УДК 621.38

ЗАВИСИМОСТЬ ГИСТЕРЕЗИСА ПРОПОРЦИОНАЛЬНЫХ МАГНИТОВ ОТ ПАРАМЕТРОВ УПРАВЛЯЮЩЕГО НАПРЯЖЕНИЯ

В. А. КАРПОВ, А. В. КОВАЛЕВ, А. В. КАРПОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение

В современных пропорциональных гидравлических системах с электронным управлением ключевым элементом, связывающим электрический сигнал управления и расход рабочей жидкости через гидрораспределитель, является пропорциональный магнит (ПМ). В нем происходит преобразование электрической энергии в механическую, в виде осевого перемещения якоря ПМ, механически связанного с золотником гидроаппарата. Таким образом, при изменении значения тока через обмотку возбуждения ПМ изменяется положение золотника, ведущее к изменению площади проходного сечения и, как результат, к изменению расхода гидрожидкости через гидроаппаратуру. Естественно, что от качества ПМ во многом зависит качество функционирования пропорциональной гидросистемы.

В идеальном случае в ПМ должно соблюдаться соотношение

$$F = kI$$

где F — сила, развиваемая ПМ при токе I, протекающего через обмотку возбуждения; k — коэффициент пропорциональности.

Так, для ПМ типа ПЭМ8 [1], при номинальном токе $I_{\rm H}$ =1 A, номинальное усилие, развиваемое ПМ, $F_{\rm H}$ = 70 H (7 кг). Соответственно

$$k = F_{\rm H} / I_{\rm H} = 70/1 = 70 \text{ H/A}.$$

Такое соотношение соблюдается в области перемещений, называемой рабочим ходом якоря Δx . Для ПЭМ8 Δx составляет 3 мм. На рис. 1, a схематично представлено устройство ПМ. На рис. 1, δ представлены его характеристики при различных токах обмотки возбуждения.

Таким образом, при изменении тока I через обмотку ПМ в диапазоне рабочего хода Δx подпружиненного якоря, соблюдаются соотношения:

$$F = cx$$
; $kI = cx$; $x = \frac{k}{c}I$,

где c — жесткость пружины.

То есть перемещение x якоря пропорционально значению тока I, протекающего по обмотке ПМ. В действительности, за счет наличия осевых подшипников скольжения (позиция 3 на рис. 1, a) при движении якоря существует сила трения F_{TP} , зависящая от конструктивных особенностей и качества и изготовления магнита. Поскольку сила трения всегда направлена против движения якоря, то в характери-

стике F(x) (при I= const) ПМ присутствует гистерезис. При выдвижении якоря $F_{\rm TP}$ складывается с силой упругости пружины, а при обратном ходе якоре сила трения вычитается из силы упругости пружины. В результате тяговая характеристика ПМ выглядит так, как это отображено на рис. 2, по которой можно определить гистерезис ПМ следующим образом:

$$\sigma = \frac{1}{2} \cdot \frac{\Delta F}{(F_{11} + F_{12})} 100 \%,$$

где ΔF — максимальная разность между силой, развиваемой при выдвижении F_{11} и втягивании F_{12} .

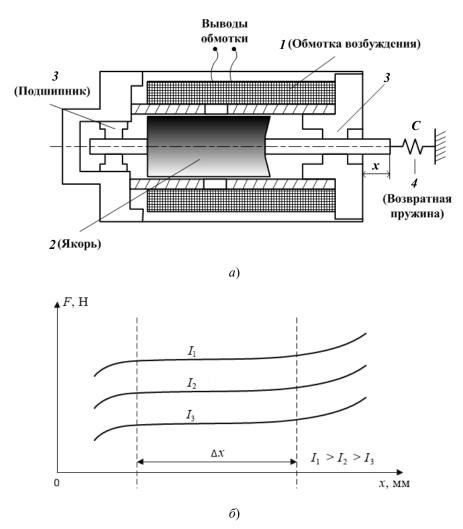
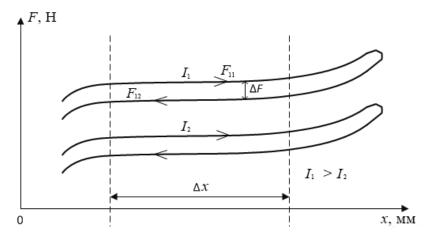



Рис. 1. Устройство ПМ и его типовые характеристики

Например для ПЭМ8 значение σ составляет не более 7 % для обычного исполнения и не более 4 % для исполнения повышенной точности.

