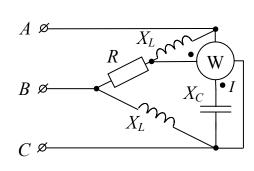

$$U_{JI} = 300 \text{ B};$$
  
 $R_1 = X_1 = 80 \text{ Om};$   
 $R_2 = 50 \text{ Om};$   
 $X_2 = 35 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$\begin{array}{c|cccc}
A & \varnothing & & X_a & & \\
B & \varnothing & & & & R_b & & \\
C & \varnothing & & & & & & \\
N & \varnothing & & & & & & \\
\end{array}$$

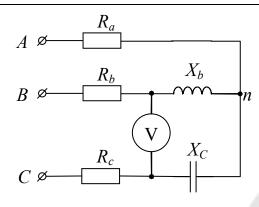
$$U_{JI} = 350 \text{ B};$$
  
 $X_a = 50 \text{ Om};$   
 $R_b = X_c = 25 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.



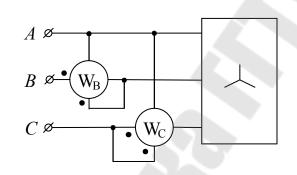

$$U_{JI} = 120 \text{ B}; \quad I_{JI} = 7 \text{ A};$$
  
 $P_{WA} + P_{WB} = 330 \text{ Bt}.$ 

- 1. Определить параметры симметричного активно-индуктивного приемника.
- 2. Определить показание каждого ваттметра.


$$U_{\phi}$$
 = 220 B;  
 $R_1 = X_1 = 10$  Om;  
 $R_2 = 30$  Om;  $X_2 = 40$  Om;  
 $R_3 = 15$  Om.

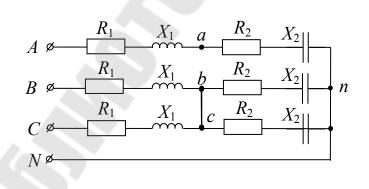
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.




$$U_{\phi} = 100 \text{ B};$$
  
 $R = X_{C} = 50 \text{ Ом};$   
 $X_{L} = 40 \text{ Ом}.$ 

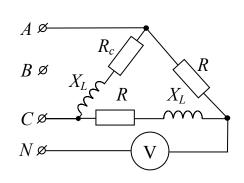
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.




$$U_{\phi} = 200 \text{ B};$$
  
 $R_a = 50 \text{ Om};$   
 $R_b = X_c = 40 \text{ Om};$   
 $R_b = X_b = 30 \text{ Om}.$ 

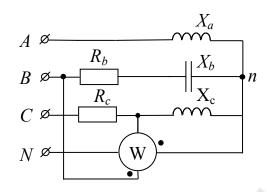
- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.




$$U_{JI} = 380 \text{ B};$$
  
 $P_{WB} = -650 \text{ BT};$   
 $\cos \varphi_{\phi} = 0.174.$ 

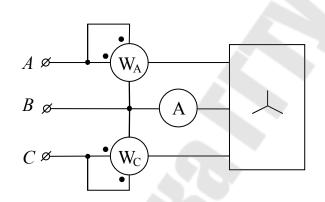
- характер и параметры симметричного приемника.
- показания ваттметра  $P_{WC}$ .




$$U_{\phi} = 220 \text{ B};$$
  
 $R_1 = X_1 = 10 \text{ Om};$   
 $R_2 = 30 \text{ Om}; X_2 = 40 \text{ Om}.$ 

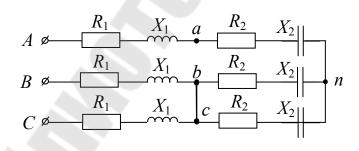
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.




$$U_{JI} = 400 \text{ B};$$
  
 $R = 40 \text{ Om};$   
 $X_{L} = 70 \text{ Om}.$ 

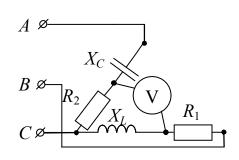
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.

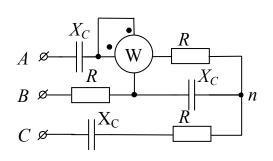


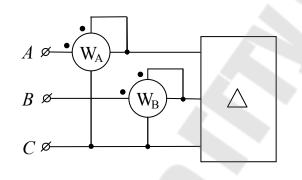

$$U_{\phi} = 100 \text{ B};$$
  
 $R_b = X_c = 10 \text{ Om};$   
 $X_a = 20 \text{ Om};$   
 $R_c = X_b = 17,3 \text{ Om}.$ 

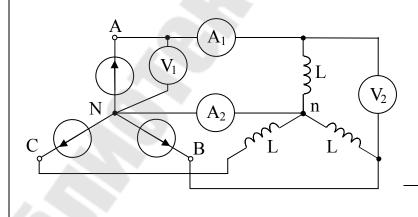
- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.




$$U_{\mathcal{I}} = 380 \text{ B}; \quad I_{A} = 10 \text{ A};$$
  
 $P_{WA} + P_{WC} = 2450 \text{ BT}.$ 


- характер и параметры симметричного приемника.
- показание каждого ваттметра.





$$U_{\Phi} = 220 \text{ B};$$
  
 $R_1 = X_1 = 10 \text{ Om};$   
 $R_2 = 30 \text{ Om}; X_2 = 40 \text{ Om}.$ 

- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.







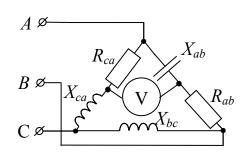


$$U_{\phi}$$
 = 120 B;  
 $R_1 = X_C = 40$  Om;  
 $R_2 = 30$  Om;  
 $X_L = 50$  Om.

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.

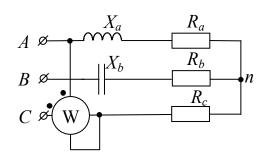
$$U_{JI} = 300 \text{ B};$$
  
 $R = 40 \text{ Om};$   
 $X_{C} = 30 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.


$$U_{\phi} = 220 \text{ B};$$
  
 $I_{\mathcal{I}} = 10 \text{ A};$   
 $P_{WA} + P_{WB} = 4200 \text{ Bt}.$ 

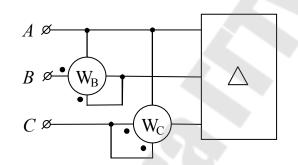
- характер и параметры симметричного приемника.
- показание каждого ваттметра.

Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники


$$U_{V1} = 170 \text{ B};$$
  
 $U_{V2} = 260 \text{ B};$   
 $\omega L = 10 \text{ Om}.$ 

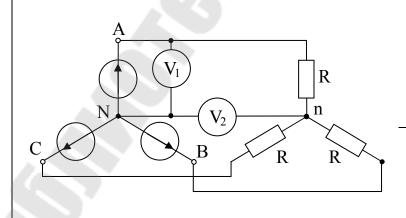
Определить показания амперметров  $A_1$  и  $A_2$ .




$$U_{\Phi} = 220 \text{ B};$$
  
 $R_{ab} = R_{ca} = 80 \text{ Om};$   
 $X_{bc} = 100 \text{ Om};$   
 $X_{ab} = X_{ca} = 60 \text{ Om}.$ 

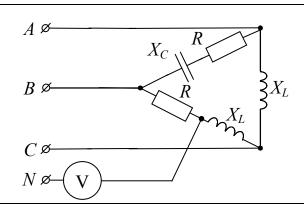
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.




$$U_{\phi} = 200 \text{ B};$$
  
 $R_a = R_b = 40 \text{ Om};$   
 $R_c = 50 \text{ Om};$   
 $X_a = X_b = 30 \text{ Om}.$ 

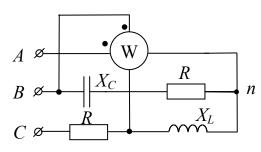
- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.




$$U_{JI} = 127 \text{ B};$$
  
 $P_{WB} = 1800 \text{ BT};$   
 $P_{WC} = 800 \text{ BT}.$ 

- характер и параметры симметричного приемника.
- показания приборов после обрыва фазы «са»?




Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники  $U_{V1} = 150 \, \mathrm{B}; \ U_{V2} = 50 \, \mathrm{B}.$ 

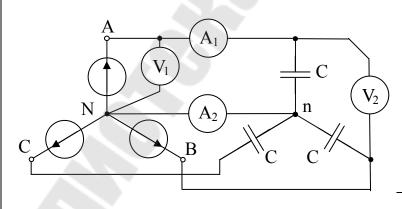
Определить линейное напряжение генератора.



$$U_{\phi} = 350 \text{ B};$$
  
 $R = 30 \text{ Om};$   
 $X_L = X_C = 40 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.

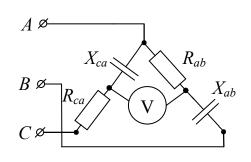



$$U_{\phi} = 173 \text{ B};$$
  
 $R = 17,3 \text{ Om};$   
 $X_L = X_C = 10 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.

$$A \varnothing \longrightarrow W_{A}$$
 $B \varnothing \longrightarrow W_{C}$ 
 $C \varnothing \longrightarrow W_{C}$ 

$$U_{\Phi} = 127 \text{ B}; I_{\mathcal{I}} = 9.2 \text{ A};$$
  
 $P_{WC} - P_{WA} = -1916 \text{ Bt}.$ 

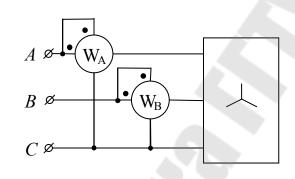

- характер и параметры симметричного приемника.
- показание каждого ваттметра.



Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники

$$U_{V1} = 137 \text{ B}; \ U_{V2} = 220 \text{ B};$$
  $\frac{1}{\omega C} = 21 \text{ Om}.$ 

Определить показания амперметров  $A_1$  и  $A_2$ .

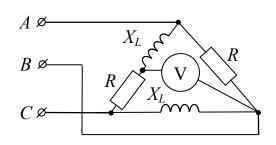



$$U_{\phi} = 173 \text{ B};$$
  
 $R_{ab} = X_{ca} = 20 \text{ Om};$   
 $R_{ca} = X_{ab} = 34,7 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.

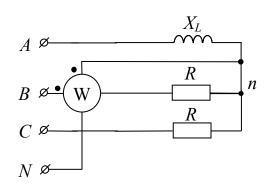
$$U_{\phi} = 100 \text{ B};$$
  
 $R = X_L = 20 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показания приборов.



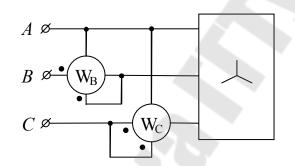

$$U_{\Phi} = 220 \text{ B}; I_{JI} = 10 \text{ A};$$
  
 $P_{WA} - P_{WB} = 3581 \text{ Bt}.$ 

- характер и параметры симметричного приемника.
- показание каждого ваттметра.


$$U_{\Phi} = 220 \text{ B};$$
  
 $R_1 = 8 \text{ Om}; \ X_1 = 10 \text{ Om};$   
 $R_2 = 30 \text{ Om}; \ X_2 = 40 \text{ Om};$ 

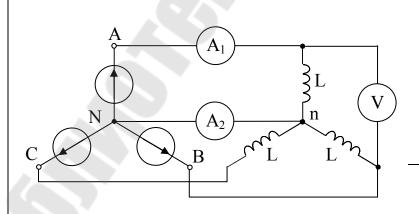
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.




$$U_{\it Л}=200$$
 В;   
  $R=X_{\it L}=30$  Ом.

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.

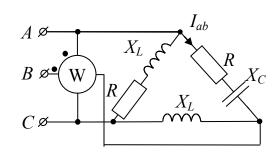



$$U_{\Phi} = 100 \text{ B};$$
  
 $R = X_L = 10 \text{ Ом.}$ 

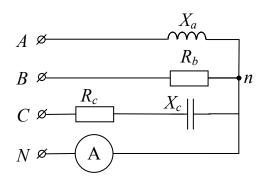
- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.



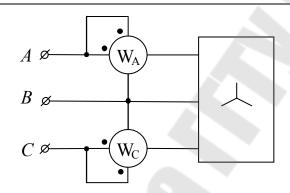
$$U_{\phi} = 100 \text{ B};$$
  
 $P_{WB} = P_{WC} = 1500 \text{ Bt}.$ 


- характер и параметры симметричного приемника.
- как изменятся показания ваттметров после короткого замыкания фазы «а»?



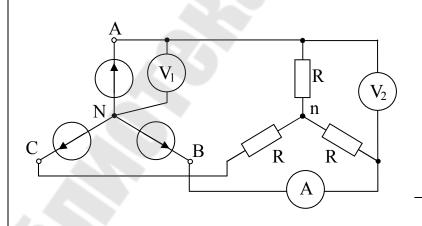

Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники

$$I_{A1} = 10 \text{ A}; I_{A2} = 6 \text{ A};$$
  
 $\omega L = 10 \text{ Om}.$ 


Определить показание вольтметра.



