

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Металлургия и литейное производство»

С. В. Авсейков

ОБОРУДОВАНИЕ ВОЛОЧИЛЬНЫХ ЦЕХОВ

ПРАКТИКУМ

по одноименному курсу для студентов специальности 1-42 01 01 «Металлургическое производство и материалообработка (по направлениям)», направления специальности 1-42 01 01-02 «Металлургическое производство и материалообработка (материалообработка)», специализации 1-42 01 01-02 01 «Обработка металлов давлением» дневной и заочной форм обучения

УДК 621.77(075.8) ББК 34.622я73 A22

Рекомендовано научно-методическим советом механико-технологического факультета ГГТУ им. П. О. Сухого (протокол № 9 от 27.10.2015 г.)

Рецензент: доц. каф. «Обработка материалов давлением» ГГТУ им. П. О. Сухого канд. техн. наук, доц. С. Б. Сарело

Авсейков, С. В.

А22 Оборудование волочильных цехов: практикум по одноим. курсу для студентов специальности 1-42 01 01 «Металлургическое производство и материалообработка (по направлениям)», направления специальности 1-42 01 01-02 «Металлургическое производство и материалообработка (материалообработка)», специализации 1-42 01 01-02 01 «Обработка металлов давлением» днев. и заоч. форм обучения / С. В. Авсейков. – Гомель: ГГТУ им. П. О. Сухого, 2016. – 60 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: https://elib.gstu.by. – Загл. с титул. экрана.

Представлены теоретические сведения, методики и примеры выполнения расчетов: привода вращающейся волоки прямоточного волочильного стана, привода прямоточного волочильного стана, прочностной расчет главных валов волочильных станов со скольжением, рихтовального устройства, на прочность преформирующе-рихтовального устройства.

Для студентов специальности 1-42 01 01 «Металлургическое производство и материалообработка (по направлениям)» дневной и заочной форм обучения.

УДК 621.77(075.8) ББК 34.622я73

© Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2016

Содержание

		Стр
1	Расчет привода вращающейся волоки прямоточного	
	волочильного стана	4
2	Расчет на прочность вала шпинделя стана NT-12.6	9
3	Расчет привода узла вытяжки	31
4	Расчет волокодержателя волочильного стана со	
	скольжением	42
5	Расчёт рихтовального устройства	48
6	Расчет на прочность преформирующе-рихтовального	
	устройства	55
	Список рекомендуемой литературы	59

Практическая работа №1 Расчет привода вращающейся волоки прямоточного волочильного стана

Цель работы: рассчитать привод вращающейся волоки прямоточного волочильного стана

Основные теоретические сведения

В связи с применением вращающейся волоки (рис.1.1) в стане 2500/2+1600/2+1250/9 возникла необходимость в анализе технической возможности ее использования. После прохода волочения с вращающейся волокой на поверхности проволоки образуется более плотный поверхностный слой смазки увеличенной толщины. Использование вращения волоки позволяет получить равномерный износ рабочей зоны канала волоки, а также улучшить подачу смазки в рабочую зону волоки. Более эффективная подача смазки совместно с эффектом вращения поверхности деформирования волоки обеспечивают снижение коэффициента трения волочения.

В соответствии с известными источниками [1] вращение волоки с угловой скоростью 3000 мин $^{-1}$ снижает усилие волочения на 25 %, что соответствует снижению коэффициента трения в волоке почти в два раза или на 50 %. Применяемое устройство обеспечивает вращение волоки со скоростью 120 об/мин или угловую скорость вращения $\omega = 2 \cdot \pi \cdot 120 = 753,6$ мин $^{-1}$. На этом основании можно предположить, что применяемая вращающаяся волока уменьшит коэффициент трения на следующую величину:

$$\frac{753,6\cdot50}{3000} = 12,56 \%$$

Поэтому принимается коэффициент контактного трения 0,06, который меньше коэффициента трения для сухой смазки 0,07 приблизительно на 12,5%. Это дает возможность увеличивать скорость волочения без дополнительного нагрева проволоки.

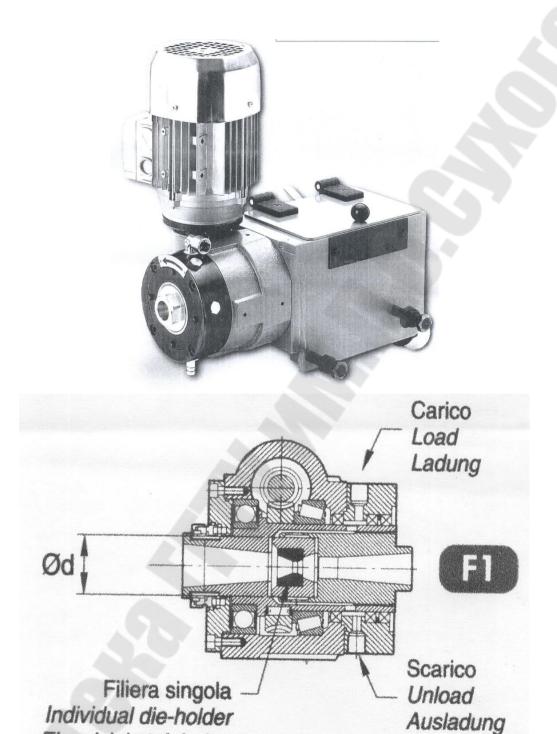


Рисунок 1.1 – Общий вид и схема вращающейся волоки

Предполагается использовать устройство для вращения волоки, состоящее из двигателя мощностью 0,37 кВт, от которого червячной передачей момент вращения передается к волокодержателю. Для проверочного расчета возможности применения данного устройства определим потребную мощность двигателя привода вращения волоки и сравним ее с имеющейся мощностью двигателя привода волоки.

Einzelziehsteinhalter

Имеющаяся мощность двигателя устройства вращения волоки должна быть больше потребной мощности.

Практическая часть

Инженерный расчет значения потребной мощности двигателя привода устройства вращения волоки может быть выполнен по следующей зависимости:

$$N = w/n (1.1)$$

где N – потребная мощность, Вт;

M — момент сил, обеспечивающий вращение волоки, Нм;

w – угловая скорость вращения волоки, 1/c;

 η — коэффициент полезного действия привода вращения волоки с червячной передачей.

Величину M определим по зависимости:

$$M = T(d_0 + d_1)/4, (1.2)$$

где T – результирующая сила трения на контакте проволоки с рабочей зоной волоки, преодолеваемая приводом вращающейся волоки, H;

 ${\bf d_0},\ {\bf d_1}$ - диаметры проволоки на выходе и входе из волоки, м.

Величину w определим по зависимости:

$$w = 2 \cdot \pi \cdot n, \tag{1.3}$$

где w-1/c

n – число оборотов вращения волоки, об/с.

Величину T определим из предположения о том, что вся величина контактных сил трения в волоке преодолевается усилием привода вращающейся волоки. Практически такое предположение осуществимо при вращении волоки без движения натянутой проволоки, например в начальный момент волочения проволоки на волочильном стане. Такое критическое предположение существенно завышает действительное значение T, так как большая часть

контактных сил трения в волоке при установившемся движении проволоки преодолевается приводом тяговых барабанов, создающих усилие волочения на каждой волоке. При удовлетворительном проверочном расчете с принятым завышенным значением T будет гарантированно выполняться проверочный расчет с действительным значением T, преодолеваемым усилием привода вращающейся волоки во время устойчивого движения проволоки при волочении.

Принимаемая величина T определится по зависимости:

$$T = f/\sin(\alpha) , \qquad (1.4)$$

Где P – волочения во вращающееся волоке, H;

f — коэффициент контактного трения в волоке;

α – полуугол конической рабочей зоны волоки.

Пример расчета:

Пример 1. Результаты проверочного расчета для вращающейся волоки на первом переходе волочения стана грубого волочения 2500/2+1600/2+1250/9:

Исходные данные: n=2, oб/c; f=0.06; $\eta=0.85$; P=13246, H; $d_0=5.58$, мм; $d_1=4.79$, мм; $\alpha=5^0$; $\eta=0.8$;

Расчетные данные:

$$T = P \cdot f/\sin(\alpha) = 4101 \cdot 0,06/\sin(6^{\circ}) = 2354 , H$$

$$w = 2 \cdot \pi \cdot n = 2 \cdot \pi \cdot 2 = 12,56, 1/c;$$

$$M = T \cdot (d_{\circ} + d_{\scriptscriptstyle 1})/4 = 2354 \cdot (0,00313 + 0,002799)/4 = 3,49 , HM$$

$$N = M \cdot w/\eta = 3,49 \cdot 12,56/0,8 = 54,793 , B_T$$

Пример 2. Результаты проверочного расчета для вращающейся волоки на последнем тринадцатом переходе волочения волочильного стана грубого волочения 2500/2+1600/2+1250/9:

Исходные данные: n=2, oб/c; f=0.06; $\eta=0.85$; P=1961, H; $d_{_0}=1.469$, мм; $d_{_1}=1.36$, мм; $\alpha=6^{^0}$; $\eta=0.8$;

Расчетные данные:

$$\begin{split} T = P \cdot f/sin(\alpha) \cdot 0,06/sin(5^{\circ}) &= 862,7 \; , \; H \\ w = 2 \cdot \pi \cdot n = 2 \cdot \pi \cdot 2 = 12,56 \; , \; 1/c \; ; \\ M = T \cdot \big(d_{_0} + d_{_1}\big)/4 &= 862,7 \cdot \big(0,001469 + 0,00136\big)/4 = 0,61 \quad , \; HM \\ N = M \cdot w/\eta = 0,61 \cdot 12,56/0,8 = 9,577 \; \; , \; B_T \end{split}$$

Значения полученных значений потребной мощности двигателя привода вращающейся волоки N меньше имеющейся мощности двигателя привода 44 кВт, поэтому предлагаемое устройство для вращения волоки удовлетворяет разработанным технологическим режимам волочения.

Практическая работа №2. Расчет на прочность вала шпинделя стана NT-12.6

Цель работы: рассчитать на прочность вал шпинделя №2 стана NT-12.6.

Основные теоретические сведения

Из практики работы тонкого волочения известно, что наиболее часто на станах NT-12.6 происходит поломка вала шпинделя №2. Поэтому проверка прочности механизмов стана производится по данному валу.

Практическая часть

Первоначально для определения усилий, действующих на вал, необходимо произвести расчет ременных передач привода валов №4-2 и №2-1. Расчет производится по следующей схеме.

2.1 Расчет ременных передач

Определяются диаметры делительных окружностей шкивов d, мм:

$$d = z \times m , \qquad (2.1)$$

где z — число зубьев шкива; m — модуль ремня, мм:

$$m = \frac{t}{\pi} , \qquad (2.2)$$

где t – шаг зубьев, мм.

Если неизвестно число зубьев ремня и его длина, то они определяются по формулам:

$$Z_{p} = \frac{\left(\frac{a}{k \times t}\right) \left(z_{1} + z_{2}\right)}{2}, \qquad (2.3)$$

где z_p – число зубьев ремня;

a – межосевое расстояние, мм;

k – коэффициент, учитывающий разность числа зубьев;

 z_1 – число зубьев ведущего шкива;

 z_2 — число зубьев ведомого шкива.

$$L = Z_p \times t , \qquad (2.4)$$

где L – длина ремня, мм.

