ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ РЕЖИМОВ ВОССТАНОВЛЕНИЯ ОКАЛИНЫ

Т. С. Бахтарёва

Гомельский государственный технический университет имени П. О. Сухого, Беларусь

Научный руководитель Л. Е. Ровин

Все возрастающее накопление железосодержащих отходов, удорожание энергоресурсов и шихтовых, особенно доменных, материалов, ужесточение природоохранных нормативов приводят к необходимости поиска экономичных адаптированных к условиям Республики Беларусь способов и оборудования для переработки и возврата в производство (рециклинга) металлоотходов. К их числу относятся стружка, окалина, мелкий низкосортный скрап, шламы, проволока и т. п.

Точная оценка количества образующихся и накопленных отходов вряд ли возможна, однако ориентировочные оценки позволяют получить величину вновь образующихся отходов, равную не менее 250–300 тыс. тонн в год. Только на БМЗ собирается более 40 тыс. тонн окалины и 17 тыс. тонн аспирационной электропечной пыли, около 40 тыс. тонн низкосортного скрапа.

На кафедре «Машины и технология литейного производства» проведены исследования по определению оптимальных режимов восстановления окалины.

Исходными материалами для проведения исследований были окалина, образующаяся на БМЗ, содержащая не менее 75 % железа, кокс литейный КЛ-2 (из каменного угля) или графит, известь и алюминий. При проведении исследований навеска восстанавливаемого материала (окалины) смешивалась с восстановителем (графитом либо коксом (от 15 до 50 % от массы окалины)), добавлялись известь или алюминий (1–3 % от массы материала). Подготовленные образцы помещались в печь марки SNOL 6,7/1300. Температура нагрева образцов варьировалась в пределах 900–1300 °С. Время пребывания материала в печи составляло от 30 до 90 мин. После извлечения образцов они отделялись от восстановителя и взвешивались. Потеря массы при этом составляла от 1,3 до 31,4 %. Химический анализ образцов был проведён на спектрометре SP v 1.53. Химический состав образцов и наиболее оптимальные условия восстановления приведены в табл. 1 и 2. Восстановленный материал по химическому составу аналогичен доменному чугуну (С = 3,9–4,4 %, S < 0,03 %, P < 0,08 %, Si = 1,2–1,6 %, Mn – до 0,3 %).

Проведённые исследования показали, что восстановленная окалина имеет высокую степень металлизации и может использоваться вместо дорогостоящего передельного чугуна.

Таблица 1

Химический состав образцов

Эл-т, %	Fe	С	Cu	S	P	Si	Mn	Cr	Al
№ образца						1			
1	94,7	4,38	0,173	0,0271	0,0223	0,3	0,201	0,09	-
2	95,1	4,29	0,13	0,032	0,013	0,0859	0,2	0,05	-
3	94,8	4,13	0,14	0,033	0,021	0,084	0,31	0,09	<0,0049
4	95,3	3,88	0,15	0,017	0,012	0,022	0,23	0,09	-
5	94,94	4,52	0,17	0,017	0,056	0,04	0,15	0,03	<0,005

Таблица 2

Условия восстановления

№	Мате- риал	Темпера тура нагре- ва, °С	Масса материа- ла до нагрева, г	Масса кокса, %/г	Масса алюми- ния, г	Масса извести, г	Время выдержки, мин	Масса материала после нагрева, г	Потеря массы, %/г
1	Окалина	1300	50	50/25 (графит)	() () = ()	1	60	35,5	29/14,5
2	Окалина	1300	50	40/20	-	1	60	36	28/14
3	Окалина	1300	50	40/20	1	m	60	35,5	29/14,5
4	Окалина 1300		50	40/20	7.15	2	60	35	30/15
5	Окалина	1300	50	40/20	2	1110000	60	35	30/15