

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Детали машин»

ДЕТАЛИ МАШИН

ПРАКТИКУМ по выполнению контрольных работ для студентов специальности 1-36 01 07 «Гидропневмосистемы мобильных и технологических машин» заочной формы обучения

УДК 621.81.001.66(075.8) ББК 34.42я73 Д38

Рекомендовано научно-методическим советом заочного факультета ГГТУ им. П. О. Сухого (протокол № 2 от 27.11.2008 г.)

Составители: А. Т. Бельский, Г. П. Тариков, В. В. Комраков

Рецензент: зав. каф. «Технология машиностроения» ГГТУ им. П. О. Сухого канд. техн. наук, доц. M. Π . Kульгейко

Детали машин: практикум по выполнению контрол. работ для студентов специальдз8 ности 1-36 01 07 «Гидропневмосистемы мобильных и технологических машин» заоч. формы обучения / сост.: А. Т. Бельский, Г. П. Тариков, В. В. Комраков. — Гомель: ГГТУ им. П. О. Сухого, 2009. — 41 с. — Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. — Режим доступа: http://lib.gstu.local. — Загл. с титул. экрана.

Приведены задачи для контрольной работы по курсу «Детали машин», а также необходимый справочный материал по расчету деталей, их соединений и узлов.

Для студентов специальности 1-36 01 07 «Гидропневмосистемы мобильных и технологических машин» заочной формы обучения.

УДК 621.81.001.66(075.8) ББК 34.42я73

- © Бельский А. Т., Тариков Г. П., Комраков В. В., составление, 2009
- © Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2009

Курс "Детали машин" охватывает вопросы теории работы конструкции, и расчетов деталей, их соединений и узлов, которые характерны для подавляющего большинства современных машин - деталей общего назначения, а также общие методические вопросы конструирования.

Задача курса "Детали машин" - изучение основ проектирования машин и механизмов на примерах расчета и конструирования деталей общего назначения, которое складывается из лекционного курса, практических и лабораторных занятий и курсового проекта.

Программа курса детали машин

1. МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ

- 1.1. ОБЩИЕ СВЕДЕНИЯ. Назначение и роль передач в машинах. Принципы работы. Классификация. Основные и производные характеристики передач. Общие кинематические и энергетические соотношения.
- 1.2. ЗУБЧАТЫЕ ПЕРЕДАЧИ. Классификация. Достоинства, недостатки, области применения. Критерии работоспособности и расчета: условия работы зуба в зацеплении, понятие о контактных напряжениях, виды разрушения зубьев: поломки, повреждение поверхности. Расчетная нагрузка: коэффициенты K_{α} , K_{β} и Kv. Точность изготовления. Передаточное отношение и к.п.д. зубчатых передач. Материалы зубчатых колес. Допускаемые напряжения.
- 1.3.ЦИЛИНДРИЧЕСКАЯ ПРЯМОЗУБАЯ ПЕРЕДАЧА. Силы в зацеплении. Расчет прочности зубьев по контактным напряжениям. Расчет прочности зубьев по напряжениям изгиба. Выбор модуля и числа зубьев.
- 1.4.ЦИЛИНДРИЧЕСКАЯ КОСОЗУБАЯ ПЕРЕДАЧА. Особенности геометрии. Плавность зацепления и уменьшения шума. Силы в зацеплении косозубой и шевронной передач. Расчет прочности зубьев по изгибным и контактным напряжениям.
- 1.5.КОНИЧЕСКИЕ ПЕРЕДАЧИ. Общие сведения. Передаточное отношение. Силы в зацеплении. Расчет зубьев на прочность по изгибным и контактным напряжениям. Конические колеса с непрямыми зубьями.
- 1.6. ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ. Достоинства, недостатки и области применения. Геометрия и способы изготовления червячных зацеплений. Кинематика. К.п.д. Силы в зацеплении. Критерии рабо-

тоспособности и расчета. Расчет на прочность по контактным и изгибным напряжениям. Расчетная нагрузка. Материалы. Допускаемые напряжения. Тепловой расчет, охлаждение и смазка передач. Краткие сведения о глобоидных передачах.

- 1.7. ЦЕПНЫЕ ПЕРЕДАЧИ. Достоинства, недостатки и области применения. Основные характеристики. Конструкция цепей и звездочек. Кинематика. Динамика. Силы в зацеплении. Критерии работоспособности и расчета.
- 1.8.РЕМЕННЫЕ ПЕРЕДАЧИ. Достоинства, недостатки и области применения. Кинематика. Геометрия. Критерии работоспособности и расчета. Силы в передаче. Напряжение в ремне. Скольжение в передаче. Кривые скольжения и к.п.д. Нагрузка на валы и опоры. Расчет ременных передач по тяговой способности. Расчет плоскоременных передач. Комплексный расчет ременных передач на выносливость и тяговую способность. Расчет клиноременных передач.
- 1.9. ВИНТОВЫЕ И ГИПОИДНЫЕ ПЕРЕДАЧИ. Общие сведения. Конструкции и материалы. Основы теории и работы передачи. Расчет винтовых и гипоидных передач.
- 1.10.ФРИКЦИОННЫЕ ПЕРЕДАЧИ И ВАРИАТОРЫ. Принцип работы. Области применения. Цилиндрическая и коническая передачи. Факторы, определяющие качество фрикционных передач: скольжение, к.п.д. Расчет прочности фрикционных пар: критерии расчета, допускаемые напряжения. Вариаторы. (лобовой, с раздвижными конусами, торовый, дисковый). Конструкция и расчет.

2. ВАЛЫ И ОСИ

ВАЛЫ И ОСИ. Назначение. Классификация. Критерии работоспособности и расчета. Расчеты на прочность: проектный и проверочный. Расчет валов на жесткость и колебания.

3. ПОДШИПНИКИ КАЧЕНИЯ

Достоинства, недостатки, области применения. Классификация. Точность и стоимость. Основные типы и характеристики подшипников. Распределение нагрузки между телами качения. Кинематика. Причины выхода из строя подшипников. Критерии расчета. Расчет на долговечность. Определение эквивалентной нагрузки и подбор подшипника. Статическая грузоподъемность подшипника. Жесткость подшипников качения и их предварительный натяг. Быстроходность подшипников.

4. МУФТЫ

Общие сведения. Назначение и классификация. Муфты глухие: втулочная, фланцевая. Муфты компенсирующие жесткие: виды несоосности валов, муфты кулачково-дисковая и зубчатая. Упругие муфты. Назначение и динамические свойства. Металлические упругие элементы. Муфты с цилиндрическими пружинами. Муфта зубчато-пружинная. Неметаллические упругие элементы. Муфты: с резиновой звездочкой, втулочно-пальцевая, с упругой оболочкой. Муфты управляемые: зубчатые сцепные, фрикционные, дисковые. Муфты автоматические: предохранительные, центробежные, свободного хода.

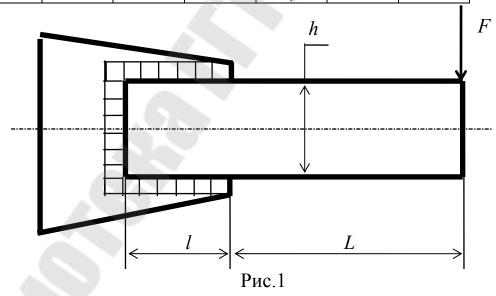
5. СОЕДИНЕНИЯ ДЕТАЛЕЙ МАШИН

Классификация. Критерии работоспособности. Требования к соединениям.

- 2.1.РЕЗЬБОВЫЕ СОЕДИНЕНИЯ. Достоинства, недостатки и области применения. Способы изготовления резьбы. Классификация резьбы. Обоснования выбора типа крепежной резьбы. Основные типы крепежной резьбы. Способы стопорения резьбы. Принцип пенагрузки. Распределение нагрузки в групповых соединениях. Предварительная затяжка Жесткость соединения. Распределение осевой нагрузки по рабочим виткам. Распределение напряжений. Нарушение режима работы и виды повреждений. Пути повышения надежности и долговечности соединения. Зависимость между моментом, приложенным к гайке и осевой силой винта. Самоторможение и КПД винтовой пары. Расчет на прочность резьбы стержня винта. Расчеты на прочность при различных случаях нагружения. ность болта при статической и переменной нагрузках. Эффект эксцентричного нагружения болта. Соединения, подверженные тепловым воздействиям. Материалы, допускаемые напряжения резьбовых соединений.
- 2.2.СОЕДИНЕНИЯ ЗАЦЕПЛЕНИЕМ. Назначение, устройство. Классификация. Достоинства недостатки. Принцип передачи нагрузки. Распределение нагрузки. Распределение напряжений. Нарушение режима работы и виды повреждений. Пути повышения надежности и долговечности. Расчет на прочность. Виды шпонок и область их применения. Ненапряженные шпоночные соединения. Напряженные шпоночные соединения. Кли-

новые и штифтовые соединения. Профильные соединения. Материалы. Допускаемые напряжения.