Определяется передаточное число и:

$$u = \frac{Z_2}{Z_1},\tag{2.5}$$

Определяется окружная скорость ремня V, м/с:

$$V = \frac{n_1 \times d_1 \times \pi}{60 \times 10^3} , \qquad (2.6)$$

где n_1 — частота вращения ведущего вала, об/мин; d_1 — диаметр делительной окружности ведущего шкива, мм. Угол обхвата ремнем ведущего шкива α ,°:

$$\alpha = 180^{\circ} - 57^{\circ} \left(\frac{d_2 - d_1}{a} \right),$$
 (2.7)

где d_2 – диаметр ведомого шкива, мм.

Число зубьев на дуге обхвата z_{01} :

$$Z_{01} = Z_1 \times \frac{\alpha}{360^{\circ}}, \tag{2.8}$$

Мощность, передаваемая ремнем N_p , кВт:

$$N_{\rho} = \frac{N_{\pi}}{\eta_{\rho} \times \eta_{\pi \kappa}} \,, \tag{2.9}$$

где N_n – мощность, потребляемая ведомым валом, кВт;

 $\eta_p - \text{КПД}$ зубчато-ременной передачи; $\eta_{n\kappa} - \text{КПД}$ пары подшипников качения.

Необходимая ширина ремня В, мм:

$$B = \frac{N_p \times k_t}{N_t \times z_{01}} , \qquad (2.10)$$

где N_t — мощность, передаваемая одним зубом ремня шириной 1 мм в стандартном режиме, кВт/мм;

 k_t – уточняющий коэффициент, определяющийся по формуле:

$$k_t = k_1 + k_2 + k_3 (2.11)$$

где $k_1 - \kappa оэффициент, учитывающий тип двигателя;$

k₂ – коэффициент, учитывающий тип рабочей машины;

k₃ – коэффициент, учитывающий передаточное число.

Крутящий момент $T(H \cdot M)$, передаваемый ремнем:

$$T = 9,55 \times 10^3 \times \frac{N_p}{n_1},$$
 (2.12)

Окружная сила F_t (H), передаваемая ремнем:

$$F_t = 2 \times 10^3 \times \frac{T}{d_1},\tag{2.13}$$

Сила F(H), нагружающая вал передачи:

$$F = 1, 1 \times F_t, \tag{2.14}$$

Пример расчета

Пример 1. Производится расчет ременной передачи привода вала шпинделя №1. Исходные данные:

- межосевое расстояние а = 440 мм;
- число зубьев шкивов $z_1 = 54$ и $z_2 = 61$;

- шаг ремня t = 8 мм;
- частота вращения ведущего вала $n_1 = 121,085$ об/мин;
- коэффициенты k = 0.25, $k_1 = 0.25$, $k_2 = 1.4$ и $k_3 = 0$;
- КПД зубчато-ременной передачи $\eta_p = 0.98$;
- КПД пары подшипников качения $\eta_{n\kappa} = 0.99$.

По формуле (56) определяется модуль ремня:

$$m = \frac{8}{3,14} = 2,5465 \text{ MM}$$

Определяются диаметры делительных окружностей шкивов:

$$d_1 = 54 \times 2,5465 = 137,51 \text{ MM}$$

$$d_2 = 61 \times 2,5465 = 155,335 \text{ MM}$$

Определяется число зубьев ремня:

$$z_p = \frac{\left(\left(\frac{440}{0,25\times8}\right) + (54+61)\right)}{2} = 167,5$$

Принимается $z_p = 168$.

Определяется длина ремня:

$$L = 168 \times 8 = 1344 \text{ MM}$$

Определяется передаточное число передачи:

$$u = \frac{61}{54} = 1,1296$$

Определяется окружная скорость ремня:

$$V = \frac{121,085 \times 137,51 \times 3,14}{60 \times 10^{3}} = 0,872 \text{ M/c}$$

Определяется угол обхвата ремнем ведущего шкива:

$$\alpha = 180^{\circ} - 57^{\circ} \times \frac{(155,335 - 137,51)}{440} = 177,691^{\circ}$$

Определяется число зубьев на дуге обхвата:

$$z_{01} = 54 \times \frac{177,691}{360^{\circ}} = 26,654$$

Мощность N_n , потребляемая ведомым валом, определяется как сумма мощностей привода контрприводных шайб №1-9:

$$N_{\pi} = \sum_{i=1}^{9} N_{\kappa i} , \qquad (2.15)$$

$$N_{II} = 0.144 \text{ kBT}$$

Определяется мощность, передаваемая ремнем:

$$N_p = \frac{0,144}{0.98 \times 0.99} = 0,148 \text{ kBT}$$

Определяется уточняющий коэффициент для расчета ширины ремня:

$$k_t = 0.25 + 1.4 + 0 = 1.65$$

Определяется необходимая минимальная ширина ремня: $N_t = 0.005 \text{ kBt/мм} - \text{определяется по номограмме}.$

$$B = \frac{0.148 \times 1.65}{0.005 \times 26.654} = 1.838 \text{ MM}$$

Определяется крутящий момент, передаваемый ремнем:

$$T = 9.55 \times 10^3 \times \frac{0.148}{121.085} = 11,706 \text{ H} \cdot \text{M}$$

Определяется окружная сила, передаваемая ремнем:

$$F_t = 2 \times 10^3 \times \frac{11,706}{137,51} = 170,259 \text{ H}$$

Определяется сила, нагружающая вал передачи:

$$F = 1,1 \times 170,259 = 187,285 \text{ H}$$

Пример №2. Производится расчет ременной передачи привода вала шпинделя №2. Исходные данные:

- межосевое расстояние а = 334 мм;
- число зубьев шкивов $z_1 = 46$ и $z_2 = 138$;
- шаг ремня t = 8 мм;
- частота вращения ведущего вала $n_1 = 362,491$ об/мин;
- коэффициенты k = 0.25, $k_1 = 0.25$, $k_2 = 1.4$ и $k_3 = 0$;
- КПД зубчато-ременной передачи $\eta_p = 0.98$;
- КПД пары подшипников качения $\eta_{nk} = 0.99$;
- длина ремня L = 1440 мм

По формуле (56) определяется модуль ремня:

$$m = \frac{8}{3.14} = 2,5465 \text{ MM}$$

Определяются диаметры делительных окружностей шкивов:

$$d_1 = 46 \times 2,5465 = 117,138 \text{ MM}$$

$$d_2 = 138 \times 2,5465 = 351,414 \text{ MM}$$

Определяется передаточное число передачи:

$$u = \frac{138}{46} = 3$$

Определяется окружная скорость ремня:

$$V = \frac{362,491 \times 117,138 \times 3,14}{60 \times 10^{3}} = 2,223 \text{ M/c}$$

Определяется угол обхвата ремнем ведущего шкива:

$$\alpha = 180^{\circ} - 57^{\circ} \times \frac{(351,414 - 117,138)}{334} = 140,019^{\circ}$$

Определяется число зубьев на дуге обхвата:

$$z_{01} = 46 \times \frac{140,019}{360^{\circ}} = 17,891$$

Мощность N_n , потребляемая ведомым валом, определяется как мощность, передаваемая на вал №1 + сумма мощностей волочения на переходах №1-9:

$$N_{\Pi} = N_{\Pi 1} + \sum_{i=1}^{g} N_{i},$$
 (2.16)

Определяется мощность, передаваемая ремнем:

$$N_p = \frac{5,632}{0,98 \times 0,99} = 5,81 \text{ kBT}$$

Определяется уточняющий коэффициент для расчета ширины ремня:

$$k_t = 0.25 + 1.4 + 0 = 1.65$$

Определяется необходимая минимальная ширина ремня: $N_t = 0.02 \ \mathrm{kBt/mm} - \mathrm{onpedeляeтcs}$ по номограмме.

$$B = \frac{5,81 \times 1,65}{0,02 \times 17,891} = 26,789 \text{ MM}$$

Определяется крутящий момент, передаваемый ремнем:

$$T = 9,55 \times 10^3 \times \frac{5,81}{362.491} = 153,055 \text{ H M}$$

Определяется окружная сила, передаваемая ремнем:

$$F_t = 2 \times 10^3 \times \frac{153,055}{117,138} = 2613,245 \text{ H}$$

Определяется сила, нагружающая вал передачи:

2.2 Расчет вала на статическую и усталостную прочность

Для расчета необходимо определить силы, действующие на вал. На рисунке 2.1 схематично показан вал – линия ABCDE. Точки

На рисунке 2.1 схематично показан вал – линия ABCDE. Точки на этой линии обозначают:

- точка A позиция посадки ведомого шкива ременной передачи 4-2, точка приложения силы F_{pl} и крутящего момента $M_{\kappa l}$ от этой передачи;
- точка В позиция посадки ведущего шкива ременной передачи 2-1, точка приложения силы F_{p2} и крутящего момента $M_{\kappa 2}$ от этой передачи;

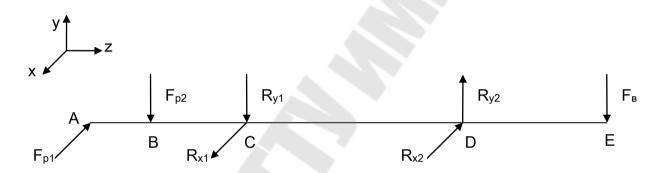


Рисунок 2.1 – Схема нагружения вала

- точка С позиция опоры подшипникового узла №1 (2 подшипника типа 26211К), точка возникновения сил реакции R_{xI} и R_{vI} ;
- точка D позиция опоры подшипникового узла №2 (1 подшипник типа 32509), точка возникновения сил реакции R_{x2} и R_{y2} ;
- точка Е позиция посадки волочильного конуса, точка приложения силы $F_{\it в}$ и момента $M_{\it к \it e}$.

Расстояния между точками определяются конструктивными особенностями вала и составляют:

AB = 42 MM;

BC = 114 MM;

CD = 257.5 MM;

DE = 162.5 MM.