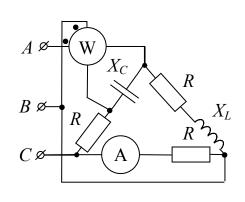
- $U_{\phi} = 115,5 \text{ B};$   $I_{ab} = 7 \text{ A};$  $R = X_L = X_c.$
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.




- $U_{JI} = 320 \text{ B};$   $X_a = 40 \text{ Om};$   $R_b = 50 \text{ Om};$  $R_c = X_c = 30 \text{ Om}.$
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание амперметра.



$$U_{\Phi} = 220 \text{ B};$$
  
 $P_{WA} = 500 \text{ BT};$   
 $P_{WC} = 1000 \text{ BT}.$ 


Как изменятся показания ваттметров после обрыва фазы «b»?

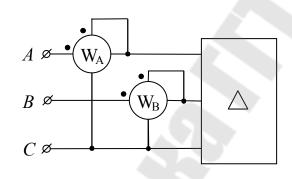


Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники

$$U_{V1} = 180$$
 В;  $R = 90$  Ом; 
$$\frac{U_{(1)}}{U_{(3)}} = 3 .$$

Определить показания амперметра и вольтметра  $V_2$ .



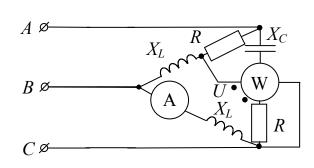

$$U_{\Phi} = 200 \text{ B};$$
 
$$I_a = 10 \text{ A};$$
 
$$X_L = X_C = \sqrt{3}R \text{ Ом.}$$

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$\begin{array}{c|cccc}
A & \varnothing & & X_C & & \\
B & \varnothing & & & & \\
C & \varnothing & & & & \\
N & \varnothing & & & & \\
\end{array}$$

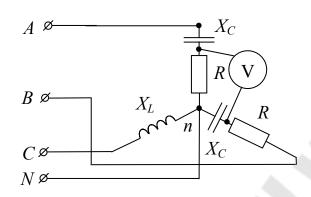
$$U_{\phi} = 127 \text{ B};$$
  
 $R = X_C = 25,4 \text{ Ом}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание вольтметра.



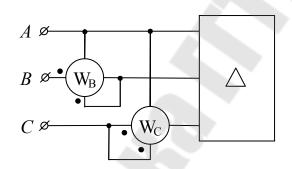

$$U_{JI} = 220 \text{ B}; I_{JI} = 8,7 \text{ A};$$
  
 $P_{WA} - P_{WB} = -1480 \text{ Bt}.$ 

- характер и параметры симметричного приемника.
- показание каждого ваттметра.


$$U_{\Phi}$$
 = 220 B;  
 $R_1 = X_1 = 10$  Ом;  
 $R_2 = 30$  Ом;  $X_2 = 40$  Ом.

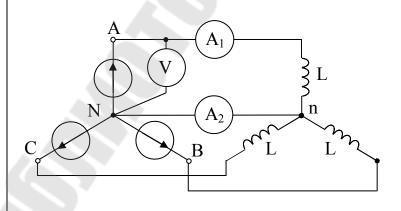
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.




$$U_{\phi} = 144.5 \text{ B};$$
  
 $I_{A} = 5 \text{ A};$   
 $X_{L} = X_{C} = \sqrt{3} R.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

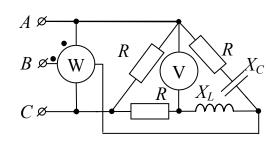



$$U_{\phi} = 200 \text{ B};$$
  
  $R = 20 \text{ Ом};$   
  $X_L = X_C = 34 \text{ Ом}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание прибора.



$$U_{\Phi} = 100 \text{ B}; I_{\mathcal{I}} = 15 \text{ A};$$
  
 $P_{WB} + P_{WC} = 2100 \text{ Bt}.$ 


- характер и параметры симметричного приемника.
- показание каждого ваттметра.

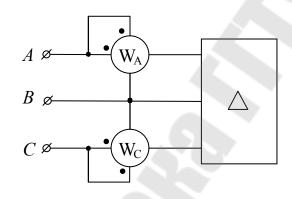


Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники

$$U_V = 125 \text{ B}; I_{A2} = 5 \text{ A};$$
  
 $\omega L = 10 \text{ Om}.$ 

Определить показание амперметра  $A_1$ .



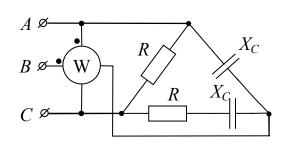

$$U_{\phi} = 220 \text{ B};$$
  
 $R = X_L = 30 \text{ Om};$   
 $X_C = 40 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показания приборов.

$$R_a$$
 $X_a$ 
 $X_b$ 
 $X_b$ 
 $X_c$ 
 $X_c$ 

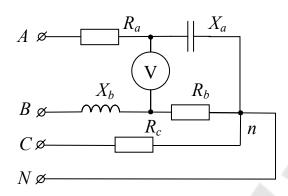
$$U_{JI} = 300 \text{ B};$$
  
 $R_a = X_a = R_c = X_c = 40 \text{ Om};$   
 $X_b = R_{nN} = 30 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.



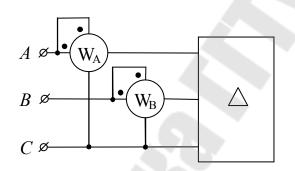

$$U_{\Phi} = 100 \text{ B}; I_{\mathcal{I}} = 15 \text{ A};$$
  
 $P_{WA} + P_{WC} = 2100 \text{ BT}.$ 

- характер и параметры симметричного приемника.
- показание каждого ваттметра.


$$U_{\phi} = 220 \text{ B};$$
  
 $R_1 = X_1 = 10 \text{ Om};$   
 $R_2 = 30 \text{ Om}; X_2 = 40 \text{ Om}.$ 

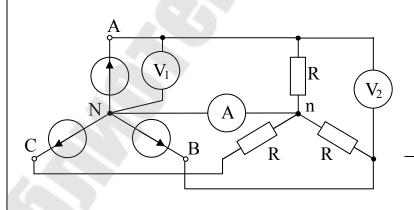
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.




$$U_{\Phi} = 127 \text{ B};$$
  $R = X_C = 40 \text{ Ом}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

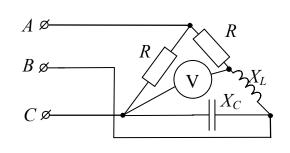



$$U_{\phi} = 100 \text{ B};$$
  
 $R_a = X_a = 20 \text{ Om};$   
 $X_b = 30 \text{ Om};$   
 $R_b = R_c = 40 \text{ Om}.$ 

- 1. Рассчитать линейные токи
- 2. Определить показание вольтметра.