- 2.3.СОЕДИНЕНИЯ ДЕТАЛЕЙ С НАТЯГОМ. Способы соединения деталей. Достоинства, недостатки и области применения. Расчет прочности соединения. Расчет прочности и деформаций деталей. Соединение деталей посадкой на конусе.
- 2.4. СВАРНЫЕ СОЕДИНЕНИЯ. Способы сварки. Достоинства, недостатки и области применения. Соединения встык. Соединения в нахлестку: фланговые, лобовые и комбинированные швы. Соединения втавр. Соединения контактной сваркой: встык, ленточная сварка. Принцип передачи нагрузки Распределение нагрузки. Распределение напряжений. Нарушение режима работы и виды повреждений. Пути повышения надежности и долговечности. Расчет сварных соединений. Критерии расчета. Стыковые швы. Угловые швы. Точечные швы. Допускаемые напряжения.
- 2.5. ЗАКЛЕПОЧНЫЕ СОЕДИНЕНИЯ. Назначение, устройства. Классификация. Достоинства и недостатки. Конструкции и материалы. Принцип передачи нагрузки. Распределение нагрузки. Распределение напряжений. Нарушение режима работы и виды повреждений. Пути повышения надежности и долговечности соединения. Расчет клепаных соединений. Критерии расчета. Расчет прочных соединений при статических нагрузках. Расчет при переменных нагрузках. Расчет прочноплотных соединений. Допускаемые напряжения.
- 2.6. УПРУГИЕ СОЕДИНЕНИЯ. Назначение, устройства. Классификация. Достоинства и недостатки. Конструкции и материалы. Принцип передачи нагрузки. Распределение нагрузки. Распределение напряжений. Нарушение режима работы и виды повреждений. Пути повышения надежности и долговечности соединения. Расчет упругих соединений. Критерии расчета. Пружины растяжения, сжатия. Пружины кручения. Пружины изгиба и рессоры.


Учебным планом предусмотрено выполнение контрольной работы. Контрольная работа по курсу "Детали машин" состоит из восьми задач, номера которых зависит от номера задания. Номер задания выбирается по двух последним цифрам зачетки, а номер варианта для числовых данных по последней цифре зачетки. Таблицы для выбора варианта и соответствующих номеров задач приведены в конце практикума (табл. 60, табл. 61).

Задачи к контрольной работе

Задача 1. Проверить прочность сварного соединения, изображенного на рис.1, если на него действуют переменные нагрузки, максимальные значения которых приведены в табл.1. Сварка выполнена угловыми швами с применением электрода Э50. Материал косынки сталь Ст.3.

Таблица 1. Исходные данные к задаче 1

Вариант.	l, mm	<i>h</i> , мм	L, mm	<i>F</i> , кН	k, mm	R
0	60	100	500	1,0	8	0
1	62	120	550	1,2	6	0
2	64	140	600	1,4	8	0
3	66	160	650	1,5	6	0
4	68	180	700	1,6	8	0
5	70	200	750	1,8	6	-1
6	72	110	500	2,0	10	-1
7	74	130	550	2,2	10	-1
8	76	150	600	2,4	8	-1
9	78	170	650	2,5	6	-1

Задача 2. Определить максимальный вращающий момент, который может быть приложен к шкиву ременной передачи для случая, изображенного на рис.2. Сварка выполнена угловыми швами с применением электрода Э50. Материал косынки сталь Ст.3. Исходные данные приведены в табл.2

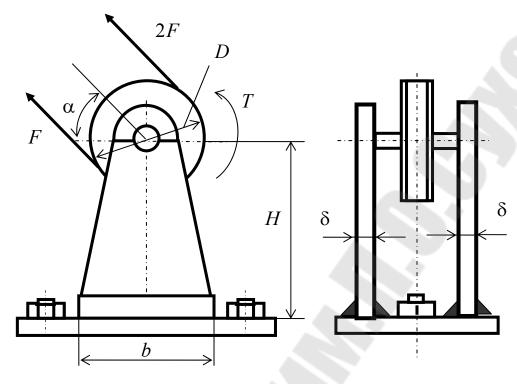


Рис. 2

Таблица 2. Исходные данные к задаче 2

	1ца 2. 110	подпат,		. онди 10 .	_	
Вариант.	δ, мм	b, MM	H, MM	<i>k</i> , mm	α, град	D, mm
0	10	200	500	8	30	200
1	12	220	550	6	45	220
2	14	240	600	8	30	300
3	16	260	650	6	45	320
4	18	280	700	8	30	350
5	11	300	750	6	45	360
6	13	210	500	10	30	180
7	15	230	550	10	45	240
8	17	250	600	8	30	280
9	19	270	650	6	45	310

Задача 3. Определить максимальное давление, которое может иметь место внутри цилиндра, изображенного на рис.3. Сварка выполнена с применением электрода Э50А. Материал цилиндра сталь Ст.3. Исходные данные приведены в табл.3

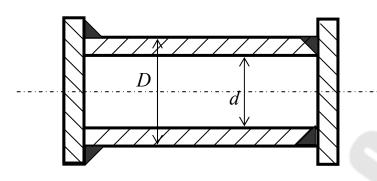


Рис.3

Таблица 3. Исходные данные к задаче 3

Вариант	0	1	2	3	4	5	6	7	8	9
D, mm	200	220	240	260	180	190	230	250	270	290
d, MM	180	200	220	240	160	170	210	230	250	270
<i>k</i> , mm	8	6	8	6	8	10	10	8	8	8

Задача 4. Проверить прочность сварного соединения, изображенного на рис.4, если на него действуют переменные нагрузки, максимальные значения которых приведены в табл.4 Сварка выполнена угловыми швами с применением электрода Э42. Материал косынки сталь Ст.3.

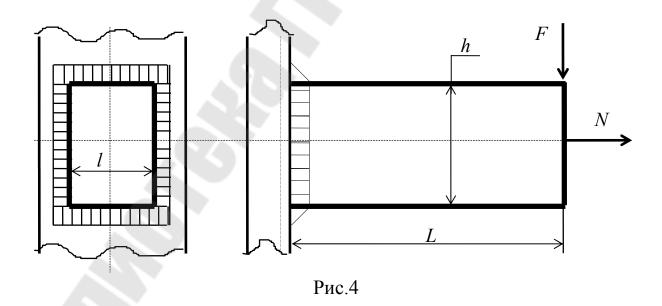


Таблица 4. Исходные данные к задаче 4

Вариант.	l, MM	h, mm	L, mm	<i>F</i> , кН	<i>N</i> , кН	<i>k</i> , mm	R
0	60	100	500	1,0	5	8	0
1	62	120	550	1,2	6	6	0
2	64	140	600	1,4	7	8	0
3	66	160	650	1,5	8	6	0
4	68	180	700	1,6	9	8	0
5	70	200	750	1,8	10	6	-1
6	72	110	500	2,0	5	10	-1
7	74	130	550	2,2	6	10	-1
8	76	150	600	2,4	7	8	-1
9	78	170	650	2,5	8	6	-1

Задача 5. Крышка газового резервуара с внутренним диаметром d закреплена шпильками из стали. Число шпилек равно z. Материал прокладки — асбест. Возможна дополнительная затяжка шпилек при рабочем режиме. Максимальное давление газа внутри газового резервуара p. Определить диаметр шпилек при переменном давлении. Исходные данные приведены в табл. 5

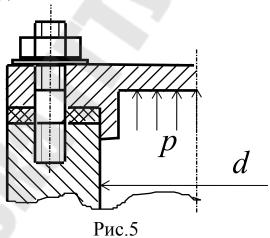


Таблица 5. Исходные данные к задаче 5

100011112			7		1					
Вариант	0	1	2	3	4	5	6	7	8	9
d, mm	100	120	150	180	100	100	130	150	90	90
p, МПа	4,0	2,5	2,0	1,7	2.4	5,0	3,0	3,2	2,8	2,6
z	8	8	6	6	8	8	8	8	6	6
Сталь	Ст.2	Ст.3	Ст.4	Ст.5	10	15X	20	25	39	45

Примечание: затяжка гаек в нечетных вариантах неконтролируемая; в четных - контролируемая.

Задача 6. Рассчитать болты, крепящие к массивной чугунной колонне стальной кронштейн (рис.6), несущий постоянную нагрузку F. Исходные данные приведены в табл. 6.