Сила F_в определяется по формуле:

$$F_{B} = 1, 1 \times \sum_{i=1}^{9} P_{i}$$
, (2.17)

где P_i – усилие волочения, H.

$$F_B = 1.1 \times 7404,155 = 8144,57 \text{ H}$$

Остальные силы, а также крутящие моменты берутся из расчета ременных передач:

 $F_{p1} = 2874,57 \text{ H};$ $F_{p2} = 187,285 \text{ H};$ $M_{\kappa 1} = 153,055 \text{ H};$ $M_{\kappa 2} = 11,706 \text{ H}.$

$$M_{\text{kb}} = M_{\text{k1}} - M_{\text{k2}} = 153,055 - 11,706 = 141,349 \text{ H} \cdot \text{m}$$

Определяются реакции опор:

• в плоскости ОХ:

Согласно условию равновесия тел сумма изгибающих моментов относительно точки опоры должна быть равна нулю:

Относительно точки С:

$$\begin{split} \Sigma M_c &= 0 \\ F_{p1} \times (AB + BC) - R_{x2} \times CD &= 0 \end{split}$$

$$R_{x2} = \frac{F_{p1} \times (AB + BC)}{CD} = \frac{2874,57 \times (42 + 114)}{257,5} = 1741,487 \ H \end{split}$$

Относительно точки D:

$$\begin{split} \Sigma M_D &= 0 \\ F_{p1} \times (AB + BC + CD) - R_{x1} \times CD &= 0 \end{split}$$

$$R_{x1} = \frac{F_{p1} \times (AB + BC + CD)}{CD} = \frac{2874,57 \times (42 + 114 + 257,5)}{257,5} = 4616,057 \text{ H} \end{split}$$

Выполняется проверка (сумма сил должна быть равна нулю):

$$\Sigma F = -F_{p1} + R_{x1} - R_{x2} = -2874,57 + 4616,057 - 1741,487 = 0$$

• в плоскости ОҮ:

Относительно точки С:

$$\Sigma M_C = 0$$

$$F_{p2} \times BC + R_{y2} \times CD - F_{B} \times (CD + DE) = 0$$

$$R_{y2} = \frac{F_{_B} \times (CD + DE) - F_{p2} \times BC}{CD} = \frac{8144,57 \times (257,5 + 162,5) - 187,285 \times 114}{257,5} = 13201,433$$

Η

Относительно точки D:

$$\Sigma M_D = 0$$

$$F_{p2} \times (BC + CD) + R_{v1} \times CD - F_{B} \times DE = 0$$

$$R_{y1} = \frac{F_{_B} \times DE - F_{p2} \times (BC + CD)}{CD} = \frac{8144,57 \times 162,5 - 187,285 \times (114 + 257,5)}{257,5} = 4869,578$$

Η

Выполняется проверка:

$$\Sigma F = \text{-} \ F_{p2} - R_{y1} + R_{y2} - F_{\scriptscriptstyle B} = 0$$

Определяются крутящие моменты:

$$M_{\kappa A} = - \ M_{\kappa 1} = - \ 153,055 \ H \cdot M$$

$$M_{\kappa B} = - \ M_{\kappa 1} + M_{\kappa 2} = - \ 153,055 + 11,706 = - \ 141,349 \ H \cdot M$$

$$M_{\kappa C} = M_{\kappa B} = - \ 141,349 \ H \cdot M$$

$$M_{\kappa D} = M_{\kappa B} = - \ 141,349 \ H \cdot M$$

$$M_{\kappa E} = - \ M_{\kappa 1} + M_{\kappa 2} + M_{\kappa B} = - \ 153,055 + 11,706 + 141,349 = 0$$

Определяются изгибающие моменты:

• в плоскости ОХ:

$$M_{xA} = 0$$

$$M_{xB}$$
 = - $F_{p1} \times AB \times 10^{-3}$ = - $2874,57 \times 42 \times 10^{-3}$ = - $120,732~H \cdot M$

$$M_{xC} = \text{--} F_{p1} \times (AB + BC) \times 10^{\text{--}3} = \text{---} 2874,57 \times (42 + 114) \times 10^{\text{--}3} = \text{---} 2448,433 \text{ H} \cdot \text{m}$$

$$\begin{split} M_{xD} = (-F_{p1} \times (AB + BC + CD) + R_{x1} \times CD) \times 10^{-3} = (-2874, 57 \times (42 + 114 + 257, 5) + 4616, 057 \times 257, 5) \times 10^{-3} = 0 \end{split}$$

$$M_{xE} = 0$$

• в плоскости ОХ:

$$M_{yA} = 0$$

$$M_{vB} = 0$$

$$M_{vC} = -F_{p2} \times BC \times 10^{-3} = -187,285 \times 114 \times 10^{-3} = -21,35 \text{ H} \cdot \text{m}$$

$$M_{yD} = (-F_{p2} \times (BC + CD) - R_{y1} \times CD) \times 10^{-3} = (-187,285 \times (114 + 257,5) - 4869,578 \times 257,5) \times 10^{-3} = -1323,493 \ H \cdot M$$

$$\begin{split} M_{yE} &= (\text{-}\ F_{p2} \times (BC + CD + DE) - R_{y1} \times (CD + DE) + R_{y2} \times DE) \times 10^{\text{-}3} \\ &= (\text{-}187,285 \times (114 + 257,5 + 162,5) - 4869,578 \times (257,5 + 162,5) + \\ &+ 13201,433 \times 162,5) \times 10^{\text{-}3} = 0 \end{split}$$

• суммарные изгибающие моменты M_{Σ} :

$$M_{\Sigma} = \sqrt{M_x^2 + M_y^2}$$
, (2.18)

$$M_{\scriptscriptstyle \Sigma A} = \sqrt{0^2 + 0^2} = 0$$

$$M_{\Sigma B} = \sqrt{(\text{-}120,732)^2 + 0^2} = 120,732~H~\cdot~M$$

$$\label{eq:mass_energy} \textit{M}_{\textrm{SC}} = \sqrt{(\text{-448,433})^2 + (\text{-21,35})^2} = \text{448,941} \ H \ \cdot \ \text{M}$$

$$M_{_{\Sigma D}} = \sqrt{0^2 + (\text{-}1323,\!493)^2} = 1323,\!493 \ H \ \cdot \ \text{M}$$

$$M_{SE} = \sqrt{0^2 + 0^2} = 0$$

Определяются эквивалентные моменты $M_{\scriptscriptstyle {
m 9K6}}$:

$$M_{_{3KB}} = \sqrt{M_{_{2}}^{2} + M_{_{K}}^{2}}, \qquad (2.19)$$

$$M_{_{3KBA}} = \sqrt{0^{2} + (-153,055)^{2}} = 153,055 \text{ H} \cdot \text{m}$$

$$M_{_{3KBB1}} = \sqrt{120,732^{2} + (-153,055)^{2}} = 194,941 \text{ H} \cdot \text{m}$$

$$M_{_{3KBB2}} = \sqrt{120,732^{2} + (-141,349)^{2}} = 185,892 \text{ H} \cdot \text{m}$$

$$M_{_{3KBB2}} = \sqrt{448,941^{2} + (-141,349)^{2}} = 470,667 \text{ H} \cdot \text{m}$$

$$M_{_{3KBD}} = \sqrt{1323,493^{2} + (-141,349)^{2}} = 1331,02 \text{ H} \cdot \text{m}$$

$$M_{_{3KBE}} = \sqrt{0^{2} + (-141,349)^{2}} = 141,349$$

Производится построение эпюр крутящих и изгибающих моментов (рисунок 2.1).

Очевидно, что наиболее опасными являются сечение вала в точке D (подшипниковая опора $N \ge 2$), а также сечение в точке перехода конца вала в шейку, ослабленное галтелью (на расстоянии 73,5 мм правее точки D на схеме).

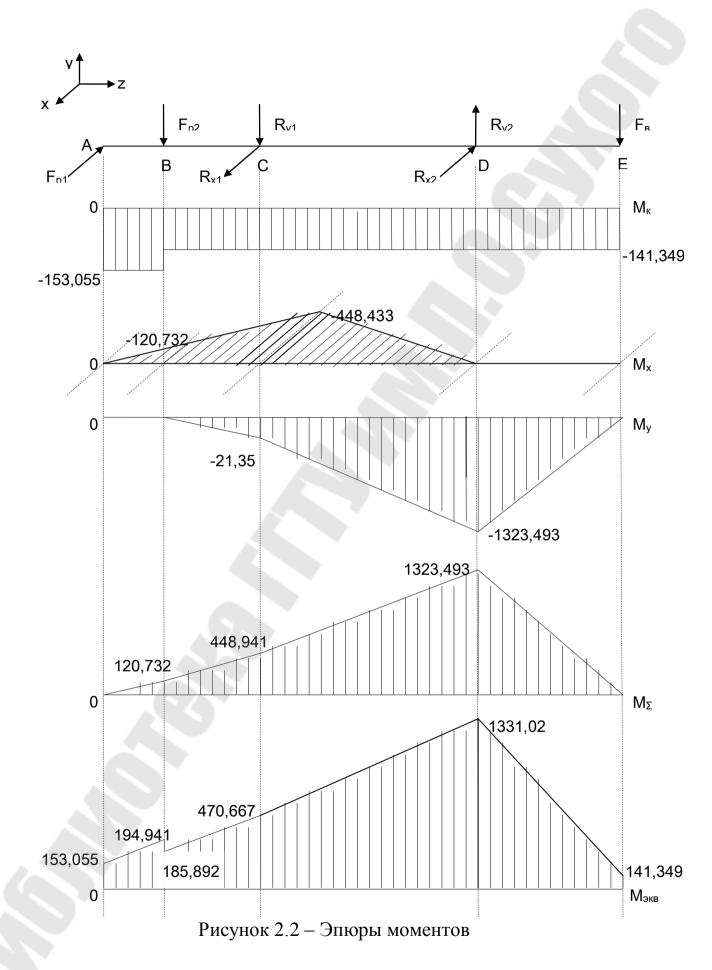
Пример расчета

Пример 1. Производится расчет сечения вала в точке D на статическую прочность.

Вал изготовлен из стали марки 45X улучшенной, имеющей следующие характеристики:

- предел прочности $\sigma_{\rm B} = 1030 \; {\rm H/mm}^2;$
- предел текучести $\sigma_{\rm T} = 830 \; {\rm H/mm}^2$;
- предельное напряжение растяжения $[\sigma_p] = 350 \text{ H/мм}^2$;
- предел выносливости по нормальным напряжениям $\sigma_{-1} = 610$ H/mm^2 :
- предел выносливости по касательным напряжениям $\tau_{\text{-}1} = 280$ H/mm^2 .

Изгибающий момент в этом сечении составляет 1323,493 H \cdot м, крутящий 141,349 H \cdot м, эквивалентный 1331,02 H \cdot м. Диаметр вала d = 45 мм.


Определяется осевой момент сопротивления изгибу W_x , мм³:

$$W_{x} = \frac{\pi \times d^{3}}{32} , \qquad (2.20)$$

где d – диаметр вала, мм.

$$W_x = \frac{3,14 \times 45^3}{32} = 8946,176 \text{ MM}^3$$

Определяется прочность сечения по условию Сен-Венана:

$$\sigma = \frac{M_{\text{3KB}} \times 10^3}{W_{\text{X}}} \le \left[\sigma_{\rho}\right], \qquad (2.21)$$

где σ – действующее на сечение напряжение, H/mm^2 .

$$\sigma = \frac{1331,02 \times 10^3}{8946.176} = 148,781 \text{ H/mm}^2$$

Расчет сечения D на усталостную прочность.