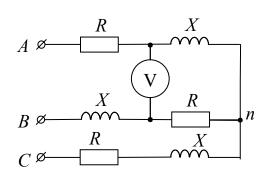


$$U_{\Phi} = 220 \text{ B}; I_{\mathcal{I}} = 10 \text{ A};$$
  
 $P_{WA} - P_{WB} = -2700 \text{ BT}.$ 


- характер и параметры симметричного приемника.
- показание каждого ваттметра.

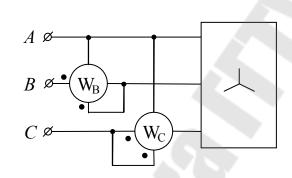


Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники


$$U_{V2} = 220 \text{ B}; I_A = 3 \text{ A};$$
  $R = 50 \text{ Om}.$ 

Определить показания амперметра и вольтметра  $V_1$ .



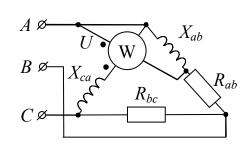

$$U_{\Phi} = 100 \,\mathrm{B};$$
  $R = X_L = X_C = 40 \,\mathrm{Om}.$ 

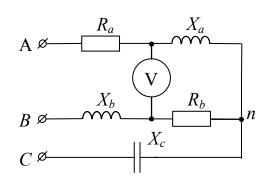
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание вольтметра.

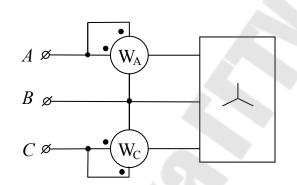


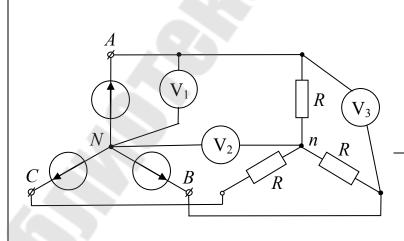
$$U_{JI} = 380 \,\mathrm{B};$$
  
 $R = 40 \,\mathrm{Om};$   
 $X = 25 \,\mathrm{Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.





$$U_{JI} = 380 \text{ B}; I_{JI} = 10 \text{ A};$$
  
 $P_{WB} + P_{WC} = 2260 \text{ BT}.$ 


- характер и параметры симметричного приемника.
- показание каждого ваттметра.


$$U_{\phi} = 127 \text{ B};$$
  
 $X_1 = 10 \text{ Ом};$   
 $R_2 = 30 \text{ Ом}; X_2 = 40 \text{ Ом}.$ 

- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.





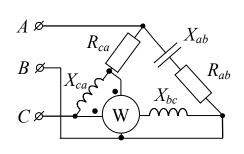




$$U_{JI} = 220 \text{ B};$$
  
 $R_{ab} = 10 \text{ Om};$   
 $X_{ab} = 17,3 \text{ Om};$   
 $R_{bc} = X_{ca} = 20 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$U_{\phi} = 220 \text{ B};$$
  
 $X_{c} = 50 \text{ Om};$   
 $R_{a} = X_{b} = 30 \text{ Om};$   
 $R_{b} = X_{a} = 40 \text{ Om}.$ 

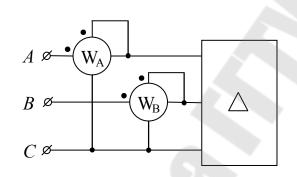

- 1. Рассчитать линейные токи
- 2. Определить показание вольтметра.

$$U_{\phi} = 220 \text{ B};$$
  
 $P_{WA} = 500 \text{ BT};$   
 $P_{WC} = 1000 \text{ BT}.$ 

Как изменятся показания ваттметров после обрыва фазы «b»?

Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники  $U_{V1}$  = 120 B;  $U_{V2}$  = 60 B.

Определить показание вольтметра  $V_3$ .

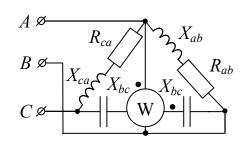



$$U_{\phi} = 127 \text{ B};$$
 $R_{ab} = R_{ca} = X_{ab} = X_{ca} = 20 \text{ Om};$ 
 $X_{bc} = 38 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

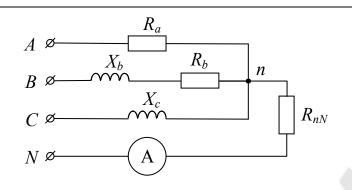
$$U_{\Phi} = 150 \text{ B};$$
 $R_a = X_b = R_c = 50 \text{ Ом};$ 
 $R_{nN} = 25 \text{ Ом}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание амперметра.




$$U_{JI} = 120 \text{ B}; \quad I_{JI} = 5 \text{ A};$$
  
 $P_{WA} + P_{WB} = 330 \text{ BT}.$ 

- 1. Определить параметры симметричного активно-емкостного приемника.
- 2. Определить показание каждого ваттметра.


$$U_{\phi} = 220 \text{ B};$$
  
 $R_1 = X_1 = 10 \text{ Oм};$   
 $R_2 = X_2 = 30 \text{ Oм}.$ 

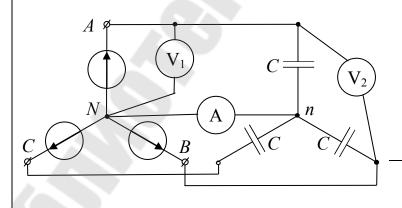
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.



$$U_{\phi} = 220 \text{ B};$$
  
 $R_{ab} = X_{ab} = X_{bc} = 20 \text{ Om};$   
 $R_{ca} = X_{ca} = 30 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

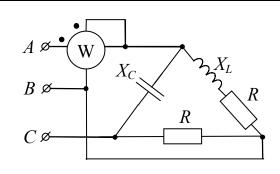



$$U_{\Phi} = 127 \text{ B};$$
  
 $R_a = X_c = 40 \text{ Om};$   
 $R_{nN} = 20 \text{ Om};$   
 $R_b = X_b = 15 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание амперметра.

$$A \varnothing \longrightarrow W_{B} \longrightarrow C \varnothing \longrightarrow W_{C} \longrightarrow W_{C}$$

$$U_{\phi} = 220 \text{ B};$$
  
 $P_{WA} - P_{WB} = 3670 \text{ BT}.$ 


- 1. Определить характер и параметры симметричного приемника.
- 2. Определить показание каждого ваттметра.



Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники.

$$\frac{1}{\omega C}$$
 = 60 Ом;  
 $U_{V1}$  = 150 В;  $I_A$  = 6 А.

Определить показание вольтметра  $V_2$ .

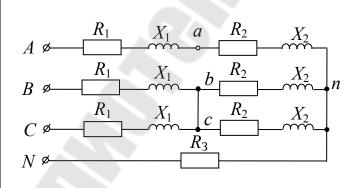


$$U_{\phi} = 220 \text{ B};$$
  
  $R = 50 \text{ Om};$   
  $X_L = 30 \text{ Om}; X_C = 70 \text{ Om}.$ 


- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

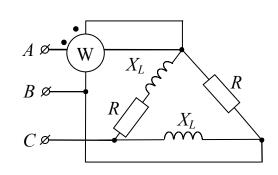
$$A \bowtie X_a \\ R_c \\ N_b \\ R_b$$

$$C \bowtie X_c \\ V \\ R_b$$


$$U_{\Phi} = 220 \, \mathrm{B};$$
  $X_a = 50 \, \mathrm{Om};$   $R_b = R_c = X_b = X_c = 35 \, \mathrm{Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.



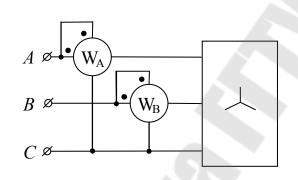

$$U_{\mathcal{I}} = 220 \text{ B}; \quad I_{\mathcal{I}} = 10 \text{ A};$$
 
$$P_{WA} + P_{WC} = 0.$$

- 1. Определить показание каждого ваттметра.
- 2. Как изменятся показания приборов после обрыва фазы «ab»?



$$U_{\Phi} = 220 \text{ B};$$
  
 $R_1 = X_1 = 10 \text{ Om};$   
 $R_2 = 25 \text{ Om}; X_2 = 45 \text{ Om};$   
 $R_3 = 15 \text{ Om}.$ 

- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.

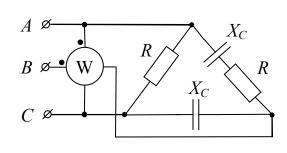



$$U_{JI} = 220 \text{ B};$$
  
 $R = 20 \text{ Om};$   
 $X_L = 35 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$U_{\phi} = 150 \text{ B};$$
  
 $R_a = X_b = 40 \text{ Om};$   
 $X_c = 25 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.



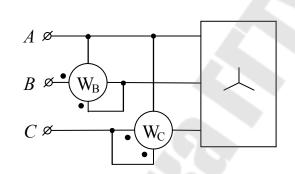

$$U_{JI} = 120 \text{ B}; \quad I_{JI} = 7 \text{ A};$$
  $P_{WA} + P_{WB} = 330 \text{ Bt}.$ 

- 1. Определить параметры симметричного активно-индуктивного приемника.
- 2. Определить показание каждого ваттметра.

$$U_{\Phi} = 220 \text{ B};$$
  
 $X_1 = 10 \text{ Oм};$   
 $R_2 = 30 \text{ Om}; X_2 = 40 \text{ Om}.$ 

- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.



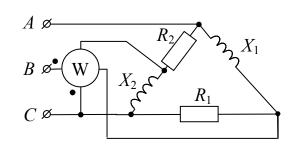

$$U_{\phi} = 220 \text{ B};$$
  
 $R = X_C = 20 \text{ Ом.}$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$A \varnothing \qquad \qquad X_a \mid \qquad \qquad \\ B \varnothing \qquad \qquad \qquad X_c \mid \qquad \qquad \\ C \varnothing \qquad \qquad X_c \mid \qquad \qquad \\ N \varnothing \qquad \qquad V \qquad \qquad$$

$$U_{JI} = 300 \text{ B};$$
  
 $X_a = 50 \text{ Ом};$   
 $R_b = X_c = 25 \text{ Ом}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.




$$U_{\mathcal{I}} = 380 \text{ B};$$
  
 $P_{WB} = -650 \text{ BT};$   
 $\cos \varphi_{\phi} = 0,174.$ 

- характер и параметры симметричного приемника.
- показание ваттметра  $P_{WC}$ .

$$U_{\Phi} = 220 \text{ B};$$
  
 $R_1 = X_1 = 10 \text{ Oм};$   
 $R_2 = 20 \text{ Om}; X_2 = 40 \text{ Om}.$ 

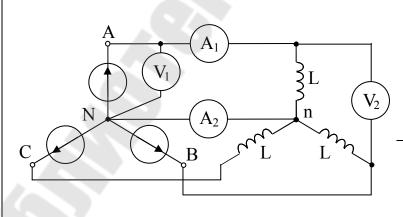
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.



$$U_{JI} = 300 \text{ B};$$
  
 $R_1 = X_1 = 70 \text{ Om};$   
 $R_2 = 45 \text{ Om};$   
 $X_2 = 30 \text{ Om}.$ 

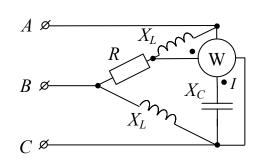
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

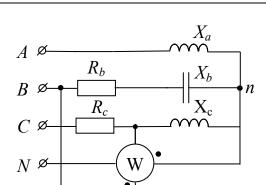
$$R_a$$
 $R_b$ 
 $R_b$ 
 $R_b$ 
 $R_c$ 
 $R_c$ 


$$U_{\phi} = 220 \text{ B};$$
  
 $R_a = 50 \text{ Om};$   
 $R_b = X_c = 40 \text{ Om};$   
 $R_b = X_b = 30 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.

$$A \varnothing \longrightarrow W_{A}$$
 $B \varnothing \longrightarrow A$ 
 $C \varnothing \longrightarrow W_{C}$ 

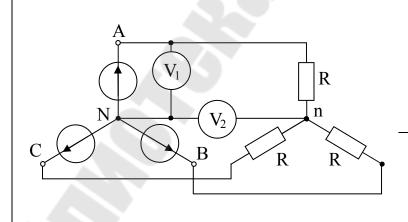

$$U_{JI} = 380 \text{ B}; \quad I_A = 10 \text{ A};$$
  
 $P_{WA} + P_{WC} = 2450 \text{ BT}.$ 


- характер и параметры симметричного приемника.
- показание каждого ваттметра.



Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники  $U_{V1} = 180 \, \text{B}; \ U_{V2} = 260 \, \text{B}; \ \omega L = 10 \, \text{Om}.$ 

Определить показания амперметров  $A_1$  и  $A_2$ .






$$A \not \otimes \bullet W_{A}$$

$$B \not \otimes \bullet W_{B}$$

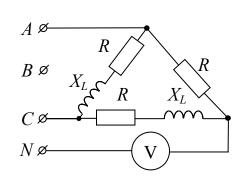
$$C \not \otimes \bullet$$



$$U_{\phi} = 150 \text{ B};$$
  
 $R = X_C = 50 \text{ Ом};$   
 $X_L = 30 \text{ Ом}.$ 

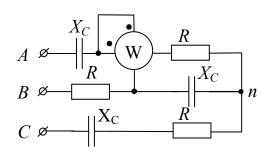
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$U_{\phi} = 127 \text{ B};$$
  
 $R_b = X_c = 10 \text{ Om};$   
 $X_a = 20 \text{ Om};$   
 $R_c = X_b = 17,3 \text{ Om}.$ 


- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.

$$U_{\phi} = 220 \text{ B};$$
  
 $I_{JI} = 10 \text{ A};$   
 $P_{WA} + P_{WB} = 4200 \text{ BT}.$ 

- характер и параметры симметричного приемника.
- показание каждого ваттметра.


Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники  $U_{V1}$  = 180 B;  $U_{V2}$  = 50 B.

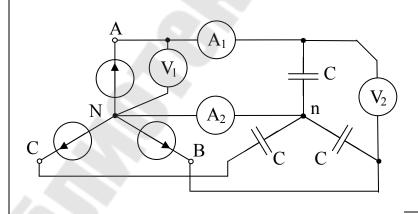
Определить линейное напряжение генератора.



| $U_{JI} = 380 \text{ B};$ |
|---------------------------|
| R = 40  Om;               |
| $X_L = 55  \text{Om}.$    |

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.

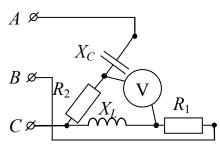


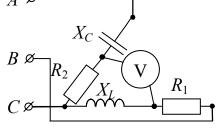

$$U_{JI} = 220 \text{ B};$$
  
 $R = 40 \text{ Om};$   
 $X_{C} = 30 \text{ Om}.$ 

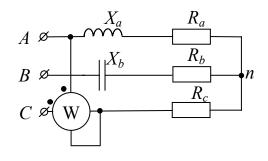
- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.

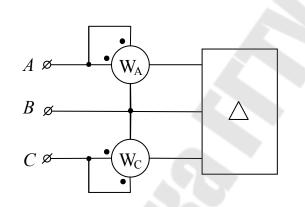
$$A \varnothing \longrightarrow W_{B} \longrightarrow C \varnothing \longrightarrow W_{C}$$

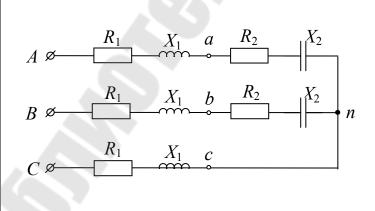
$$U_{JI} = 127 \text{ B};$$
  
 $P_{WB} = 900 \text{ BT};$   
 $P_{WC} = 1800 \text{ BT}.$ 


- характер и параметры симметричного приемника.
- показания приборов после обрыва фазы «ab»?





Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники


$$U_{V1}$$
 = 150 B;  
 $U_{V2}$  = 220 B;  
 $\frac{1}{\omega C}$  = 21 Ом.


Определить показания амперметров  $A_1$  и  $A_2$ .







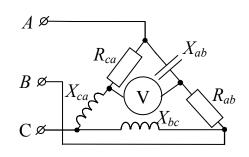




$$U_{\phi} = 150 \text{ B};$$
  
 $R_1 = X_C = 40 \text{ Om};$   
 $R_2 = 30 \text{ Om};$   
 $X_L = 50 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.

$$U_{\phi} = 200 \text{ B};$$
  
 $R_a = R_b = 40 \text{ Om};$   
 $R_c = 50 \text{ Om};$   
 $X_a = X_b = 30 \text{ Om}.$ 

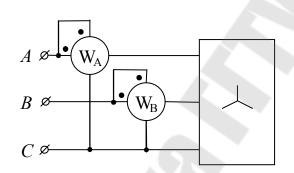

- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.

$$U_{\Phi} = 127 \text{ B}; I_{\mathcal{I}} = 9.2 \text{ A};$$
  $P_{WA} - P_{WC} = 2000 \text{ Bt}.$ 

- характер и параметры симметричного приемника.
- показание каждого ваттметра.

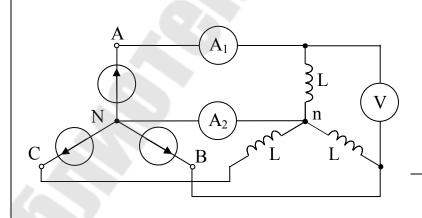
$$U_{\phi}$$
 = 220 B;  
 $R_1$  = 8 Ом;  $X_1$  = 10 Ом;  
 $R_2$  = 30 Ом;  $X_2$  = 40 Ом;

- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.




$$U_{\phi} = 250 \text{ B};$$
  
 $R_{ab} = R_{ca} = 45 \text{ Om};$   
 $X_{bc} = 100 \text{ Om};$   
 $X_{ab} = X_{ca} = 60 \text{ Om}.$ 

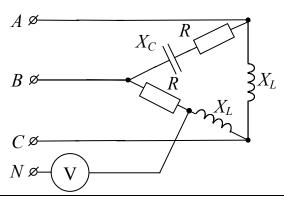
- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.


$$U_{\phi} = 173 \text{ B};$$
  
  $R = 20 \text{ Ом};$   
  $X_L = X_C = 28 \text{ Ом}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.



$$U_{\Phi} = 220 \, \text{B}; \; I_{JI} = 10 \, \text{A}; \ P_{WA} - P_{WB} = 3581 \, \text{Bt}.$$


- характер и параметры симметричного приемника.
- показание каждого ваттметра.



Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники

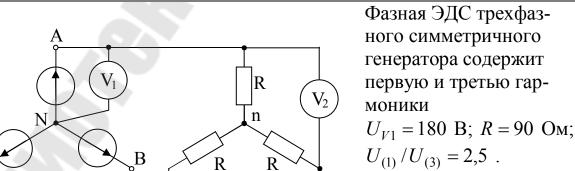
$$I_{A1} = 10 \text{ A}; I_{A2} = 6 \text{ A};$$
  
 $\omega L = 10 \text{ Om}.$ 

Определить показание вольтметра.