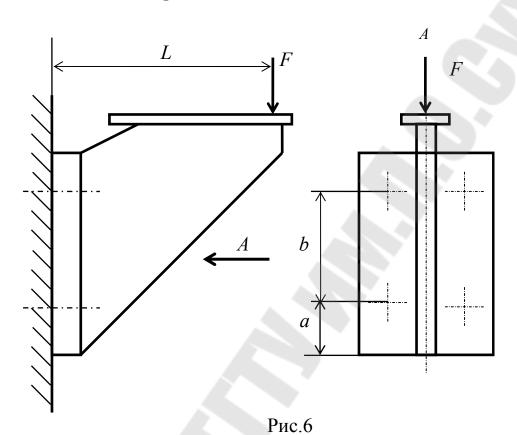


Таблица 6. Исходные данные к задаче 6.

1 40311	олица от неходиве данные к задаче от										
$N_{\underline{0}}$	F,	L,	<i>b</i> ,	Коэф.	Затяжка	Материал					
вар.	кН	MM	MM	трения, f		болта					
0	20	700	400	0,12	контр.	Ст.4					
1	22	750	450	0,14	не контр.	Ст.5					
2	24	800	500	0,15	контр.	30					
3	26	850	550	0,16	не контр.	35					
4	28	900	600	0,13	контр.	40					
5	30	700	650	0,12	не контр.	Ст.4					
6	32	750	700	0,14	контр.	Ст.5					
7	34	800	800	0,15	не контр.	30					
8	36	850	400	0,16	контр.	35					
9	40	900	450	0,13	не контр.	40					

Задача 7. Рассчитать болты фланцевого соединения водопроводных труб. Давление воды внутри труб по манометру p, диаметр труб D и диаметр окружности центров болтов D_1 . Исходные данные приведены в табл.7.

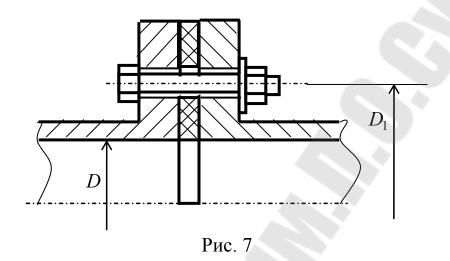


Таблица 7. Исходные данные к задаче 7.

Вариант	0	1	2	3	4	5	6	7	8	9
$p, M\Pi a$	0,6	0,7	0,8	0,9	1,1	1,0	0,55	0,65	0,75	0,85
D, MM	160	170	180	190	210	200	155	165	175	180
D_1 , mm	260	270	280	290	310	300	250	260	270	280

Задача 8. Рассчитать болты клеммового соединения (рис.8), посредством которого рычаг неподвижно крепится на валу. Затяжка болтов не контролируемая. Данные для расчета приведены в табл.8.

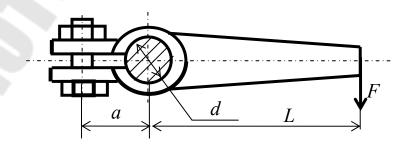


Рис.8

Таблица 8. Исходные данные к задаче 8.

Величина					Bapı	иант				
	0	1	2	3	4	5	6	7	8	9
F, H	400	450	500	550	600	650	700	750	800	850
L , MM	400	300	450	350	480	420	500	520	550	580
d , MM	30	35	40	45	50	55	60	65	60	70
<i>a</i> , MM	80	80	100	100	100	120	120	120	120	102
Материал								_		
болтов	Ст.2	Ст.3	20	30	35	40	45	50	15X	20X
(сталь)									,	
$\int f$	0,10	0,12	0,14	0,15	0,18	0,15	0,14	0,12	0,10	0,15
Z	1	1	1	1	2	2	2	2	2	2

Задача 9. Определить основные размеры винта и муфты винтовой стяжки (рис.9). Исходные данные к задаче приведены в табл.9.

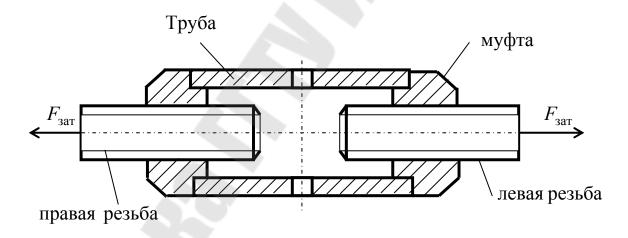


Рис.9

Таблица 9. Исходные данные к задаче 9.

- more - du si - maria d'institution d'institution de la company de si de la company d											
Вариант	0	1	2	3	4	5	6	7	8	9	
$F_{\rm зат}$, к ${\rm H}$	20	24	26	28	30	25	35	40	45	50	
Резьба	M	Трап									

Задача 10. Рассчитать диаметр резьбы и высоту гайки винтового съемника (рис.10) для демонтажа подшипников качения, если максимальное усилие демонтажа равно F. Исходные данные приведены в табл.10.

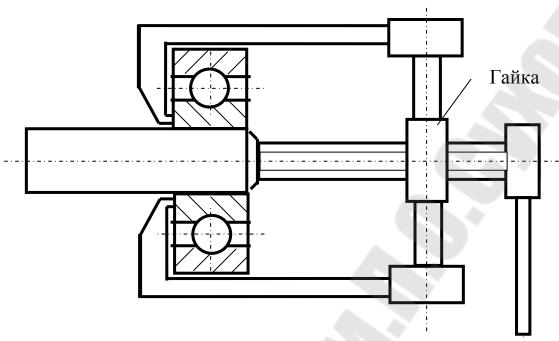


Рис.10

Таблица 10. Исходные данные к задаче 10.

Вариант	0	1	2	3	4	5	6	7	8	9
F , κH	50	60	70	80	45	40	55	65	70	75
Материал	20	40	50	4.5	40	(5)	50	40	15	20
винта (сталь)	30	40	50	45	40	65Γ	50	40	45	30
Материал гайки	Бр. С)Ф6.5-	0,15	Бр.	ОЦС6	5-6-3				

Задача 11. Определить модуль максимально допустимой силы F для заклепочного соединения, приведенного на рис.11. Отверстия под заклепку выполнены продавливанием. Исходные данные для расчета приведены в табл.11.

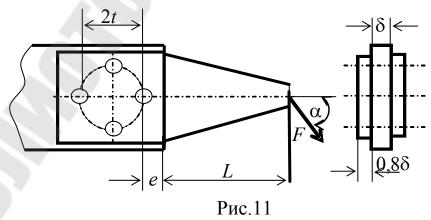


Таблица 11. Исходные данные к задаче 11.

Величина					Вари	иант				
Величина	0	1	2	3	4	5	6	7	8	9
δ, мм	6	6	6	6	6	8	8	8	8	8
L , mm	250	300	350	400	200	250	300	350	200	250
t, MM	40	40	40	40	40	50	50	50	50	50
Материал										
листов и	Ст.2	Ст.3	20	30	35	40	45	50	15X	20X
заклепок	C1.2	C1.5	20	30	33	40	43	30	13Λ	20A
(сталь)										
α, град	30	45	60	30	45	60	30	45	60	30

Задача 12. Определить модуль максимально допустимой силы F для заклепочного соединения, приведенного на рис.12. Отверстия под заклепку выполнены сверлением. Исходные данные для расчета приведены в табл.12.

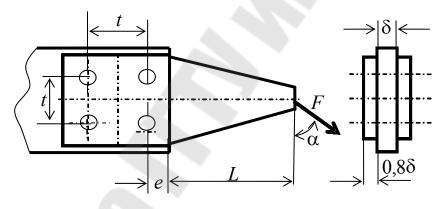


Рис.12

Таблица 12. Исходные данные к задаче 12.

1 и отпіди 12: 110	подпы	пые данные к зада ю 12.								
Родини					Вари	ант				
Величина	0	1	2	3	4	5	6	7	8	9
δ, мм	6	6	6	6	6	8	8	8	8	8
L , mm	250	300	350	400	200	250	300	350	200	250
Материал										
листов и	C _T 2	Ст.3	20	30	35	40	45	50	15X	20X
заклепок	C1.2	C1.5	20	30	33	40	43	30	$1J\Lambda$	20A
(сталь)										
α, град	30	45	60	30	45	60	30	45	60	30

Задача 13. Определить модуль максимально допустимой силы F для заклепочного соединения, приведенного на рис.13. Отверстия под заклепку выполнены сверлением. Исходные данные для расчета приведены в табл.13.

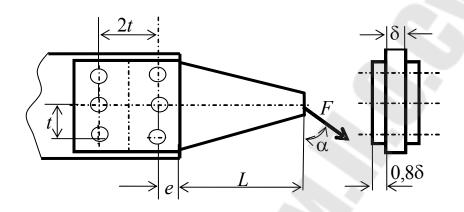


Рис.13

Таблица 13. Исходные данные к задаче 13.