Определяется напряжение цикла изменения напряжений изгиба σ_a , H/mm^2 :

$$\sigma_a = \frac{M_{\Sigma} \times 10^3}{W_{\chi}},\tag{2.22}$$

$$\sigma_a = \frac{1323,493 \times 10^3}{8946,176} = 147,939 \text{ H/mm}^2$$

Определяется коэффициент запаса прочности вала по нормальным напряжениям s_{σ} :

$$s_{\sigma} = \frac{\sigma_{-1}}{\sigma_{a} \times k_{\sigma\sigma}} \,, \tag{2.23}$$

где $k_{\sigma\partial}$ – коэффициент снижения предела выносливости при изгибе:

$$k_{\sigma A} \neq \frac{k_{\sigma}}{k_{d}} + \frac{1}{k_{F}} - 1) \times \frac{1}{k_{V}}, \qquad (2.24)$$

где k_{σ} – коэффициент концентрации напряжений по изгибу;

 k_d – коэффициент влияния абсолютных размеров поперечного сечения:

 k_F – коэффициент влияния параметров шероховатости поверхности;

 k_v – коэффициент влияния поверхностного упрочнения.

Для данного сечения коэффициенты составят:

$$k_{\sigma} = 1$$
; $k_{d} = 0.75$; $k_{F} = 0.9$; $k_{v} = 1.7$

$$k_{\sigma A} = (\frac{1}{0.75} + \frac{1}{0.9} - 1) \times \frac{1}{1.7} = 0.85$$

$$s_{\sigma} = \frac{610}{147,939 \times 0,85} = 4,853$$

Определяется коэффициент запаса по касательным напряжениям S_{τ} :

$$s_{\tau} = \frac{\tau_{-1}}{\tau_{a} \times k_{\tau a} + \psi_{\tau} \times \tau_{m}} , \qquad (2.25)$$

 τ_a – амплитуда цикла напряжений кручения, H/мм²;

 $k_{\tau \partial}$ – коэффициент снижения предела выносливости кручении;

коэффициент, характеризующий чувствительность материала вала к асимметрии цикла изменения напряжений;

 τ_m – постоянная составляющая напряжений кручения, $H/\text{мм}^2$

$$\tau_a = \tau_m = \frac{M_\kappa \times 10^3}{2 \times W_p} , \qquad (2.26)$$

где W_p – момент сопротивления кручению, мм³:

$$W_{p} = \frac{\pi \times d^{3}}{16} , \qquad (2.27)$$

$$W_{p} = \frac{\pi \times d^{3}}{16} , \qquad (2.27)$$

$$k_{7/2} \neq \frac{k_{7}}{k_{d}} + \frac{1}{k_{F}} - 1) \times \frac{1}{k_{V}} , \qquad (2.28)$$

где k_{τ} – коэффициент концентрации напряжений по кручению. $k_{\tau} = 1; \ \psi_{\tau} = 0.10$

$$k_{\tau \mu} = (\frac{1}{0.75} + \frac{1}{0.9} - 1) \times \frac{1}{1.7} = 0.85$$

$$W_p = \frac{3,14 \times 45^3}{16} = 17892,352 \text{ MM}^3$$

$$\tau_a = \tau_m = \frac{141,349 \times 10^3}{2 \times 17892,352} = 3,95 \text{ H/MM}^2$$

$$s_{\tau} = \frac{280}{3,95 \times 0,85 + 0,10 \times 3,95} = 74,643$$

Определяется общий запас сопротивления усталости s:

$$s = \frac{s_{\sigma} \times s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} \ge s_{min} , \qquad (2.29)$$

где s_{min} — минимально допустимое значение коэффициента запаса прочности.

$$s_{min} = 1,5$$

$$s = \frac{4,853 \times 74,643}{\sqrt{4,853^2 + 74,643^2}} = 4,843$$

Производится расчет сечения вала в точке перехода конца вала в шейку на статическую прочность.

Изгибающий момент в этом сечении составляет:

$$M_{\Sigma} = \left| \; M_{y_{I\!\!I}} \; \right| \;$$
 , так как $M_{x_{I\!\!I}} = 0$

$$\begin{array}{l} M_{y\text{\tiny M}} = (\text{-} \; F_{\text{p2}} \times (BC + CD + 73,5) - R_{y\text{\tiny 1}} \times (CD + 73,5) + R_{y\text{\tiny 2}} \times 73,5) \times \\ \times 10^{\text{--3}} = (\text{-}187,285 \times (114 + 257,5 + 73,5) - 4869,578 \times (257,5 + 73,5) + \\ + 13201,433 \times 73,5) \times 10^{\text{--3}} = \text{-}724,867 \; \text{H} \cdot \text{m} \end{array}$$

$$M_{\Sigma} = 724,867 \text{ H} \cdot \text{M}$$

Крутящий момент 141,349 Н · м, эквивалентный по формуле:

$$M_{akb} = \sqrt{724,867^2 + 141,349^2} = 738,52 \text{ H M}$$

Диаметр вала d = 35 мм. Концентратор напряжения – галтель. Определяется осевой момент сопротивления изгибу по формуле:

$$W_x = \frac{3,14 \times 35^3}{32} = 4209,243 \text{ MM}^3$$

Определяется прочность сечения по условию Сен-Венана по формуле:

$$\sigma = \frac{738,52 \times 10^3}{4209,243} = 175,452 \text{ H/mm}^2$$

Расчет сечения вала в точке перехода конца вала в шейку на усталостную прочность.

Определяется напряжение цикла изменения напряжений изгиба по формуле:

$$\sigma_a = \frac{724,867 \times 10^3}{4209.243} = 172,208 \text{ H/mm}^2$$

Определяется коэффициент снижения предела выносливости при изгибе по формуле:

$$k_{\sigma} = 2$$
; $k_{d} = 0.65$; $k_{F} = 0.9$; $k_{v} = 1.7$

$$k_{\text{од}} = \left(\frac{2}{0.65} + \frac{1}{0.9} - 1\right) \times \frac{1}{1.7} = 1,875$$

Определяется коэффициент запаса прочности вала по нормальным напряжениям по формуле:

$$s_{\sigma} = \frac{610}{172,208 \times 1,875} = 1,889$$

Определяется момент сопротивления кручению по формуле:

$$W_p = \frac{3.14 \times 35^3}{16} = 8418,487 \text{ MM}^3$$

Определяется амплитуда цикла и постоянная составляющая напряжений кручения по формуле:

$$\tau_a = \tau_m = \frac{141,349 \times 10^3}{2 \times 8418,487} = 8,395 \text{ H/MM}^2$$

Определяется коэффициент снижения предела выносливости при кручении по формуле:

$$k_{\tau} = 1,53$$

$$k_{\tau \mu} = (\frac{1,53}{0,65} + \frac{1}{0,9} - 1) \times \frac{1}{1,7} = 1,45$$

Определяется коэффициент запаса по касательным напряжениям по формуле:

$$\psi_{\tau} = 0.10$$

$$s_{\tau} = \frac{280}{8,395 \times 1,45 + 0,10 \times 8,395} = 21,518$$

Определяется общий запас сопротивления усталости по формуле:

$$s = \frac{1,889 \times 21,518}{\sqrt{1,889^2 + 21,518^2}} = 1,882$$

2.3 Расчет подшипников вала

Наиболее нагруженным является подшипник узла №2. В этом узле применяется подшипник типа 32509, имеющий следующие характеристики:

- внутренний диаметр d = 45 мм;
- наружный диаметр D = 85 мм;
- ширина B = 23 мм;
- базовая грузоподъемность С = 59,4 кН;
- базовая долговечность $L_h = 10500$ часов.

Определяется эквивалентная динамическая нагрузка R_e , H:

$$R_e = V \times \sqrt{R_x^2 + R_y^2} \times k_a \times k_t$$
, (2.30)

где V – коэффициент вращения;

 k_{∂} – коэффициент, учитывающий динамичность внешней нагрузки;

 k_t — коэффициент, учитывающий влияние температуры подшипникового узла.

$$V = 1.0$$
; $k_{\pi} = 1.1$; $k_{t} = 1.0$

$$R_e = 1.0 \times \sqrt{1741.487^2 + 13201.433^2} \times 1.1 \times 1.0 = 14647.383 \text{ H}$$

Определяется расчетная динамическая грузоподъемность C_p , H:

$$C_p = R_e \times \sqrt[p]{60 \times n \times \frac{L_h}{10^6}} \le C$$
, (2.31)

где p – коэффициент;

n — частота вращения вала, об/мин.

Для роликоподшипников р = 3,33

$$C_p = 14647,383 \times 3.33 \sqrt{60 \times 121,085 \times \frac{10500}{10^6}} = 53833,746 \text{ H}$$

Определяется расчетная долговечность L_{hp} , часов:

$$L_{hp} = \frac{10^6}{60 \times n} \times \left(\frac{C}{R_e}\right)^p \ge L_h, \tag{2.32}$$

$$L_{hp} = \frac{10^6}{60 \times 121,085} \times \left(\frac{59400}{14647,383}\right)^{3,33} = 14570,899$$
 часов

Так как $C_p < C$ и $L_{hp} > L_h$ то данный подшипник является пригодным.

В подшипниковом узле №1 установлены два подшипника типа 26211К. Их характеристики:

- внутренний диаметр d = 55 мм;
- наружный диаметр D = 100 мм;
- ширина B = 21 мм;
- базовая грузоподъемность С = 46,3 кН;
- базовая долговечность $L_h = 10500$ часов.

Определяется эквивалентная динамическая нагрузка по формуле:

$$R_{\rm e} = 1.0 \times \sqrt{4616.057^2 + 4869.578^2} \times 1.1 \times 1.0 = 7380.727 \ H$$

Определяется расчетная динамическая грузоподъемность на оба подшипника по формуле:

для шарикоподшипников р = 3

$$C_p = 7380,727 \times \sqrt[3]{60 \times 121,085 \times \frac{10500}{10^6}} = 31302,29 \text{ H}$$

на каждый из подшипников:

$$31302,29 / 2 = 15651,145 H$$

Определяется расчетная долговечность по формуле:

$$L_{hp} = \frac{10^6}{60 \times 121,085} \times \left(\frac{46300}{7380,727}\right)^3 = 33978,48 \text{ часов}$$

Так как подшипника в узле два, то:

$$L_{hp} = 33978,48 \times 2 = 67956,96$$
 часов

Данные подшипники являются пригодными.

2.4 Расчет шпоночных соединений

На валу применяется два шпоночных соединения:

- соединение вала с волочильным конусом призматической шпонкой $10 \times 8 \times 100$ ГОСТ 23360-78 ($t_1 = 5$ мм);
- соединение вала со шкивами ременных передач призматической шпонкой $16\times10\times125$ ГОСТ 23360-78 ($t_2=6$ мм).

Материал шпонок – сталь 45 нормализованная (допускаемое напряжение смятия $[\sigma_{cm}] = 110 \text{ H/mm}^2$).

Определяется напряжение смятия σ_{cm} , H/мм²:

$$\sigma_{CM} = \frac{2 \times M_{K}}{d \times (1-b) \times (h-t_{1})} \leq \left[\sigma_{CM}\right], \qquad (2.33)$$

где M_{κ} – крутящий момент на валу, $H \cdot M$;

d – диаметр вала, мм;

1 – длина шпонки, мм;

b – ширина шпонки, мм;

h – высота шпонки, мм;

 t_1 – глубина шпоночного паза на валу, мм.