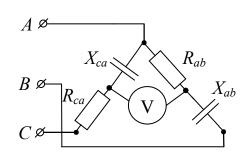


$$U_{\phi} = 320 \text{ B};$$
  $R = 30 \text{ Oм};$   $X_L = X_C = 40 \text{ Oм}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.

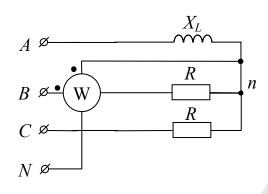

$$U_{\phi} = 127 \text{ B};$$
  
 $R = X_L = 20 \text{ Ом}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показания приборов.


$$A \varnothing \longrightarrow W_B$$
 $C \varnothing \longrightarrow W_C$ 

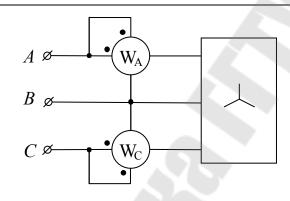
$$U_{\phi} = 100 \text{ B};$$
  
 $P_{WB} = P_{WC} = 1500 \text{ BT}.$ 

- характер и параметры симметричного приемника.
- как изменятся показания ваттметров после короткого замыкания фазы «b»?




Определить показания амперметра и вольтметра  $V_2$ .



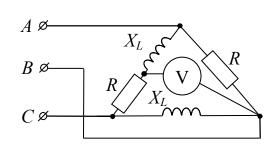

$$U_{\phi} = 150 \text{ B};$$
  
 $R_{ab} = X_{ca} = 20 \text{ Om};$   
 $R_{ca} = X_{ab} = 34,7 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.



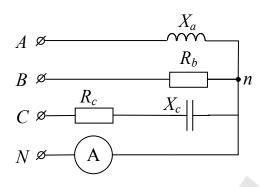
$$U_{\phi} = 127 \text{ B};$$
  
 $R = X_L = 10 \text{ Ом}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание ваттметра.



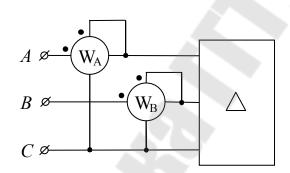

$$U_{\phi} = 220 \text{ B};$$
  
 $P_{WA} = 500 \text{ BT};$   
 $P_{WC} = 1000 \text{ BT}.$ 

Как изменятся показания ваттметров после обрыва фазы «с»?


$$U_{\phi}$$
 = 150 B;  
 $R_1 = X_1 = 10$  Ом;  
 $R_2 = 30$  Ом;  $X_2 = 40$  Ом.

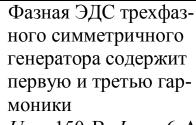
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.




$$U_{\phi} = 100 \text{ B};$$
  $R = X_L = 30 \text{ Ом}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание прибора.

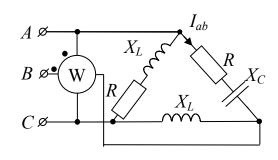



$$U_{JI} = 380 \text{ B};$$
  
 $X_a = 40 \text{ Om};$   
 $R_b = 50 \text{ Om};$   
 $R_c = X_c = 30 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание амперметра.



$$U_{JI} = 220 \text{ B}; I_{JI} = 8,7$$
  
A;  
 $P_{WA} - P_{WB} = -1480 \text{ Bt}.$ 


- характер и параметры симметричного приемника.
- показание каждого ваттметра.



$$U_V = 150 \text{ B}; I_{A2} = 6 \text{ A};$$
  
 $\omega L = 10 \text{ Om}.$ 

Определить показание амперметра  $A_1$ .

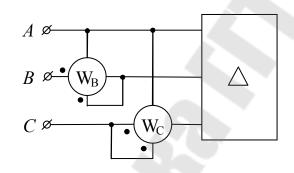




$$U_{\phi} = 127 \text{ B};$$
  
 $I_{ab} = 7 \text{ A};$   
 $R = X_L = X_C.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$A \not \sim \qquad \qquad X_{C} | \qquad \qquad R$$

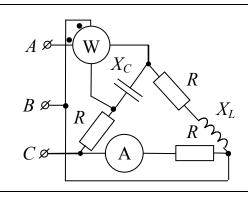

$$B \not \sim \qquad \qquad X_{C} | \qquad \qquad R$$

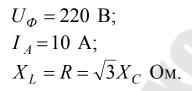
$$C \not \sim \qquad \qquad X_{C} | \qquad \qquad \qquad N$$

$$N \not \sim \qquad V$$

$$U_{\Phi} = 220 \text{ B};$$
  
 $R = X_C = 25 \text{ Ом.}$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание вольтметра.





$$U_{\phi} = 100 \text{ B}; I_{\pi} = 15 \text{ A};$$
  
 $P_{WB} + P_{WC} = 2250 \text{ Bt}.$ 

- характер и параметры симметричного приемника.
- показание каждого ваттметра.

$$U_{\phi} = 220 \text{ B};$$
  
 $R_1 = X_1 = 10 \text{ Ом};$   
 $R_2 = 40 \text{ Ом}; X_2 = 30 \text{ Ом}.$ 

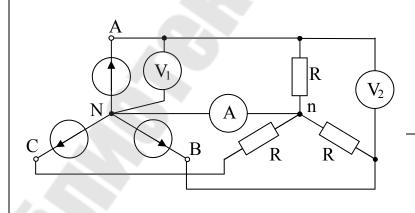
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.





- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

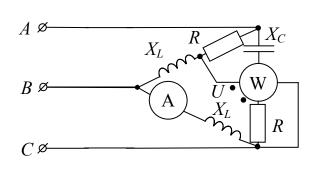
$$U_{\phi} = 200 \text{ B};$$
  
 $R = 34 \text{ Om};$   
 $X_L = X_C = 25 \text{ Om}.$ 


- 1. Рассчитать линейные токи.
- 2. Определить показание прибора.

$$A \varnothing \qquad \bullet \qquad \qquad \\ B \varnothing \qquad \qquad \triangle$$

$$C \varnothing \qquad \bullet \qquad \qquad \\ W_{C} \qquad \qquad \\ C \varnothing \qquad \bullet \qquad \qquad \\ C \varnothing \qquad \qquad$$

$$U_{\Phi} = 100 \text{ B}; I_{JI} = 15 \text{ A};$$
  
 $P_{WA} + P_{WC} = 2100 \text{ Bt}.$ 


- характер и параметры симметричного приемника.
- показание каждого ваттметра.