Родинии					Вари	иант				
Величина	0	1	2	3	4	5	6	7	8	9
δ, мм	6	6	6	6	6	8	8	8	8	8
L , mm	250	300	350	400	200	250	300	350	200	250
Материал										
листов и	Ст.2	Ст 3	20	30	35	40	45	50	15X	20X
заклепок	C1.2	C1.5	20	30	33	40	43	30	13Λ	20A
(сталь)										
α, град	30	45	60	30	45	60	30	45	60	30

Задача 14. Рассчитать плотный продольный заклепочный шов обечайки вертикального аппарата, работающего под давлением, из стали, у которого внутреннее давление p и внутренний диаметр D. Исходные данные для расчета приведены в табл.14.

Таблица 14 Исходные данные к задаче 14

No	p,	D,	_	T
вар.	МПа	MM	Сталь	Тип шва
0	0,9	900	Ст.2	однорядный в нахлестку
1	1,1	800	Ст.3	двухрядный в нахлестку
2	1,2	900	Ст.4	трехрядный в нахлестку
3	1,3	1000	Ст.5	двухрядный в стык с двумя накладками
4	1,4	1100	10	трехрядный в стык с двумя накладками
5	1,5	1200	15	двухрядный в стык с двумя накладками
6	0,8	750	20	однорядный в нахлестку
7	0,9	850	25	двухрядный в нахлестку
8	1,6	950	30	трехрядный в нахлестку
9	1,7	820	35	двухрядный в стык с двумя накладками

Задача 15. Определить максимально допустимый крутящий момент, который может передать шкиву клиноременной передачи с вала электродвигателя без шпонки, если диаметр вала d, наружный диаметр ступицы шкива $d_{\rm cr}$, длина ступицы шкива $l_{\rm cr}$, материал вала электродвигателя сталь 45, шероховатость поверхности вала электродвигателя $R_{z1}=3,2$, шероховатость поверхности отверстия ступицы шкива R_{z2} . Исходные данные для расчета приведены в табл.15.

Таблица 15. Исходные данные к задаче 15

Вариант	0	1	2	3	4	5	6	7	8	9
Материал шкива	Алюминий	Сталь	Чугун	Бронза	Латунь	Алюминий	Сталь	Чугун	Бронза	Латунь
d , MM	40	45	50	30	35	30	40	45	50	40
$d_{\rm ct}$, mm	64	72	80	48	56	48	64	72	80	64
$l_{\rm ct}$, MM	60	68	75	45	50	45	60	68	75	60
R_{z2} , MKM	6,3	3,2	1,6	6,3	3,2	1,6	6,3	3,2	1,6	6,3
	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7
Посадка	$\overline{p6}$	r6	<u>s6</u>	$\overline{n6}$	$\overline{m6}$	$\overline{p6}$	$\overline{r6}$	<u>s6</u>	$\overline{n6}$	$\overline{m6}$

Задача 16. Внутреннее кольцо подшипника (рис.16) насаживается на вал с посадкой с натягом. Определить допускаемое значение осевой силы F_a , которую может воспринимать подшипник без дополнительного его крепления на валу, если материал кольца подшипника ШХ15, шероховатость внутренней поверхности внутреннего кольца $R_{z2}=1,6\,\mathrm{Mkm}$. Исходные данные приведены в табл.16

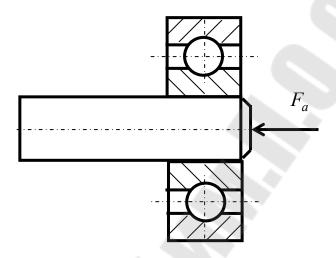


Рис. 16

Таблица 16. Исходные данные к задаче 16

Вариант	0	1	2	3	4	5	6	7	8	9
Материал вала	Алюминий	Сталь	Чугун	Бронза	Латунь	Алюминий	Сталь	Чугун	Бронза	Латунь
Тип подшип- ника	214	216	215	207	208	209	210	211	212	213
R_{z1} , MKM	6,3	3,2	1,6	6,3	3,2	1,6	6,3	3,2	1,6	6,3
Посадка	$\frac{H7}{p6}$	$\frac{H7}{r6}$	$\frac{H7}{s6}$	$\frac{H7}{n6}$	$\frac{H7}{m6}$	$\frac{H7}{p6}$	$\frac{H7}{r6}$	$\frac{H7}{s6}$	$\frac{H7}{n6}$	$\frac{H7}{m6}$

Задача 17. Определить максимальный вращающий момент, который может передать червячное колесо с венцом из бронзы Бр010Ф1 и центра из стали 45 (рис.17), если они собраны по посадке с натягом. Посадочные поверхности центра и венца имеют шероховатости R_{z1} и $R_{z2}=3,6\,\mathrm{Mkm}$, коэффициент трения f. Осевое усилие

 $F_a = 0.364 \frac{T}{d_{_{
m K}}}$. Червяк однозаходный. Исходные данные приведены в табл.17.

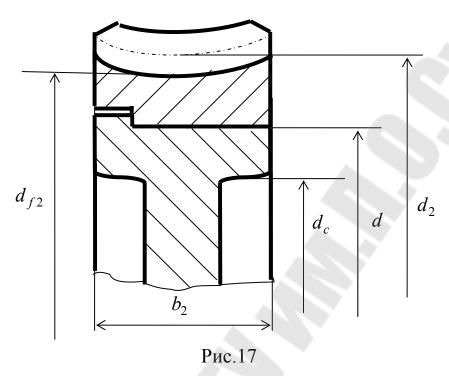


Таблица 17. Исходные данные к задаче 17

Вариант	0	1	2	3	4	5	6	7	8	9
m, MM	2	2,5	5	5	4	4	4	4	2	5
q	10	10	8	10	10	8	10	8	8	16
z_2	30	32	34	30	28	30	30	30	36	32
R_{z1} , мкм	6,3	3,2	1,6	6,3	3,2	1,6	6,3	3,2	1,6	6,3
17	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7	<i>H</i> 7
Посадка	$\overline{p6}$	r6	<u>s6</u>	$\overline{n6}$	$\overline{m6}$	$\overline{p6}$	r6	<u>s6</u>	$\overline{n6}$	$\overline{m6}$

Задание №18. Рассчитать и подобрать винтовую цилиндрическую пружину растяжения (рис. 18) для следующих условий ее работы: сила предварительной деформации F_1 , сила при рабочей деформации F_2 , рабочий ход h, ориентировочный наружный диаметр D_1 . Число циклов нагружения $N_F = 1 \cdot 10^7$. Исходные данные для расчета приведены в табл. 18.

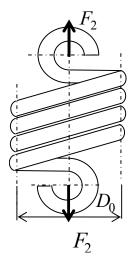


Рис.18. Пружина растяжения

Таблица 18. Исходные данные к задаче 18

№ вар.	0	1	2	3	4	5	6	7	8	9
F_1 , H	160	170	180	190	210	220	230	240	250	260
F_2 , H	720	740	760	780	800	820	840	860	880	900
h, mm	82	84	86	88	90	92	94	96	98	100
D_1 , mm	34	48	32	45	30	42	40	28	40	38

Задание 19. Рассчитать цилиндрическую винтовую пружину сжатия (рис.19) круглого сечения диаметром d, нагруженную силой F и рабочий ход h. Число циклов нагружения $N_F = 1 \cdot 10^7$. Исходные данные для расчета приведены в табл.19.



Рис.19

Таблица 19. Исходные данные к задаче 19

№ вар.	0	1	2	3	4	5	6	7	8	9
F, H	2600	3000	3200	2400	3400	3600	3800	3900	4000	4300
h, MM	30	40	50	60	35	45	55	32	42	52

Задание 20.

Рассчитать пружину кручения (рис.20), у которой наибольший рабочий момент M_2 , соответствующий ему угол закручивания α_2 . Пружина работает в нормальных условиях при статической нагрузке. Пружина I класса, разряда 3. Исходные данные для расчета приведены в табл. 20.