Для первого соединения:

$$\sigma_{\text{\tiny CM}} = \frac{2 \times 141,349}{35 \times (100 - 10) \times (8 - 5,5)} = 29,915 \text{ H/MM}^2$$

Для второго соединения:

$$\sigma_{cm} = \frac{2 \times 153,055}{45 \times (125-16) \times (10-6)} = 15,602 \text{ H/mm}^2$$

Данные шпонки являются пригодными.

Расчеты показывают, что узлы волочильного стана HT-12.6 после модернизации способны выдержать нагрузки при заданных параметрах деформации.

Практическая работа №3. Расчет привода узла вытяжки

Цель работы: рассчитать провод узла вытяжки волочильного стана

Основные теоретические сведения

Узел вытяжки предназначен для протягивания проволоки через волоку с узла размотки.

Узел состоит из двух барабанов: один приводной вытяжной, а другой холостой с ребордами. Барабаны служат для подачи проволоки с необходимым усилием, задаваемым волочением. Проволока на оба барабана наматывается в несколько витков, таким образом, создаётся трение проволоки о барабаны, исключающее проскальзывание, и обеспечения постоянной скорости перемотки.

Вытяжной барабан приводится во вращение от электродвигателя постоянного тока E90P-SX мощностью 5,9 кВт 2000об/мин. через зубчато-ременную передачу на угловой редуктор RAM180 с передаточным отношением $u_p=1$.

Далее через зубчато-ременную передачу на промежуточный вал и далее через зубчато-ременную передачу на вал натяжного барабана.

Практическая часть

1. Мощность на валу вытяжного барабана:

$$N_{\delta} = F_{n} \cdot \upsilon \cdot 1,5, \qquad (3.1)$$

где 1,5 – коэффициент учитывающий неравномерность усилий между витками на барабанах.

2. Число оборотов на валу вытяжного барабана:

$$n_{\delta} = \frac{60 \cdot 1000 \cdot \upsilon}{\pi \cdot D_{\delta}} \,. \tag{3.2}$$

3. Угловая скорость на валу вытяжного барабана:

$$\omega_{\delta} = \frac{\pi \cdot n_{\delta}}{30} \,. \tag{3.3}$$

4. Вращающий момент на валу вытяжного барабана:

$$T_{\delta} = \frac{N_{\delta}}{\omega_{\delta}}.$$
 (3.4)

Расчёт зубчато-ременной передачи и сил действующих на вал вытяжного барабана

5. Модуль, мм:

$$m = \frac{t}{\pi} \,. \tag{3.5}$$

6. Делительные диаметры шкивов, мм:

$$d_5 = Z_5 \cdot m, \qquad (3.6)$$

$$d_6 = Z_6 \cdot m. \tag{3.7}$$

7. Определяем межосевое расстояние при $L_p = Z_p = 66 - длинна$ ремня в шагах, мм:

$$a = \frac{t}{4} \left[L_p - \frac{Z_5 + Z_6}{2} + \sqrt{\left(L_p - \frac{Z_5 + Z_6}{2}\right)^2 - 8\left(\frac{Z_6 - Z_5}{2\pi}\right)^2} \right].$$
 (3.8)

8. Определяем передаваемую окружную силу:

$$F_{t} = \frac{N_{\delta}}{q \nu_{p}}, \tag{3.9}$$

где N_6 =1800Вт=1,8кВт;

 υ – скорость движения ремня; $q=6\cdot10^{-3}$ кг/м·мм – масса 1м ремня;

9. Скорость движения ремня, $\frac{M}{c}$:

$$\nu_p = \frac{\omega_{\delta} \cdot d_6}{2 \cdot 1000}. \tag{3.10}$$

10. Сила предварительного натяжения ветвей ремня, Н:

$$F_0 = 1.2 \cdot B_p \cdot q \cdot v^2, \tag{3.11}$$

где $B_p=38,1$ мм – ширина ремня.

11. Находим силу F_r , действующую на вал вытяжного барабана и направленную по оси центров передачи:

$$F_r = 0.5 \cdot F_0 \cdot F_t. \tag{3.12}$$

12. Определяем реакции в опорах вала вытяжного барабана:

$$\sum M_2 = 0,$$

$$F_n(73+31) - R_1 \cdot 73 + F_r \cdot 40,$$

$$R_1 = \frac{F_n(73+31) + F_r \cdot 40}{73},$$
(3.13)

$$\sum M_1 = 0,$$

$$R_2 = \frac{F_n \cdot 31 + F_r (40 + 73)}{73},\tag{3.14}$$

$$R_2 = \frac{120 \cdot 31 + 372 \cdot 113}{73} = 626,8H.$$

Проверка: $F_n - R_1 + R_2 - F_r = 0$.

Плечи в формулах приняты из компоновки вала. Вычерчиваем расчётную схему вала вытяжного барабана и строим эпюры изгибающих сил, изгибающих моментов.

Проверка долговечности подшипников

В качестве опор вала приняты одинаковые подшипники по ГОСТ 8882-15. Шариковые радиальные однорядные с уплотнением №180508 d=40мм — внутренний диаметр кольца подшипника.

13. Эквивалентная нагрузка:

$$P_{\mathfrak{I}} = V \cdot P_{r} \cdot k_{\mathfrak{I}} \cdot k_{\mathfrak{I}}, \tag{3.15}$$

гдеV=1 – вращаемое внутреннее кольцо подшипника;

 $P_r = R_2 = 626,8H -$ радиальная нагрузка;

 $k_6=1,2$ – коэффициентбезопасности (табл. 9.19) [3];

 k_T =1 – температурный коэффициент (температура до 100°).

14. Расчётная долговечность подшипника, млн.об.:

$$L = \left(\frac{C}{P_3}\right)^3. \tag{3.16}$$

15. Расчётная долговечность:

$$L_h = \frac{L \cdot 10^6}{60 \cdot n_{\tilde{o}}} \,. \tag{3.17}$$

Расчёт вала на прочность

Рассмотрим более нагруженное сечение А-А. Концентрация напряжений обусловлена посадкой подшипника.

По табл. 8.7 [3]
$$\frac{k_{\sigma}}{\xi_{\sigma}} = 4$$
 и $\frac{k_{\tau}}{\xi_{\tau}} = 0.6 \frac{k_{\sigma}}{\xi_{\sigma}} + 0.4 = 0.6 \cdot 4 + 0.4 = 2.8$,

 $гдеk_{\sigma}$ и k_{τ} – коэффициент концентрации нормальных и касательных напряжений;

 ξ_{σ} и ξ_{τ} – максимальный фактор для касательных и нормальных напряжений.

16. Осевой момент сопротивления сечения:

$$W = \frac{\pi \cdot d^3}{32} \,. \tag{3.18}$$

17. Амплитуда нормальных напряжений:

$$\sigma_{v} = \sigma_{\text{max}} = \frac{M}{W}, \qquad (3.19)$$

где $M=F_r\cdot 40=372\cdot 40=14880H\cdot мм - изгибающий момент;$

 σ_{m} =0 – т.к. отсутствует осевая нагрузка.

18. Момент сопротивления кручению:

$$W_k = \frac{\pi \cdot d^3}{16} \,. \tag{3.20}$$

19. Амплитуда и среднее напряжение цикла касательных напряжений:

$$\tau_{v} = \tau_{m} = \frac{T_{\delta}}{2 \cdot W_{k}}. \tag{3.21}$$

20. Коэффициент запаса прочности по касательным напряжениям:

$$S_{T} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\xi_{\tau}} \cdot \tau_{\upsilon} + \psi_{\tau} \cdot \tau_{m}}.$$
(3.22)

21. Результирующий коэффициента запаса прочности:

$$S = \frac{S_{\sigma} \cdot S_{\tau}}{\sqrt{S_{\sigma}^2 + S_{\tau}^2}}.$$
 (3.33)

Сечение Б-Б, концентрация напряжений обусловлена наличием шпоночной канавки. По табл. 8.14 [1] k_{σ} =2,15; k_{τ} =2,05; ξ_{σ} =0,85; ξ_{τ} =0,73.

22. Момент сопротивления кручению:

$$W_{k_{HETTO}} = \frac{\pi \cdot d^3}{16} - \frac{b \cdot t_1 \cdot (d - t_1)^2}{2d}, \qquad (3.34)$$

где b=10мм – ширина шпоночной канавки; $t_1=5$ мм – глубина шпоночной канавки.

23. Момент сопротивления изгиба:

$$W_{HETTO} = \frac{\pi \cdot d^3}{32} - \frac{b \cdot t_1 (d - t_1)^2}{2 \cdot d}.$$
 (3.35)

24. Амплитуда и среднее напряжение цикла касательных напряжений:

$$\tau_{v} = \tau_{m} = \frac{T_{\delta}}{2 \cdot W_{k_{VTNM}}}.$$
(3.36)

25. Амплитуда нормальных напряжений изгиба:

$$\sigma_{v} = \frac{M}{W_{HETTO}}. (3.37)$$

26. Коэффициент запаса прочности по нормальным напряжениям:

$$\delta_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\xi_{\sigma}} \cdot \sigma_{\upsilon} + \psi_{\sigma} \cdot \sigma_{m}}.$$
 (3.38)

27. Коэффициент запаса прочности по касательным напряжениям:

$$S_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\xi_{\tau}} \cdot \tau_{\upsilon} + \psi_{\tau} \cdot \tau_{m}}.$$
 (3.39)

28. Результирующий коэффициент запаса прочности:

$$S = \frac{S_{\sigma} \cdot S_{\tau}}{\sqrt{S_{\sigma}^2 + S_{\tau}^2}}.$$
 (3.40)

Проверка прочности шпоночных соединений.

Материал шпонок – сталь 45 нормализированная.

Напряжение смятия и условие прочности находим по формуле:

$$\sigma_{\scriptscriptstyle CM}^{\scriptscriptstyle MAX} = \frac{2 \cdot T_{\scriptscriptstyle \vec{o}}}{d(h - t_1)(l - b)} \le [\sigma_{\scriptscriptstyle CM}], \tag{3.40}$$

где $[\sigma_{cm}]$ =100÷120МПа – для Стали 45.