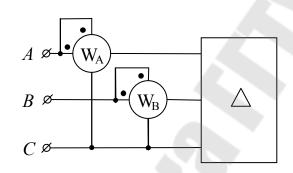


Фазная ЭДС трехфазного симметричного генератора содержит первую и третью гармоники

$$U_{V2} = 220 \text{ B}; I_A = 2,4 \text{ A};$$
  
 $R = 50 \text{ Om}.$ 

Определить показания амперметра и вольтметра  $V_1$ .

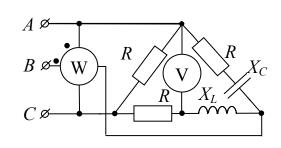



$$U_{\Phi} = 127 \text{ B};$$
  
 $I_A = 5 \text{ A};$   
 $X_L = X_C = \sqrt{3} R.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.

$$R_a$$
 $X_a$ 
 $X_b$ 
 $X_c$ 
 $X_c$ 

$$U_{JI} = 380 \text{ B};$$
  
 $R_a = X_a = R_c = X_c = 50 \text{ Om};$   
 $X_b = R_{nN} = 40 \text{ Om}.$ 


- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.

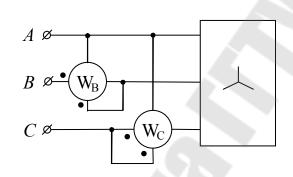


$$U_{\Phi} = 220 \, \text{B}; \; I_{JI} = 10 \, \text{A}; \ P_{WA} - P_{WB} = -2700 \, \text{Bt}.$$

- характер и параметры симметричного приемника.
- показание каждого ваттметра.

- $U_{\phi} = 220 \text{ B};$   $X_1 = 10 \text{ Om};$  $R_2 = 30 \text{ Om}; X_2 = 40 \text{ Om}.$
- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.



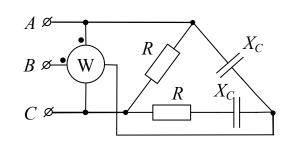

$$U_{\phi} = 200 \text{ B};$$
  
 $R = X_L = 30 \text{ Om};$   
 $X_C = 40 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показания приборов.

$$A \varnothing \longrightarrow R_a \longrightarrow X_a \longrightarrow X_b \longrightarrow R_b \longrightarrow R_c \longrightarrow R_c$$

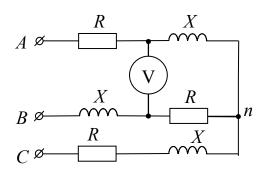
$$U_{\phi} = 127 \text{ B};$$
 $R_a = X_a = 20 \text{ Om};$ 
 $X_b = 30 \text{ Om};$ 
 $R_b = R_c = 40 \text{ Om}.$ 

- 1. Рассчитать линейные токи
- 2. Определить показание вольтметра.




$$U_{\mathcal{I}} = 380 \text{ B}; \ I_{\mathcal{I}} = 10 \text{ A}; \ P_{WB} + P_{WC} = 2260 \text{ Bt}.$$

- характер и параметры симметричного приемника.
- показание каждого ваттметра.


$$U_{\Phi} = 220 \text{ B};$$
  
 $R_1 = 8 \text{ Om}; \ X_1 = 10 \text{ Om};$   
 $R_2 = 30 \text{ Om}; \ X_2 = 40 \text{ Om};$ 

- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.



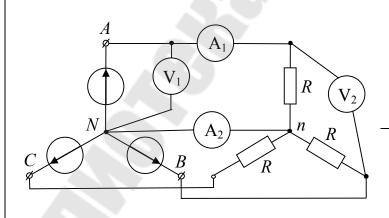
$$U_{\phi} = 127 \text{ B};$$
  
  $R = 40 \text{ Om}; X_C = 20 \text{ Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание ваттметра.



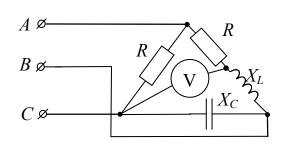
$$U_{JI} = 220 \,\mathrm{B};$$
  
 $R = 40 \,\mathrm{Om};$   
 $X = 25 \,\mathrm{Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.


$$A \bowtie W_{A}$$

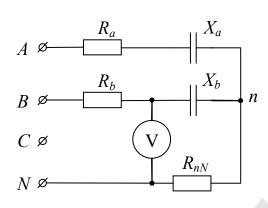
$$B \bowtie W_{B}$$

$$C \bowtie A$$


$$U_{JI} = 380 \text{ B};$$
  
 $I_A = 10 \text{ A};$   
 $P_{WA} = 1000 \text{ BT}.$ 

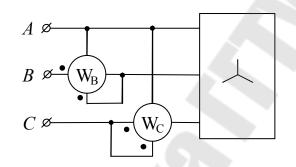
- характер симметричного приемника.
- показание ваттметра  $P_{WB}$ .




Фазная ЭДС трёхфазного симметричного генератора содержит первую и третью гармоники  $I_{A1} = I_{A2} = 7,5\,$  A;  $R = 20\,$  Ом.

Определить показания вольтметров  $V_1$  и  $V_2$ .




$$U_{\phi} = 150 \,\mathrm{B};$$
  
 $R = X_L = X_C = 40 \,\mathrm{Om}.$ 

- 1. Рассчитать фазные и линейные токи.
- 2. Определить показание вольтметра.



$$U_{\phi} = 127 \text{ B};$$
  
 $R_{nN} = 20 \text{ Om};$   
 $R_a = R_b = 10 \text{ Om};$   
 $X_a = X_b = 21 \text{ Om}.$ 

- 1. Рассчитать линейные токи.
- 2. Определить показание вольтметра.



$$U_{JI} = 380 \text{ B};$$
  
 $P_{WB} = 1036 \text{ BT};$   
 $P_{WC} = 400 \text{ BT}.$ 

- параметры симметричного приемника.
- показания ваттметров после короткого замыкания фазы «а».

$$U_{\phi} = 250 \text{ B};$$
  
 $R_1 = 10 \text{ Om}; \ X_1 = 15 \text{ Om};$   
 $R_2 = 30 \text{ Om}; \ X_2 = 40 \text{ Om};$ 

- 1. Рассчитать токи и напряжения на фазах приемника.
- 2. Построить векторную диаграмму токов и напряжений.

# **Соленков** Виталий Владимирович **Комнатный** Дмитрий Викторович

# ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

## Задачник

по курсу «Теоретические основы электротехники» для студентов электротехнических и энергетических специальностей дневной и заочной форм обучения

Подписано к размещению в электронную библиотеку ГГТУ им. П. О. Сухого в качестве электронного учебно-методического документа 29.09.2010.

Per. № 20E. E-mail: ic@gstu.by http://www.gstu.by