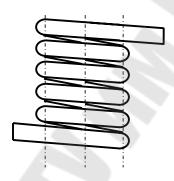
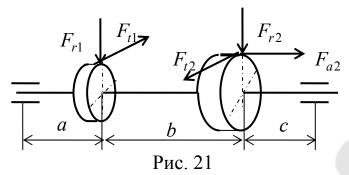


Рис.20


Таблица 20. Исходные данные к задаче 20

№ вар.	0	1	2	3	4	5	6	7	8	9
M_2 , HM	6	5	7	8	4	5,5	6,5	7,5	4,5	8,5
α_2 , град	50	45	55	60	48	44	52	54	46	52

Задача 21. Выполнить уточненный расчет вала для заданной схемы (рис.21), если F_{t1} = 1000 H, F_{r1} = 364 H, F_{t2} = 500 H, F_{r2} = 186 H и F_{a2} = 106 H. Остальные исходные данные приведены в табл. 21

Таблица 21. Исходные данные к задаче 21

т и от птди = 1.		,								
Поромотр			q_{ν}	исловь	ые исх	одные	данн	ые		
Параметр	1	2	3	4	5	6	7	8	9	10
a	30	40	40	40	30	42	45	50	48	50
b	60	70	60	80	80	50	60	70	60	60
\mathcal{C}	50	40	30	50	40	42	45	50	48	50
r_1	40	45	42	44	38	40	46	40	42	45
r_2	80	90	84	88	76	80	92	80	84	90

Задача 22. Выполнить уточненный расчет вала для заданной схемы (рис. 22), если $F_{t1} = 1500$ H, $F_{r1} = 558$ H, $F_{t2} = 750$ H, $F_{r2} = 279$ H и $F_{a2} = 159$ H. Исходные данные приведены в табл. 22.

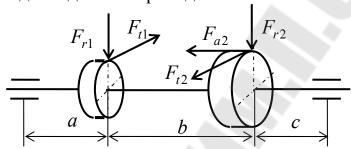


Рис.22

Таблица 22. Исходные данные к задаче 22

Попомотр	Числовые исходные данные									
Параметр	1	2	3	4	5	6	7	8	9	10
а	40	40	40	50	40	42	45	50	45	50
b	50	60	60	70	80	60	70	50	60	80
С	50	50	30	50	40	42	45	50	45	50
r_1	40	45	44	50	38	35	46	45	42	45
r_2	80	90	88	100	76	70	92	90	84	90

Задача 23. Выполнить уточненный расчет вала для заданной схемы (рис.23), если F_{t1} = 2000 H, F_{r1} = 744 H, F_{a1} = 425 H, F_{t2} = 1000 H; и F_{r2} = 364 H. Исходные данные приведены в табл. 23.

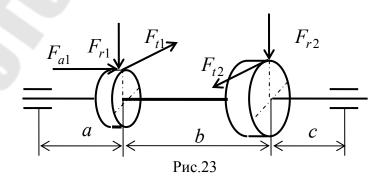


Таблица 23. Исходные данные к задаче 23

Поромотр				Числог	вые исх	одные д	цанные			
Параметр	1	2	3	4	5	6	7	8	9	10
а	40	40	40	50	40	42	45	50	45	50
b	50	60	60	70	80	60	70	50	60	80
С	50	50	30	50	40	42	45	50	45	50
r_1	40	45	44	50	38	35	46	45	42	45
r ₂	80	90	88	100	76	70	92	90	84	90

Задача 24. Спроектировать закрытую коническую зубчатую передачу, если мощность на выходном валу P_2 , частота вращения шестерни n_1 , передаточное число u и допускаемое контактное напряжение σ_{HP} . Исходные данные приведены в табл.24

Таблица 24. Исходные данные к задаче 24.

Попомотр			q_{I}	исловь	ле исх	одные	данн	ые					
Параметр	1	1 2 3 4 5 6 7 8 9											
P_2 , к B т	2,2	2,4	2,6	3,2	3,6	4,2	4,6	5,2	5,6	6,2			
$n_1, \frac{\text{of}}{\text{muh}}$	90	100	120	110	120	80	90	100	110	120			
и	2,5	2,8	3,0	3,2	2,5	2,8	3,2	2,5	2,6	3,0			
$σ_{HP}$, ΜΠα	350	380	400	350	380	400	420	350	380	400			

Задача 25. Спроектировать закрытую цилиндрическую косозубую зубчатую передачу, если мощность на выходном валу P_2 , частота вращения шестерни n_1 , передаточное число u и допускаемое контактное напряжение σ_{HP} . Исходные данные приведены в табл. 25.

Таблица 25. Исходные данные к задаче 25.

Пополють	Числовые исходные данные									
Параметр	1	2	3	4	5	6	7	8	9	10
P_2 , к B т	2,2	2,5	2,7	3,0	3,3	4,0	4,5	5,5	6,0	6,5
n_1, oo_{MUH}	80	90	100	110	160	180	90	100	110	120
и	2,5	2,5	3,0	3,0	2,6	2,6	3,2	3,2	3,0	3,0
$σ_{HP}$, ΜΠα	350	380	400	350	380	400	420	350	380	400

Задача 26. Спроектировать закрытую цилиндрическую прямозубую зубчатую передачу, если мощность на выходном валу P_2 , частота вращения шестерни n_1 , передаточное число u и допускаемое контактное напряжение σ_{HP} . Исходные данные приведены в табл. 26.

Таблица 26. Исходные данные к задаче 26.

Попомотр	Числовые исходные данные									
Параметр	1	2	3	4	5	6	7	8	9	10
P_2 , к B т	6,2	5,5	6,7	8,0	6,3	7,0	7,5	3,5	3,0	2,5
$n_1, \frac{\text{of}}{\text{мин}}$	80	90	100	110	160	180	90	100	110	120
и	2,5	2,5	3,0	3,0	2,6	2,6	3,2	3,2	3,0	3,0
$σ_{HP}$, ΜΠα	350	380	400	350	380	400	420	350	380	400

Справочный материал

Определение допускаемых напряжений для сварных соединений

В случае действия статической нагрузки допускаемые напряжения в сварных швах задаются в долях допускаемого напряжения для основного материала $\left[\sigma_{p}\right]$ и выбираются по табл.27.

Допускаемые напряжения для основного материала определяют по зависимости:

$$\left[\sigma_{\rm p}\right] = \frac{\sigma_{\rm T} \varepsilon}{\left[s\right] k_{\rm o}},$$

где $\sigma_{_{\rm T}}$ – предел текучести основного материала;

 $\varepsilon = 0.9$ – масштабный фактор;

[s] — коэффициент безопасности ([s] = 1,2 ... 1,3 — для углеродистых сталей и [s] = 1,3 ... 1,5 — для низколегированных сталей);

 $k_{\sigma} = 1 \dots 1, 2$ — коэффициент концентрации напряжений при статических нагрузках (большее значение для лобовых швов).

При действии переменной нагрузки допускаемое напряжение понижают путем умножения на коэффициент γ :

- для стыковых швов при нагрузке, переменной по величине $\gamma=1$;
- для стыковых швов при нагрузке, переменной по величине и направлению

$$\gamma = \frac{1}{1 - \frac{1}{3} \frac{F_{\min}}{F_{\max}}} \; ;$$

- для угловых швов при нагрузке, как переменной по величине, так и переменной по величине и направлению,

$$\gamma = \frac{1}{\frac{4}{3} - \frac{1F_{\min}}{3F_{\max}}}.$$

Таблица 27. Допускаемые напряжения в швах сварных швах при дей-

ствии статической нагрузки

CIBHH CIUIH ICCROH HUI PYSKH			
	Допуска	аемые напр	яжения
Вид сварки и марка электрода	Ha pac-	На сжа-	На срез
	тяжение	тие	1 1
	$\left[\sigma_{\mathfrak{p}}'\right]$	$[\sigma'_{cx}]$	$\left[au_{ m cp}' ight]$
Автоматическая под флюсом; ручная			
электродами Э42А, Э50А; в среде	$[\sigma_{\mathfrak{p}}]$	$[\sigma_p]$	$0,65[\sigma_p]$
защитного газа; контактная стыковая			
Ручная электродами Э42, Э50; газо-	$0.9[\sigma_p]$	$[\sigma_p]$	$0,6[\sigma_p]$
вая			
Ручная электродом Э34	$0,6[\sigma_p]$	$0,75[\sigma_p]$	$0,5[\sigma_p]$
Контактная точечная и роликовая		-	$0,6[\sigma_p]$

Таблица 28. Механические характеристики сталей

Марка	Предел прочно-	Предел текуче-	Предел выносли-
стали	сти,	сти,	вости, σ_{-1} , МПа
	$\sigma_{_{\rm B}}, {\rm M}\Pi{\rm a}$	$σ_{_{\rm T}}$,ΜΠα	
Ст1 (08)	340	210	-
Ст2 (10)	360	220	-
Ст3 (15)	400	240	170
Ст4 (20)	440	260	-
Ст5 (30)	520	300	220
35	560	320	230
40	600	340	250
45	640	360	270
50	680	380	290
15X	750	600	-
20X	800	650	310
40X	1000	850	350
12XH3A	1000	850	420

Определение допускаемого напряжения при растяжении материала резьбовой детали при пульсирующем цикле

$$\left[\sigma_{0p}\right] = \frac{1.5\sigma_{-1p}\varepsilon}{\left[s\right]K_{\sigma}},$$

где $\sigma_{-1p} = 0.35\sigma_{_B}$ — предел выносливости при симметричном цикле изменения напряжений при растяжении;

[s]- коэффициент безопасности;

ε – масштабный фактор;

 $K_{\sigma} = 1 + q(\alpha_{\sigma} - 1)$ – эффективный коэффициент концентрации напряжения в резьбе

q – коэффициент чувствительности материала к концентрации напряжений;

 $\alpha_{\sigma} = 4,2 \dots 4,65$ – теоретический коэффициент концентрации напряжений во впадине под первым рабочим витком резьбы.