Пример расчёта

1. Мощность на валу вытяжного барабана:

$$N_{6} = 132,732 \cdot 0,91 \cdot 1,5 = 181,179 \text{ KBT};$$

2. Число оборотов на валу вытяжного барабана:

$$n_{\delta} = \frac{60 \cdot 1000 \cdot 0.91}{\pi \cdot 670} = 25,94.$$
 об/мин;

3. Угловая скорость на валу вытяжного барабана:

$$\omega_{\delta} = \frac{\pi \cdot 25,94}{30} = 2,716 \,\mathrm{c}^{-1};$$

4. Вращающий момент на валу вытяжного барабана:

$$T_{\sigma} = \frac{181.179}{2,716} = 66,708 \text{ H} \cdot \text{M};$$

Расчёт зубчато-ременной передачи и сил действующих на вал вытяжного барабана

5. Модуль, мм:

$$m = \frac{1}{\pi} = 0.318 \,\text{MM};$$

6. Делительные диаметры шкивов, мм:

$$d_5 = 66 \cdot 0.318 = 20.988 \,\mathrm{MM};$$

$$d_6 = 66 \cdot 0.318 = 20.988 \,\mathrm{MM};$$

7. Определяем межосевое расстояние при $L_p = Z_p = 66 -$ длинна ремня в шагах, мм:

$$a = \frac{1}{4} \left[66 - \frac{66 + 66}{2} + \sqrt{\left(66 - \frac{66 + 66}{2} \right)^2 - 8 \cdot \left(\frac{66 - 66}{2 \cdot \pi} \right)^2} \right] = 0 \text{ MM};$$

8. Определяем передаваемую окружную силу:

$$F_t = \frac{1.8}{0.006 \cdot 0.029} = 10340 \text{ H};$$

9. Скорость движения ремня, $\frac{M}{c}$:

$$v_p = \frac{2,716 \cdot 20,988}{2 \cdot 1000} = 0,029 \,\text{M/c};$$

10. Сила предварительного натяжения ветвей ремня, Н:

$$F_0 = 1.2 \cdot 38.1 \cdot 0.006 \cdot 0.91^2 = 0.25 \text{ H};$$

11. Находим силу F_r , действующую на вал вытяжного барабана и направленную по оси центров передачи:

$$F_r = 0.5 \cdot F_0 \cdot F_t$$
.

12. Определяем реакции в опорах вала вытяжного барабана:

$$\sum M_2 = 0,$$

$$F_n(73+31) - R_1 \cdot 73 + F_r \cdot 40,$$

$$R_1 = \frac{F_n(73+31) + F_r \cdot 40}{73},$$

$$\sum M_1 = 0,$$

$$R_2 = \frac{F_n \cdot 31 + F_r(40+73)}{73},$$

$$R_2 = \frac{120 \cdot 31 + 372 \cdot 113}{73} = 626,8H.$$

Проверка: $F_i - R_1 + R_2 - F_r = 0$.

Плечи в формулах приняты из компоновки вала. Вычерчиваем расчётную схему вала вытяжного барабана и строим эпюры изгибающих сил, изгибающих моментов.

Проверка долговечности подшипников

В качестве опор вала приняты одинаковые подшипники по ГОСТ 8882-15. Шариковые радиальные однорядные с уплотнением №180508 d=40мм — внутренний диаметр кольца подшипника.

1. Эквивалентная нагрузка:

$$P_{9} = 1.626, 8.1, 2.1 = 752, 16$$

2. Расчётная долговечность подшипника, млн.об.:

$$L = \left(\frac{16800}{752,16}\right)^3 = 11140$$
 млн. об;

3. Расчётная долговечность:

$$L_h = \frac{11140 \cdot 10^6}{60 \cdot 25,94} = 7158000.$$

Расчёт вала на прочность

4. Осевой момент сопротивления сечения:

$$W = \frac{\pi \cdot 40^3}{32} = 6283.$$

5. Амплитуда нормальных напряжений:

$$\sigma_v = \sigma_{\text{max}} = \frac{14880}{6283} = 2,368$$
.

6. Момент сопротивления кручению:

$$W_k = \frac{\pi \cdot 40^3}{16} = 12570.$$

7. Амплитуда и среднее напряжение цикла касательных напряжений:

$$\tau_{_{D}} = \tau_{_{m}} = \frac{66,708}{2 \cdot 12570} = 0,0027$$
.

8. Коэффициент запаса прочности по касательным напряжениям:

$$S_T = \frac{0,645}{\frac{2,05}{0,73} \cdot 0,0027 + 0,65 \cdot 0,0027} = 70.302.$$

9. Результирующий коэффициента запаса прочности:

$$S = \frac{0,003 \cdot 0,301}{\sqrt{0,003^2 + 0,301^2}} = 0,003.$$

10. Момент сопротивления кручению:

$$W_{k_{HETTO}} = \frac{\pi \cdot 40^3}{16} - \frac{10 \cdot 1 \cdot (40 - 5)^2}{2 \cdot 40} = 12410$$
,

11. Момент сопротивления изгиба:

$$W_{HETTO} = \frac{\pi \cdot 40^3}{32} - \frac{10 \cdot 1(40 - 5)^2}{2 \cdot 40} = 6130.$$

12. Амплитуда нормальных напряжений изгиба:

$$\sigma_v = \frac{14880}{6130} = 2,427$$
.

13. Напряжение смятия и условие прочности находим по формуле:

$$\sigma_{\rm cm}^{\rm max} = \frac{2 \cdot 66,708}{40 \cdot (10 - 5)(66 - 10)} = 0,012 \le \left[\sigma_{\rm cm}\right],$$

Практическая работа №4 Расчет волокодержателя волочильного стана со скольжением

Цель работы: рассчитать волокодержатель волочильного стана со скольжением на прочность.

Основные теоретические сведения

В данной практичесской работе производится модернизация волокодержателя, связанная с изменением диаметра волоки. Чтобы убедится в его надежности, произведем расчет на изгиб и кручение волокодержателя, а так же излом болтовых соединений. Так как при модернизации стана NT 12.6, волокодержатель меняется в начале маршрута волочения, то расчет волокодержателя проводим в данном отрезке маршрута волочения.

Для того чтобы рассчитать волокодержатель, представим его в виде бруса с защемленным концом (рисунок 4.1), нагруженным изгибающими силами волочения и крутящими моментами, создаваемыми этими силами.

Практическая часть

1. Изгибающим моментом называется результирующий момент нормальных внутренних сил, возникающих в поперечном сечении бруса, взятый относительно нейтральной оси:

$$M_{use} = P_1 \cdot l_1 + P_2 \cdot l_2 + P_3 \cdot l_3 + P_4 \cdot l_4 + P_5 \cdot l_5 + P_6 \cdot l_6 \tag{4.1}$$

где P_{1-23} – силы волочения маршрута 1-7 волоки, H;

 l_{1-7} — расстояние от места приложения силы до основания волокодержателя, м.

2. Крутящим моментом называется результирующий момент относительно продольной оси бруса, внутренних касательных сил, возникающих в его поперечном сечении:

$$M_{KP} = P_1 \cdot a_1 + P_2 \cdot a_2 + P_3 \cdot a_3 + P_4 \cdot a_4 + P_5 \cdot a_5 + P_6 \cdot a_6 \tag{4.2}$$

где P_{1-7} – силы волочения маршрута 1-7 волоки, H;

 a_{1-7} — расстояние от места приложения силы до осиволокодержателя, м.

Так как самый нагруженный волокодержатель третьего вала, расчет ведем по нему.

3. Условие прочности бруса:

где $[\sigma]$ - предельно допускаемые напряжения (для чугуна $[\sigma] = 35$ МПа);

 $M_{\text{экв}}$ – эквивалентный момент, рассчитываемый по формуле:

$$M_{_{9K6}} = \sqrt{M_{_{u32}}^2 + M_{_{KP}}^2}, \qquad (4.4)$$

 \mathbf{W}_{x} – осевой момент сопротивления. Для прямоугольника:

$$W_x = \frac{b \cdot h^2}{7} \tag{4.5}$$

где h, b – стороны сечения.

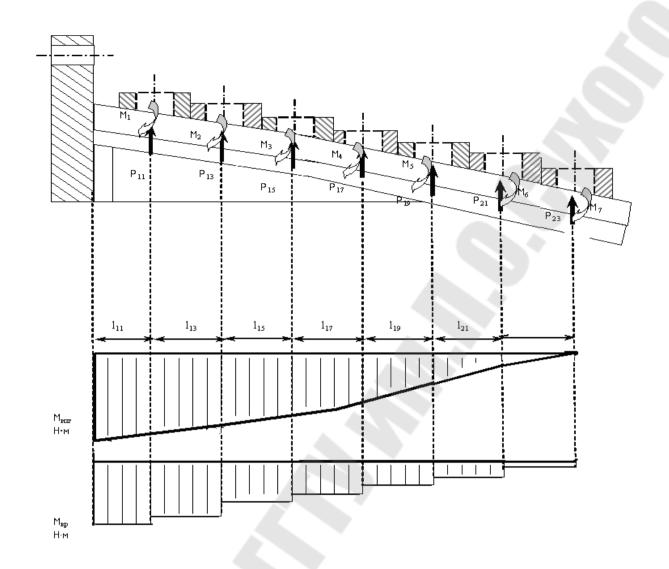


Рисунок 4.1 – Схема и эпюры нагружения волокодержателя

Расчет соединения, включающего группу болтов, сводится к определению наиболее нагруженного болта. Затем рассчитывают прочность этого болта. При расчете соединения, сдвигающего детали в стыке силу заменяют такой же силой, приложенной в центре тяжести стыка, и моментом $T = F_\Sigma \cdot l$. Момент и сила стремятся повернуть и сдвинуть волокодержатель. Нагрузка от силы F_Σ распределяется по болтам равномерно: $F_F = F_\Sigma/z$.

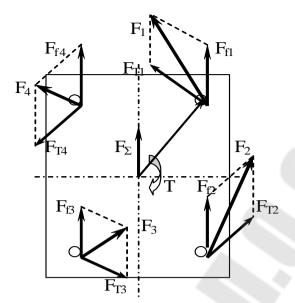


Рисунок 4.2 – Схема распределения сил крепёжной плиты

4. Условие равновесия:

$$T = 4 \cdot F_{T1} \cdot r_1 \tag{4.6}$$

 $rger_1$ – внутренний диаметр обоймы, м.

$$F_{T1} = \frac{T}{4 \cdot r_1}, \tag{4.7}$$

Суммарная нагрузка каждого болта равна геометрической сумме сил F_T и F_F . За расчетную принимают наибольшую из суммарных нагрузок. Нагрузка воспринимается силами трения в стыке, для образования которых болтам дают соответствующую затяжку, F_{max} =392H.

5. Необходимая затяжка болтов:

$$F_{_{3am}} = \frac{K \cdot F_{\text{max}}}{f} \tag{4.8}$$

где K = 1,3 - 2,0 - коэффициент запаса;

 F_{max} – сила, приходящаяся на наиболее нагруженный болт;

f – коэффициент трения (для сухих чугунных и стальных поверхностей f = 0,15 - 0,2).

При контролируемой затяжке болта M10 $[F_{3at}] = 7200 \text{ H}.$

6. Эквивалентная нагрузка на наиболее нагруженный болт определится по формуле:

$$\sigma_{_{3KG}} = \frac{1.3 \cdot F_{_{3AM}}}{\left(\frac{\pi}{4}\right) \cdot d_1^2} \le (\sigma) \tag{4.9}$$

где $\sigma_{_{9KB}}$, $[\sigma] = 200 \ M\Pi a$ — эквивалентная и допускаемая нагрузка на болт;

d – внутренний диаметр резьбы (для резьбы M10 составляет 8,5 мм).

Условия выполняются. Волокодержатель и болтовые соединения станины выдерживают нагрузки.

Пример расчёта

1. Определяем изгибающий момент:

$$M_{\scriptscriptstyle u32} = 716 \cdot 0.053 + 698 \cdot 0.0695 + 625 \cdot 0.086 + 556 \cdot 0.01065 = 199.4 \ H \cdot \text{M} \ .$$

2. Определяем крутящий момент:

$$M_{KD} = 716 \cdot 0.0316 + 698 \cdot 0.0363 + 625 \cdot 0.0417 + 556 \cdot 0.05 = 101.825 \ H \cdot M$$
.

3. Эквивалентный момент:

$$M_{\text{\tiny 2KG}} = \sqrt{199,423^2 + 101,825^2 = 223,915} \ H \cdot \text{M} .$$

4. Осевой момент сопротивления:

$$W_x = \frac{0.063 \cdot 0.074^2}{4} - \frac{0.056 \cdot 0.034^2}{4} = 6.708 \cdot 10^{-5} \ H \cdot M$$

5. Условие прочности бруса:

$$\sigma_{\text{\tiny 9KB}} = \frac{223,915}{6,708 \cdot 10^{-5}} 3,338 = 3,338 \, M\Pi a;$$

6. Условие равновесия:

$$T = 95.235 \ H \cdot M$$
.

7. Необходимая затяжка болтов:

$$F_{_{3am}} = \frac{2 \cdot 618.414}{0.18} = 6871.3 \, H.$$

8. Эквивалентная нагрузка на наиболее нагруженный болт:

$$\sigma_{_{9KG}} = \frac{1.3 \cdot 6871.3}{\left(\frac{\pi}{4}\right) \cdot 8.5^2} = 157.417 \, M\Pi a \le [200]$$

Условия выполняются. Волокодержатель и болтовые соединения станины выдерживают нагрузки.

Практическая работа №5 Расчёт рихтовального устройства

Цель работы: Рассчитать рихтовальное устройство

Основные теоретические сведения

Рихтовальное устройство (рихтовка) состоит из двух металлических плит одна из которых подвижная, с установленными на них роликами расположенными во взаимно перпендикулярных плоскостях. Прошедшая рихтовку проволока, направляющим роликом подается на катушку с готовой продукцией.

Практическая часть

1. Расчет моментов рихтовального устройства

Расчет моментов, необходимых для изгибания во время рихтовки.

Схема расчета моментов рихтовки приведена на рисунке 2.

Значение изгибающего момента можно определить по формуле:

$$M_{min} = \sigma_{\rm m} \cdot W, \tag{5.1}$$

где σ_m — временное сопротивление материала, H/мм ²; W— момент сопротивления площади сечения проволоки, мм³,

$$W = 0.1 \cdot d^3, \tag{5.2}$$

где d – диаметр проволоки, мм.

При определении изгибающих моментов в сечении проволок при рихтовке принято считать, что значения моментов, изгибающих проволоку против второго и третьего роликов, равны и определяются по формуле:

$$M_2 = M_3 = \sigma_{\rm m} \cdot S, \tag{5.3}$$

где S – пластический момент сопротивления, мм 3 ,

$$S = 0.167 \cdot d^3, \tag{5.4}$$

А значения моментов, изгибающих проволоку в сечениях против четвертого ролика и всех последующих, могут определятся по формуле:

$$M_4 = M_5 = \dots = M_{n-1} = \sigma_{\rm m} \cdot W,$$
 (5.5)

2. Расчет усилий рихтовального устройства

Зная моменты можно определить силы, действующие в сечении проволоки на ролики. Для этого рассмотрим сечение 2-2:

Схема расчета момента рихтовки приведена на рисунке 5.1.

$$P_1 = (2 \cdot M_2)/t = (2 \cdot \sigma_{\rm m} \cdot S)/t,$$
 (5.6)

где t – расстояние между осями роликов, t=16 мм (подшипник 80064 диаметром 16 мм).

Рассмотрим сечение 3-3:

$$-P_1 \cdot t + P_2 \cdot t/2 = M_3, \tag{5.7}$$

Рассмотрим сечение 4-4:

$$P_3 = (M_4 + P_2 \cdot t - P_1 \cdot (3 \cdot t/2)) \cdot (2/t)$$
 ,(5.8)

Рассмотрим сечение 5-5:

$$P_4 = (M_5 + P_1 \cdot (4 \cdot t/2) - P_2 \cdot (3 \cdot t/2 + P_3 \cdot t)) \cdot (2/t), \tag{5.9}$$

Рассмотрим сечение 6-6:

$$P_5 = (M_6 - P_1 \cdot (5 \cdot t/2) + P_2 \cdot (4 \cdot t/2) - P_3 \cdot (3 \cdot t/2) + P_4 \cdot t) \cdot 2/t, \tag{5.10}$$

Рассмотрим сечение 7-7:

$$P_6 = (M_7 + P_1 \cdot (6 \cdot t/2) - P_2 \cdot (5 \cdot t/2) + P_3 \cdot (4 \cdot t/2) - P_4 \cdot (3 \cdot t/2) + P_5 \cdot t) \cdot (2/t), (5.11)$$

Рассмотрим сечение 8-8:

$$P_7 = (M_8 - P_1 \cdot (7 \cdot t/2) + P_2 \cdot (6 \cdot t/2) - P_3 \cdot (5 \cdot t/2) + P_4 \cdot (4 \cdot t/2) - P_5 \cdot (3 \cdot t/2) + P_6 \cdot t) \cdot 2/t, (5.12)$$

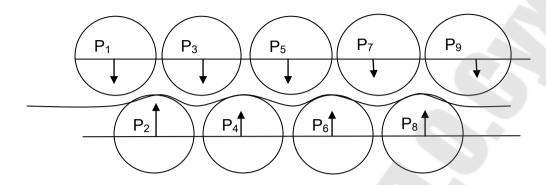


Рисунок 5.1 –Схема расчета моментов рихтовки

Наибольшее давление на ось ролика рихтовального устройства возникает в сечении 3-3, поэтому проверку производим в этом сечении.

3. Расчет оси рихтовального устройства

Прочность оси ролика считается обеспеченной при условии $s \ge [s]$,где [s]=2,5 — допускаемая величина коэффициента запаса прочности.

Коэффициент запаса прочности в опасном сечении определяется по формуле:

$$S = \frac{\left(s_{\sigma} \cdot s_{\tau}\right)}{\sqrt{s_{\sigma}^{2} \cdot s_{\tau}^{2}}},\tag{5.12}$$

где s_{σ} — коэффициент запаса прочности по нормальным напряжениям.

$$S_{\sigma} = \frac{\sigma_{-1}}{((\frac{K_{\sigma}}{\varepsilon_{\sigma}} \cdot \beta) \cdot \sigma_{V} + \psi_{\sigma} \cdot \sigma_{m}},$$
(5.13)

где σ_{-1} - предел выносливости стали при симметричном цикле изгиба, H/mm^2 .

$$\sigma_{-1} = 0.43 \cdot \sigma_{b},$$
 (5.14)

где σ_b – предел прочности стали.

 K_{σ} — эффективный коэффициент концентрации нормальных напряжений, K_{σ} =2,35; ψ_{σ} = 0,15; ϵ_{σ} = 0,79.

 β =1 – коэффициент, учитывающий влияние шероховатости поверхности;

 σ_v — амплитуда цикла нормальных напряжений, равная наибольшему напряжению изгиба σ_u в нормальном сечении;

 σ_{m} — среднее напряжение цикла нормальных напряжений, при симметричном цикле $\sigma_{m}{=}0;$

 s_{τ} — коэффициент запаса прочности по касательным напряжениям;

$$\sigma_{V} = M_{3}/W, \qquad (5.15)$$

где W – осевой момент сопротивления,

$$W = \frac{\pi d^3}{32},\tag{5.16}$$

$$S_{\tau} = \frac{\tau_{-1}}{(\frac{K_{\tau}}{\varepsilon_{1}} \cdot \beta) \cdot \tau_{V} + \psi_{\tau} \cdot \tau_{m}},$$
 (5.17)

где τ_{-1} – предел выносливости стали при симметричном цикле кручения, МПа

$$\tau_{-1} = 0.58 \cdot \sigma_{-1},$$
 (5.18)

 K_{τ} – эффективный коэффициент концентрации касательных напряжений, K_{τ} =1,45; ϵ_{τ} = 0,67; ψ_{τ} = 0,1.

Полярный момент сопротивления, мм³:

$$W_p = 2 \cdot W, \tag{5.19}$$

Амплитуда и среднее напряжение цикла касательных напряжений:

$$\tau_{\rm v} = \tau_{\rm m}$$

Пример для расчёта

Исходные данные: $\sigma_{\rm m} = 1096$ H/мм²; d = 6.5 мм.

1. Расчет моментов рихтовального устройства Значение изгибающего момента определим по формуле(5.1):

$$M_{min} = 1096.0,0022 = 2,406 \text{H} \cdot \text{MM};$$

где Wопределим по формуле (5.2):

$$W = 0.1 \cdot 0.28^3 = 0.0022 \text{mm}^3$$
;

При определении изгибающих моментов в сечении проволок при рихтовке принято считать, что значения моментов, изгибающих проволоку против второго и третьего роликов, равны и определяются по формуле(5.3):

$$M_2 = M_3 = 1096 \cdot 0,0036 = 4,018 \text{H} \cdot \text{MM};$$

где Ѕопределим по формуле (5.4):

$$S = 0.167 \cdot 0.28^3 = 0.0036 \text{mm}^3;$$

А значения моментов, изгибающих проволоку в сечениях против четвертого ролика и всех последующих, определим по формуле(5.5):

$$M_4 = M_5 = M_6 = M_7 = M_8 = M_{min} = 2,406 \text{H} \cdot \text{MM};$$

2. Расчет усилий рихтовального устройства Усилие в сечении 2-2 определим по формуле (5.6):

$$P_1 = (2.4,018)/16 = 0,502H;$$

Усилие в сечении 3-3 определим по формуле (5.7):

$$P_2 = (4.018 + 0.502 \cdot 16) \cdot 2/16 = 1.507 \text{ H};$$

Усилие в сечении 4-4 определим по формуле (5.8):

$$P_3 = (2,406+1,507\cdot16-0,502\cdot(3\cdot16/2))\cdot(2/16) = 1,807 \text{ H};$$

Усилие в сечении 5-5 определим по формуле (5.9):

$$P_4$$
=(2,406+0,502·(4·16/2)-1,507·(3·16/2+1,807·16))·(2/16) = -7,657 H;

Усилие в сечении6-6 определим по формуле (5.10):

$$P_5$$
= (2,406-0,502·(5·16/2)+1,507·(4·16/2)-1,807·(3·16/2)+(-7,657)·16)·2/16 = -16,92 H;

Усилие в сечении 7-7 определим по формуле (5.11):

$$P_6 = (2,406+0,502\cdot(6\cdot16/2)-1,507\cdot(5\cdot16/2)+1,807\cdot(4\cdot16/2)-(-7,657)\cdot(3\cdot16/2)+(-16,92)\cdot16)\cdot(2/16) = -7,859 \text{ H};$$

Усилие в сечении8-8 определим по формуле (5.12):

$$P_7$$
=(2,406-0,502·(7·16/2)+1,507·(6·16/2)-1,807·(5·16/2)+(-7,657)·(4·16/2)-(-16,92)·(3·16/2)+(-7,859)·16)·2/16 = 1,203 H.