Таблица 29. Значение коэффициента q чувствительности материала к концентрации напряжений

Литые материалы и материалы с внутренними источ-	0,1 0,2
никами концентрации и дефектами (серый чугун и др.)	
Низкоуглеродистые стали, алюминиевые деформиро-	0,3 0,5
ванные сплавы	
Среднеуглеродистые и низколегированные стали	0,4 0,6
Легированные стали	0,60,7
Высоколегированные стали	0,9

Таблица 30. Значение масштабного фактора ϵ_{σ}

Материал	$arepsilon_{\sigma}$ при d , мм						
	10	20	30	40	50	70	
Углеродистая сталь $\sigma_{\rm B}$ =400 500 МПа	0,98	0,92	0,88	0,82	0,76	0,70	
Углеродистая и легированная сталь $\sigma_{\rm B}$ =500 800 МПа	0,97	0,89	0,85	0,81	0,78	0,73	
Легированная сталь σ _в =800 1200 МПа	0,95	0,86	0,81	0,77	0,74	0,69	

Таблица 31. Рекомендуемые значения коэффициента затяжки

По условию не раскрытия стыка					
При постоянной нагрузке	$K_{\text{3aT}} = 1,25 \dots 2$				
При переменной нагрузке	$K_{\text{3aT}} = 2.5 \dots 4$				
По условию герметичности					
При мягкой прокладке	$K_{\text{3at}} = 1.3 \dots 2.5$				
При металлической фасонной прокладке	$K_{\text{3aT}} = 2 \dots 3.5$				
При плоской металлической прокладке	$K_{\rm 3aT} = 3 \dots 5$				

Таблица 32. Значения коэффициента внешней нагрузки χ

Соединения без прокладки	0,2 0,3
Соединение с прокладкой из резины	0,75
Соединение с прокладкой из картона или асбеста	0,55
Соединение с полиэтиленовой прокладкой	0,50
Соединение с прокладкой из мягкой меди	0,35

Таблица 33. Коэффициент безопасности [s] при расчете болтов с неконтролируемой затяжкой

Материал	Стат	гическая нагрузка Переменная нагру			
болта	M6M1	M16M3	M30M6	M6M16	M16M3
(сталь)	6	0	0		0
Углероди-	34	32	21,3	106,5	6,5
стая					
Легирован-	54	42,5	2,5	7,55	5
ная					

Таблица 34. Коэффициент безопасности [s] при контролируемой затяжке

Вид нагрузки	Рекомендуе-
	мые значения
Растягивающая внешняя нагрузка с затяжкой болтов:	
статическая нагрузка	[s]=1,21,5
переменная нагрузка	
(по амплитудным напряжениям)	$[s_a]=1,52,5$
(по максимальным напряжениям)	$[s_r]=1,21,5$
Внешняя поперечная статическая и переменная на-	[s]=1,21,5
грузка. Болты поставлены с зазором.	

Таблица 35.Основные параметры метрической резьбы

Ди	аметры,	MM	Шаг р,	Диаметры, мм		Шаг	
							p,
d	d_2	d_1	MM	d	d_2	d_1	MM
4	3,546	3,242	0,7	24	22,051	20,752	3,0
5	4,480	4,134	0,8	27	25,051	23,752	3,0
6	5,350	4,918	1,0	30	27,727	26,211	3,5
7	6,350	5,918	1,0	33	30,727	29,211	3,5
8	7,188	6,647	1,25	36	33,402	31,670	4,0
9	8,188	7,647	1,25	39	36,402	34,670	4,0
10	9,026	8,376	1,5	42	39,077	37,129	4,5
11	10,026	9,376	1,5	45	42,077	40,129	4,5
12	10,836	10,106	1,75	48	44,752	42,587	5,0
14	12,701	11,835	2,0	52	48,752	46,587	5,0
16	14,701	13,835	2,0	56	52,428	50,046	5,5
18	16,376	15,294	2,5	60	56,428	54,046	5,5
20	18,376	17,294	2,5	64	60,103	57,505	6,0
22	20,376	19,294	2,5	68	64,103	61,505	6,0

Таблица 36. Диаметры и шаги трапецеидальной резьбы, мм

		TTT			
	Шаги р				
1 ряд	2 ряд	3 ряд	1 ряд	2 ряд	3 ряд
10, 12	14	-	-	3	2
16, 20	18	-	-	4	2
26	22, 28	24	8	5	2
32, 40	36	30, 34, 38, 42	10	6	3
50, 60	44, 48, 52, 55	46	12	8	3

Таблица 37. Основные размеры трапецеидальной резьбы, мм

10001111200071 0 01110	pulle pushiepui ipuile	Zonzwien pose	, i.i.i.
Шаг резьбы р	Высота профиля h_1	d_1	d_{2}
3	1,75		
4	2,25		
5	2,75	$d-2h_1$	d - 0.5p
6	3,5		
8	4,5		
10	5,5		
12	6,5		
16	9		

Таблица 38. Значение шага t между болтами в прочно-плотных болтовых соединениях

<i>p</i> , МПа	0,51,5	2,5	5,0	10
t, MM	≤ 150	≤120	≤ 100	≤ 80

Таблица 39. Значения коэффициентов трения в стыке

Состояние стыка стальной или чугунной конструкции f Сухие обработанные стыки $0,10 \dots 0,15$ Наличие масляной пленки в стыке $0,06$ Пескоструйная обработка стыка $0,50$ Обработка стыка пламенем газовой горелки $0,40$ Необработанные стыки со следами окалины $0,30$ Окрашенные стыки алюминиевым порошком $0,15$ Окрашенные стыки антикоррозионной краской $0,10$ Окрашенные стыки свинцовым суриком $0,06$	The first of the f	
Наличие масляной пленки в стыке 0,06 Пескоструйная обработка стыка 0,50 Обработка стыка пламенем газовой горелки 0,40 Необработанные стыки со следами окалины 0,30 Окрашенные стыки алюминиевым порошком 0,15 Окрашенные стыки антикоррозионной краской 0,10	Состояние стыка стальной или чугунной конструкции	f
Пескоструйная обработка стыка 0,50 Обработка стыка пламенем газовой горелки 0,40 Необработанные стыки со следами окалины 0,30 Окрашенные стыки алюминиевым порошком 0,15 Окрашенные стыки антикоррозионной краской 0,10	Сухие обработанные стыки	0,10 0,15
Обработка стыка пламенем газовой горелки 0,40 Необработанные стыки со следами окалины 0,30 Окрашенные стыки алюминиевым порошком 0,15 Окрашенные стыки антикоррозионной краской 0,10	Наличие масляной пленки в стыке	0,06
Необработанные стыки со следами окалины 0,30 Окрашенные стыки алюминиевым порошком 0,15 Окрашенные стыки антикоррозионной краской 0,10	Пескоструйная обработка стыка	0,50
Окрашенные стыки алюминиевым порошком 0,15 Окрашенные стыки антикоррозионной краской 0,10	Обработка стыка пламенем газовой горелки	0,40
Окрашенные стыки антикоррозионной краской 0,10	Необработанные стыки со следами окалины	0,30
	Окрашенные стыки алюминиевым порошком	0,15
Окрашенные стыки свинцовым суриком 0,06	Окрашенные стыки антикоррозионной краской	0,10
	Окрашенные стыки свинцовым суриком	0,06

Таблица 40. Формулы для определения силы затяжки болтов клеммового соединения

Закон распределения	Клемма с разрезной	Клемма с разъемной
давления	ступицей	ступицей
Контакт по узкой пло-	1,2 <i>M</i>	1,2 <i>M</i>
щадке	$\overline{f(d+2a)z}$	$\overline{2fdz_1}$
Посадка с малым за-	$1,2\pi M$	1,2 <i>M</i>
зором	4f(d+2a)z	$\overline{8fdz_1}$
Посадка с натягом	1,2 <i>M</i>	<u>1,2 M</u>
	$\pi f dz$	$2\pi f dz_1$

Примечание: в приведенных формулах приняты следующие обозначения:

M - момент, действующий на рычаг клеммового соединения;

f - коэффициент трения между валом и клеммой;

d - диаметр вала;

а - расстояние от оси болта до оси вала;

z - количество болтов;

 z_1 - количество пар болтов.

Таблица 41. Диаметры отверстий для заклепок нормальной точности

Диаметр заклепки,	Диаметр отверстия, d_{o} , мм		
d, mm	Чистый спо-	Грубый способ	
	соб		
6	6,5	6,7	
8	8,5	8,7	
10	10,5	11	
12	13	13	
(14)	15	15	
16	16,5	17	
(18)	18,5	19	
20	21	21	
22	23	24	
24	25	26	
(27)	28	29	
30	31	32	

Таблица 42. Рекомендации по выбору отверстий под заклепки

Диаметр заклепки	Диаметр отверстия $d_{\rm o}$ (мм) при сборке		
d , MM	точный	грубой	
4, 5, 6, 8, 10	d + 0.5	d + 0.7	
12, (14), 16, 18	d + 0.5	d + 1,0	
20, (22), 24, 30, 36	d + 1,0	d + 2,0	

Таблица 43. Диаметр заклепки d от значения толщины соединяемых деталей s

Вид заклепочного шва	Диаметр заклепки <i>d</i>
Односрезное силовое соединение	d=2s,
Двухсрезное силовое соединение	d=1,5s.
Авиастроение	$d=2\sqrt{s}$.
В конструкциях из легких сплавов	d = 1.5s + 2 MM.

Таблица 44. Минимальный шаг t заклепочного соединения в зависимости от диаметра заклепки и вида шва

Вид шва	t
Однорядный, односрезной шов в нахлестку и	t = 3d
однорядный шов с одной накладкой	
Двухрядный, односрезной шов в нахлестку и	t = 4d
двухрядный шов с одной накладкой	
Однорядный шов с двумя накладками	t = 3.5d
Двухрядный шов с двумя накладками	t = 6d

Таблица 45. Расстояние е от центра заклепки до края листа

Способ изготовления отверстия	e
В направлении действующей силы	
Отверстия сверленные	e = 1,5d
Отверстия продавленные	e = 2d
В конструкциях из легких сплавов	e=2d.
в направлении, перпендикулярном линии действия силы	$e_1 = 1,5d$.

Таблица 46. Допускаемые напряжения для стальных заклепок при действии статической нагрузки

Род напряжения	Способ изготов-	Допускаемое напря-
	ления отверстия	жение
	Сверление	$[\tau_{\rm c}] = 0.9 [\sigma_{\rm p}]$
Срез		1
	Продавливание	$[\tau_{\rm c}] = 0.6[\sigma_{\rm p}]$
	Сверление	$[\sigma_{cM}] = 2 [\sigma_p]$
Смятие		1
	Продавливание	$[\sigma_{cm}] = 1,75[\sigma_p]$

Допускаемое напряжение $[\sigma_p]$ основного металла определяют по зависимости:

$$\left[\sigma_{p}\right] = \frac{\sigma_{T}}{S}$$

где $\sigma_{_{\rm T}}$ - наименьшее значение предела текучести, гарантируемое соответствующим ГОСТ для выбранной марки стали;

s - коэффициент запаса прочности, принимаемый в зависимости от расчетной комбинации действующих сил в пределах s=1,3 ... 1,5. В расчетах обычно принимают s=1,5.

При действии знакопеременной нагрузки на заклепочное соединение, допускаемые напряжения определяют по зависимостям:

$$\left[\tau_{c}\right]_{R}=\left[\tau_{c}\right]\!\gamma;$$

$$\left[\sigma_{cM}\right]_{R} = \left[\sigma_{cM}\right]\gamma$$

где γ - коэффициент уменьшения допускаемых напряжений, который рассчитывается по зависимости:

$$\gamma = \frac{1}{a - b \frac{F_{\min}}{F_{\max}}},$$

где a, b - коэффициенты, зависящие от материала заклепок. Для заклепок из малоуглеродистых сталей $a=1,\ b=0,3,$ а для заклепок из среднеуглеродистых сталей $a=1,2,\ b=0,8.$

 F_{\min} , F_{\max} - минимальное и максимальное значение действующей силы.

В заклепочных соединениях из цветных металлов допускаемые напряжения определяются по следующим зависимостям:

$$\left[\sigma_{p}\right] = (0.4 \dots 0.5) \sigma_{\scriptscriptstyle T} \, ; \, \left[\tau_{c}\right] = (0.25 \, \dots 0.3) \sigma_{\scriptscriptstyle T} \, ; \, \left[\sigma_{\scriptscriptstyle CM}\right] = (1.5 \, \dots \, 2.0) \left[\sigma_{p}\right].$$

Таблица 47. значения коэффициентов прочности $[n_{_{\rm B}}]$ и $[n_{_{\rm T}}]$

Тип шва	$[n_{\scriptscriptstyle \mathrm{B}}]$	$[n_{\scriptscriptstyle \mathrm{T}}]$
В нахлестку и с одной накладкой	4,75	-
Встык с двусторонними накладками при однорядном расположении заклепок	4,25	2,00
Встык с двусторонними накладками при заклепках в два и более рядов	4,00	1,90

Таблица 48. Рекомендуемые значения основных величин для плотных заклепочных швов

Тип шва	Диаметр заклепок <i>d</i> , мм	Шаг t , мм	Допустимый коэффициент прочности [ф]	Допускаемое напряжение на срез [т _{ус}], МПа
Однорядный в нахлестку	s+8	2d + 8	0,60	6070
Двухрядный в нахлестку	s + 8	2,6d + 15	0,70	6075
Трехрядный в нахлестку	s + (68)	3d + 22	0,75	5560
Двухрядный в стык с	s + (56)	3,5d+15	0,75	4757
двумя двусторонними				
накладками				
Трехрядный в стык с	s+5	6d + 20	0,75	4555
двумя двусторонними				
накладками				

Таблица 49. Предельные отклонения основных отверстий и валов по ГОСТ 25347–82

Размеры, мм	Преде.	льные от	клонения	(мкм) пр	и поле д	опуска
	<i>H</i> 7	<i>m</i> 6	<i>n</i> 6	<i>p</i> 6	<i>r</i> 6	<i>s</i> 6
Свыше 30 до 50	+25	+25	+33	+42	+50	+59
	0	+9	+17	+26	+34	+43
Свыше 50 до 65					+60	+72
	+30	+30	+39	+51	+41	+53
Свыше 65 до 80	0	+11	+20	+32	+62	+78
					+43	+59
Свыше 80 до 100					+73	+93
	+35	+35	+45	+59	+51	+71
Свыше 100 до 120	0	+13	+23	+37	+76	+101
					+54	+79
Свыше 120 до 140					+88	+117
					+63	+92
Свыше 140 до 160	+40	+40	+52	+68	+90	+125
	0	+15	+27	+43	+65	+100
Свыше 160 до 180					+93	+133
					+68	+108

Таблица 50. Модули упругости материалов

	<i>J</i> - 1
Материал	E, MΠa
Сталь	2,1·10 ⁵
Чугун	$1,3 \cdot 10^5$
Бронза	1,1·10 ⁵
Латунь	$1,05 \cdot 10^5$
Алюминий	$0,59 \cdot 10^5$
Медь	$1,5 \cdot 10^5$

Таблица 51. Классы и виды пружин растяжения и сжатия

Кла сс пру жи- ны	Вид пружи- ны	Нагружение	Вынос- ливость $N_{\rm F}$	Инерцион- ное соударе- ние витков
1	Сжатия и растя- жения	Циклическое	1·10 ⁷	Отсутствует
2	Сжатия и растя- жения	Циклическое и статическое	$1\cdot10^5$	Отсутствует
3	Сжатия	Циклическое	$2 \cdot 10^3$	Допускается

Таблица 52. Определение допускаемых касательных напряжений [τ]