3. Расчет оси рихтовального устройства

Коэффициент запаса прочности в опасном сечении определяется по формуле (5.12):

$$S = \frac{(178,651 \cdot 0,442)}{\sqrt{178,651^2 \cdot 0,442^2}} = 1,$$

где s_{σ} определяется по формуле (5,13):

$$S_{\sigma} = \frac{1290}{((\frac{2,35}{0,79} \cdot 1) \cdot 1830 + 0,18 \cdot 0)} = 178,651M\Pi a,$$

где σ_{-1} определяется по формуле (5.14):

$$\sigma_{-1}=0.43\cdot3000=1290 \text{ M}\Pi a$$

где σ_b = 3000 МПа, где σ_v определяется по формуле (5.15):

$$\sigma_{\rm V} = 4,018/0,0021 = 1830 M\Pi a$$

где Wопределяется по формуле (5.16):

$$W = \frac{\pi \cdot 0.28^3}{32} = 0.0021 \text{mm}^3,$$

где S_{τ} определяется по формуле (5.17):

$$S_{\tau} = \frac{748,2}{(\frac{1,45}{0,67} \cdot 1) \cdot 748,2 + 0,1 \cdot 748,2} = 0,442M\Pi a,$$

где τ_{-1} определяется по формуле (5.18):

$$\tau_{-1} = 0.58 \cdot 1290 = 748.2 \text{ M}\Pi a,$$

Полярный момент сопротивления определим по формуле (5.19):

$$W_p = 2.0,0021 = 0,00431 \text{ mm}^3.$$

Практическая работа №6 Расчет на прочность преформирующе-рихтовального устройства

Цель работы: Рассчитать на прочность преформирующе-рихтовальное устройство

Основные теоретические сведения

После модернизации стана NT 25.6 на него было установлено преформирующе-рихтовальное устройство. Наибольшую нагрузку испытывает ось (рисунок 6.1) и подшипник.

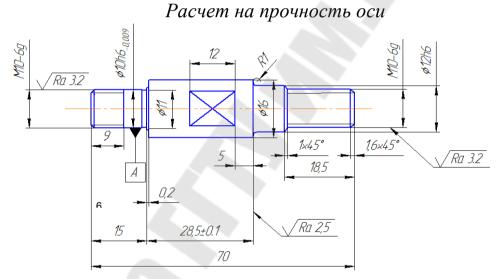


Рисунок 6.1 – Схема оси

Практическая часть

Для расчета необходимо определить силы, действующие на вал (рисунок 6.2).

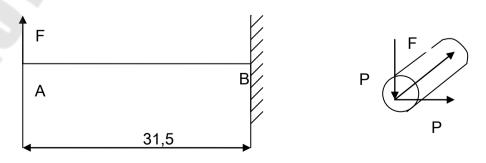


Рисунок 6.2 – Схеманагружения оси

Точка А – точка посадки ролика, точка приложения силы F,Н:

$$F = \sqrt{P^2 + B^2} \,, \tag{6.1}$$

где P — усилие волочения на последнем переходе.

ТочкаВ – точка посадки оси в корпус крепления.

Расстояния между точками определяются конструктивными особенностями вала.

Определяем изгибающий момент в точке А и В.

$$M_u^A = F \cdot 0 = 0, \tag{6.2}$$

Строим эпюру изгибающих моментов (рисунок 6.3).

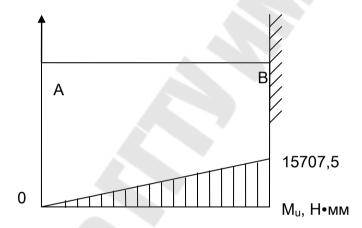


Рисунок 6.3 – Эпюра изгибающих моментов

Проверяем вал на изгиб в точке В.

$$\sigma_{\mathbf{u}} = \frac{M_{u}}{W_{oc}} \le \left[\sigma_{\mathbf{u}}\right],\tag{6.3}$$

$$\left[\sigma_{\mathbf{u}}\right] = \frac{\sigma_{\mathbf{T}}}{\left[S\right]},\tag{6.4}$$

где $\sigma_{\scriptscriptstyle T}$ - предел текучести металла, сталь 45, $\sigma_{\scriptscriptstyle T}$ =355 МПа.

Определяется осевой момент сопротивления изгибу W_{oc} , мм³:

$$W_{oc} = \frac{\pi \cdot d^3}{32},\tag{6.5}$$

Проверяем вал на срез в точке В.

$$\tau = \frac{F}{A} \le [\tau],\tag{6.6}$$

где A — площадь поперечного сечения,

$$A = \frac{\pi d^2}{4},\tag{6.7}$$

где $[\tau] = 0,6 \cdot [\sigma] M\Pi a,$

Определяем нагрузку в точке В.

$$\sigma_{\text{3KB}} = \sqrt{\sigma^2 + 4\tau^2} \le [\sigma], \tag{6.8}$$

Расчет подшипника

Нагруженным является подшипник типа 80200, имеющий следующие характеристики:

- внутренний диаметр d = 10 мм;
- наружный диаметр D=30 мм;
- ширина B = 9 мм;
- динамическая грузоподъемность C = 5.9 кH;

Определяется эквивалентная динамическая нагрузка R_e , H:

$$R_{e} = V \cdot F \cdot k_{\mathcal{I}} \cdot k_{t}, \tag{6.9}$$

где V – коэффициент вращения, V = 1,0;

 k_{∂} – коэффициент, учитывающий динамичность внешней нагрузки, k_{∂} = 1,3;

 k_t – коэффициент, учитывающий влияние температуры подшипникового узла, $k_t = 1,0$.

Определяем расчетную долговечность L_{hp} , часов:

$$L_{hp} = \frac{10^6}{60 \times n} \times \left(\frac{C}{R_e}\right)^p \ge L_h, \tag{6.10}$$

где p – коэффициент, для шарикоподшипников p=3; n – частота вращения вала, об/мин.

$$n = \frac{30\varpi}{\pi},\tag{6.11}$$

$$\varpi = \frac{V}{R},\tag{6.12}$$

где ω- угловая скорость вращения подшипника;

V - линейная скорость волочения проволоки на последнем переходе;

R - радиус подшипника.

Пример для расчёта

Исходные данные: P = 99.674 H; B = 13; d = 0.28 мм.

Точка A — точка посадки ролика, точка приложения силы Fопределяется по формуле (6.1):

$$F = \sqrt{99,674^2 + 13^2} = 100,518H$$

Определяем изгибающий момент в точке А и В по формуле (6.2):

$$M_u^A = 100,518 \cdot 0 = 0$$

Определяется осевой момент сопротивления изгибу $W_{\rm oc}$ по формуле (6.5):

$$W_{oc} = \frac{\pi \cdot 0.28^3}{32} = 0.0021 \text{Mm}^3,$$

Проверяем вал на срез в точке В по формуле (6.6):

$$\tau = \frac{100,518}{0.062} = 1621M\Pi a,$$

где Аопределим по формуле (6.7):

$$A = \frac{\pi \cdot 0.28^2}{4} = 0.062 \text{ mm}^2,$$

Определяем нагрузку в точке В по формуле (6.8).

$$\sigma_{3KB} = \sqrt{3000^2 + 4 \cdot 1621^2} = 3490M\Pi a$$

Расчёт подшипника

Определим эквивалентную динамическую нагрузку R_e по формуле (6.9):

$$R_{\rho} = 1.100,518.1,3.1 = 130,674H$$
,

Определяем расчетную долговечность L_{hp} по формуле (6.10):

$$L_{hp} = \frac{10^6}{60 \times 6{,}341} \times \left(\frac{5900}{130{,}674}\right)^3 = 2419000000$$
ч,

где п определим о формуле (6.11) об/мин.

$$n = \frac{30 \cdot 0,664}{\pi} = 6,341$$
об / мин,

где σ определим по формуле (6.12):

$$\omega = \frac{13,286}{20} = 0,664.$$

Список рекомендуемой литературы:

- 1. Горловский, М. Б. Справочник волочильщика проволоки / М. Б. Горловский, В. Н. Меркачев. Москва : Металлургия, 1993. 336 с.
- 2. Коковихин, Ю. И. Технология сталепроволочного производства: учебник для вузов / Ю. И. Коковихин. Киев, 1995. 608 с.
- 3. Юхвец, И. А. Волочильное производство / И. А. Юхвец. Москва : Металлургия, 1964. 374 с.
- 4. Битков, В. В. Технология и машины для производства проволоки / В. В. Битков. Екатеринбург : УрО РАН, 2004.
- 5. Горловский М.Б. Оборудование и инструмент для волочения стальной проволоки. М.: Металлургия, 1960. -260с.
- 6. Марьин Б.Н. Теория и технология волочения: учеб.пособие / Б.Н. Марьин, С.Б. Марьин, В.В. Куриный, Е.А. Тютина. 2-е изд., доп. Комсомольск-на-Амуре: ГОУВПО «КнАГТУ», 2006. 85 с.
- 7. Технология сталепроволочного производства: Учебник для Вузов/Коковихин Ю.И. Киев, 1995. 608с.
- 8. Производство низкоуглеродистой проволоки: Учебник/ Коковихин Ю.И., Пинашина В.А., Буравлев И.Б. К.: ИСДО, 1995. 328с.
- 9. Битков В.В. Технология и машины для производства проволоки. Екатеринбург: УрО РАН, 2004.
- 10. Волочильное производство / Юхвец И.А. М.: Металлургия, 1964.- 374с.
- 11. Волочильный инструмент/ Берин И.Ш., Днестровский Н.З. М.: Металлургия, 1971. 174с.
- 12. Волочильщик проволоки. Красильников Л.А., Лысенко А.Г. Учеб. пособие для СПТУ.- 3-е изд., перебраб. и доп. М.: Металлургия, 1987. -320 с.
- 13. Производство метизов / Шахпазов Х.С., Недовизий И.Н., Ориничев В.И. и др. М.: Металлургия, 1977. 391с.
- 14. Производство стальных калиброванных прутков/ Шефтель Н.И. Металлургия, 1970 432 с.
- 15. Когос А.М. Механическое оборудование волочильных и лентопрокатных цехов 3-е изд. -Москва : Металлургия, 1980. 312с.

- 16. Анурьев В.И.. Справочник конструктора машиностроителя. Изд. 8-е в 3-х тт. М.: Машиностроение, т. 2, 2001.
- 17. Целиков А.И., Полухин П.И. и др. Машины и агрегаты металлургических заводов, Т.З. М.: Металлургия, 1988.- 438 с.

Авсейков Сергей Владимирович

ОБОРУДОВАНИЕ ВОЛОЧИЛЬНЫХ ЦЕХОВ

ПРАКТИКУМ по одноименному курсу для студентов специальности 1-42 01 01 «Металлургическое производство и материалообработка (по направлениям)», направления специальности 1-42 01 01-02 «Металлургическое производство

«металлургическое производство и материалообработка (материалообработка)», специализации 1-42 01 01-02 01 «Обработка металлов давлением» дневной и заочной форм обучения

Подписано к размещению в электронную библиотеку ГГТУ им. П. О. Сухого в качестве электронного учебно-методического документа 22.11.16.

Рег. № 90E.

http://www.gstu.by