при кручении по ГОСТ 13764 – 86

	 	•	0100113/04-			
Класс пружин	Разряд пружин	Вид пружин	Сила пружины при макси- мальной деформа-ции, F ₃ , H	Диаметр проволоки (прутка) d , мм	Марка стали или класс проволоки	[т], МПа
	1	И	1,00 850	0,2 5,0	I, II	0,3 σ _в
	2	[]	1,00 800			
		ати	25,0 800	1,25 5,0	51ХФА	$0,32\sigma_{\scriptscriptstyle \rm B}$
I	3	кильные сж растяжения	150 6300	3,15 12,5	60C2A,60C2BA, 70C3A 51XФА	560
	4	Одножильные сжатия и растяжения	2800 180000	14 71	60C2A,60C2BA, 70C3A,60C2XA, 60C2, 60C2XФА, 51XФА	480
	1 2	н и	1,50 1400 1,25 1250	0,2 5,0	I, II	0,5 σ _в
		тик	42,5 1250	1,25 5,0	51ХФА	$0,52\sigma_{_{\mathrm{B}}}$
II	3	Одножильные сжатия и растяжения	265 11200	3,15 12,5	60C2A,60C2BA 65Γ 51XΦA	960
	4	Одножил pac	4500 280000	14 71	60C2A,60C2BA, 70C3A, 60C2XA, 65Γ, 60C2XΦA, 51XΦA,60C2,	800
	2	ные	355 15000	3,15 12,5	60C2A,65C2BA, 70C3A	1350
III	3	Одножильные сжатия	6000 20000	14 25	60C2A,65C2BA, 70C3A	1050

Примечание. 1. Максимальное касательное напряжение при кручении $[\tau]$ приведено с учетом кривизны витков. 2. Допускаемое напряжение при изгибе для пружин кручения выбирают порядка $[\sigma_u] = 1,25[\tau]$

Таблица 53. Механические свойства стальной углеродистой пружин-

ной проволоки

Диаметр прово-	Предел прочности $\sigma_{\scriptscriptstyle B}$ в МПа						
локи d в мм	Проволока	Проволока	Проволока				
	класса III	класса II	класса I				
1	2	3	4				
2,00	1400 1800	1800 2100	2000 2300				
2,50	1300 1650	1650 1950	1800 2050				
3,00	1300 1650	1650 1950	1700 1950				
3,50	1200 1550	1550 1800	1650 1900				
4,00	1150 1500	1500 1750	1600 1850				
4,50	1150 1450	1400 1650	1500 1750				
5,00	1100 1400	1400 1650	1500 1750				
6,00	1050 1350	1350 1600	1450 1700				
7,00	1000 1250	1250 1450	-				
8,00	1000 1250	1250 1450	-				

Таблица 54. Значение коэффициента k, учитывающего кривизну витков для пружин сжатия и растяжения.

Индекс пружины	4	5	6	8	10	12
c						
k	1,37	1,29	1,24	1,17	1,14	1,11

Таблица 55. Значение коэффициента k, учитывающего кривизну витков для пружин кручения

Индекс пружины с	4	5	6	8	10	12
k	1,250	1,188	1,150	1,107	1,083	1,068

Таблица 56. Значение $\frac{k_{\sigma}}{}$ для валов с напрессованными деталями

d,	σ _в , MΠa						
MM	600	700	800	900			
14	2,00	2,30	2,60	3,00			
22	2,35	2,60	3,00	3,40			
30	2,60	2,80	3,30	3,80			
40	2,70	3,20	3,65	4,00			
50	3,30	3,60	4,00	4,50			

Примечание: $\frac{k_{\tau}}{\varepsilon_{\tau}} = 0.6 \frac{k_{\sigma}}{\varepsilon_{\sigma}} + 0.4$

Таблица 57. Значение k_{σ} и k_{τ} для валов с одной шпоночной канавкой

Коэффициенты	$\sigma_{_{\rm B}}, {\rm M}\Pi a$					
	600	700	800	900		
k_{σ}	1,60	1,75	1,80	1,90		
k_{τ}	1,50	1,60	1,70	1,90		

Таблица 58. Значение масштабного фактора ϵ_{σ} и ϵ_{τ}

Сталь	Диаметр вала d , мм							
	20	30	40	50	70	100	120	
Углероди-	εσ	0,92	0,88	0,85	0,82	0,76	0,70	0,61
стая						7		
	ετ	0,83	0,77	0,73	0,70	0,65	0,59	0,52
Легирован-	εσ	0,83	0,77	0,73	0,70	0,65	0,59	0,52
ная								
	ετ	0,83	0,77	0,73	0,70	0,65	0,59	0,52

Таблица 59. Значения коэффициентов ψ_{σ} и ψ_{τ}

Сталь	Ψσ	Ψτ
Углеродистая мягкая	0,15	0,05
Среднеуглеродистая	0,20	0,10
Легированная	0,25	0,15

Таблица 60. Выбор номера задания

Номер		Две последние цифры номера зачетной книжки								
задания										
0	00	10	20	30	40	50	60	70	80	90
1	01	11	21	31	41	51	61	71	81	91
2	02	12	22	32	42	52	62	72	82	82
3	03	13	23	33	43	53	63	73	83	93
4	04	14	24	34	44	54	64	74	84	94
5	05	15	25	35	45	55	65	75	85	95
6	06	16	26	36	46	56	66	76	86	96
7	07	17	27	37	47	57	67	77	87	97
8	08	18	28	38	48	58	68	78	88	98
9	09	19	29	39	49	59	69	79	89	99

Таблица 61. Выбор задач для контрольной работе.

Tuosinga or. Beloop sagar gsin komposibnon paoore.	
Номер задания	Номера задач
0	1,5,11,14,15,18,21,24
1	2,6,12,14,16,19,22,25
2	3,7,13,14,17,20,23,26
3	4,8,11,14,15,20,21,26
4	1,9,12,14,16,18,22,24
5	2,10,13,14,17,19,23,25
6	3,5,11,14,15,19,22,26
7	4,6,12,14,16,20,23,24
8	1,7,12,14,17,18,21,25
9	2,8,11,14,16,20,22,25

Литература

- 1. Батурин А.Т., Ицкович Г.М., Панич Б.Б., Чернин И.М. Детали машин. М.: Машиностроение, 1977. 407 с.
- 2. Гжиров Р.И. Краткий справочник конструктора: Справочник Л.: Машиностроение, 1983. 464 с.
- 3. Гузенков П.Г. Детали машин.- М.: Высш. шк., 1986 359 с.
- 4. Детали машин в задачах и примерах / С.Н. Ничипорчик, М.И. Корженецкий, В.Ф. Калачев и др.; Под общ. Ред. С.Н. Ничипорчика. Мн.: Выш. шк., 1981. 432 с.
- 5. Детали машин в примерах и задачах / Под общ. Ред С.М. Башеева. Мн.: Выш. шк., 1970. 488 с.
- 6. Детали машин. Расчет и конструирование: Справочник / Под ред. Н.С. Ачеркана. М.: Машиностроение, 1968. 440 с.
- 7. Добровольский В.А. Расчет деталей машин. Киев: Гостехиздат, 1961.- 301 с.
- 8. Иванов М.Н. Детали машин: Учебник для вузов. -М.: Высш. шк., 1976.- 399 с.
- 9. Иосилевич Г.Б. Детали машин: Учебник для вузов.-М.: Машиностроение, 1988.-368 с.
- 10. Кузьмин А.В., Чернин И.М., Козинцов Б.С. Расчеты деталей машин. Мн.: Выш. шк., 1986. 400 с.
- 11. Мархель И.И. Детали машин. М.: Машиностроение, 1977. 446 с.
- 12. Миловидов С.С. Детали машин и приборов. М., «Высшая школа», 1971. 488 с.
- 13. Расчеты деталей машин: Справочник / Чернин И.М., Кузьмин А.В., Ицкович Г.М. Мн.: Выш. школа, 1974. 592 с.
- 14.Решетов Д.Н. Детали машин. Учебник для вузов. Изд. 3-е -М.: Машиностроение, 1975. 655 с.
- 15. Сборник задач и примеров расчета по курсу деталей машин / Г.М. Ицкович, С.А. Чернавский, В.А. Киселев и др.- М.: Машиностроение, 1974.-286 с.

Оглавление

Программа курса детали машин	3
Задачи к контрольной работе	
Задача 1	7
Задача 2	7
Задача 3	8
Задача 4	9
Задача 5	10
Задача 6	11
Задача 7	12
Задача 8	12
Задача 9	13
Задача 10	13
Задача 11	14
Задача 12	15
Задача 13	16
Задача 14	16
Задача 15	17
Задача 16	18
Задача 17	18
Задача 18	19
Задача 19	20
Задача 20	21
Задача 21	21
Задача 22	22
Задача 23	22
Задача 24	23
Задача 25	23
Задача 26	24
Справочный материал	25
Литература	40

ДЕТАЛИ МАШИН

Практикум по выполнению контрольных работ для студентов специальности 1-36 01 07 «Гидропневмосистемы мобильных и технологических машин» заочной формы обучения

Составители: **Бельский** Алексей Тимофеевич **Тариков** Георгий Петрович **Комраков** Владимир Викторович

Подписано к размещению в электронную библиотеку ГГТУ им. П. О. Сухого в качестве электронного учебно-методического документа 18.02.09. Рег. № 27E.

E-mail: ic@gstu.gomel.by http://www.gstu.gomel.by