Для уменьшения гистерезиса кроме конструктивных мероприятий используют и схемные решения. В теории автоматического управления такой подход называется вибрационная линеаризация [2], сущность которой заключается в придании управляющему воздействию дополнительных колебаний, амплитуда которых соизмерима с силой трения. Конкретно для ПМ необходимо кроме составляющей — постоянного тока I, протекающего по обмотке возбуждения, иметь еще и составляющую ΔI , периодически меняющую свой знак.

 $Puc.\ 2.\$ Зависимость F(x) реального ПМ

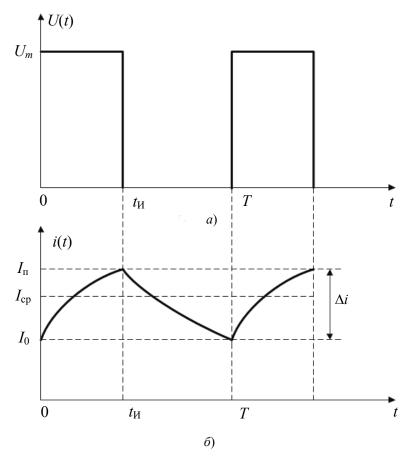
В настоящее время ток через ПМ задают с использованием широтно-импульсной модуляции (ШИМ) питающего напряжения, причем период питающего ШИМ напряжения должен быть меньше постоянной времени обмотки возбуждения ПМ. Для существенного упрощения схемы формирования питающего напряжения силовой элемент должен работать в ключевом режиме. Такой подход позволяет получить наряду с постоянной составляющей тока через ПМ еще и переменную составляющую с частотой ШИМ.

Из многочисленных описаний блоков управления ПМ [3], [4] не ясно, как связаны средний ток, амплитуда переменной составляющей с параметрами обмотки возбуждения и в какой мере это влияет на величину гистерезиса ПМ.

Целью настоящей работы является нахождение соотношения между параметрами питающего напряжения и результирующим гистерезисом ПМ.

Методика нахождения зависимости гистерезиса пропорциональных магнитов от параметров управляющего напряжения

На рис. 3 представлены временные диаграммы установившегося режима изменения тока ПМ при питании его импульсами, в предположении, что его обмотка возбуждения представляет собой индуктивность L с последовательно соединенным сопротивлением «меди» — r.


На рис. 3 приняты следующие обозначения: T, $t_{\rm H}$ — период и длительность импульса питающего напряжения; $I_{\rm H}$, $I_{\rm O}$, ΔI — пиковое, начальное и пульсирующее значение тока.

Для нахождения этих значений в зависимости от T, $t_{\rm H}$ и $\tau = L/r$ рассмотрим интервал времени $(0-t_{\rm H})$, на котором изменение тока выглядит следующим образом:

$$i(t) = I_0 + (I_m - I_0) \left(1 - e^{\frac{-t}{\tau}}\right),$$
 (1)

где $I_{m} = U_{m}/r$ — максимальное значение тока. На интервале времени ($t_{\rm M}$ –T) справедливо выражение

$$i(t) = I_{\pi} \cdot e^{\frac{-t}{\tau}}$$
.

Рис. 3. Зависимость тока, протекающего через обмотку возбуждения ПМ (δ) при питании его импульсным напряжением (a)

Поскольку рассматривается установившейся режим, то $i(0) = i(T) = I_0$ или

$$I_0 = I_\Pi \cdot e^{\frac{-T - t_\mathrm{M}}{\tau}} = \left[I_0 + \left(I_m - I_0\right)\left(1 - e^{\frac{-t_\mathrm{M}}{\tau}}\right)\right] e^{-\frac{T - t_\mathrm{M}}{\tau}}.$$

Решая это уравнение относительно I_0 , можно получить

$$I_0 = I_m \frac{e^{\frac{I_H}{\tau}} - 1}{e^{\frac{T}{\tau}} - 1}.$$
 (2)

Значение I_{Π} находится из (1) при $t = t_{\text{и}}$ с учетом (2):

$$I_{\Pi} = I_{m} \frac{1 - e^{-\frac{I_{H}}{\tau}}}{1 - e^{-\frac{T}{\tau}}}.$$
 (3)

Значение ΔI находится как разность между (3) и (2):

$$\Delta I = I_{\Pi} - I_{0} = I_{m} \frac{1 - e^{-\frac{t_{H}}{\tau}}}{1 - e^{-\frac{T}{\tau}}} - I_{m} \frac{e^{\frac{t_{H}}{\tau}} - 1}{e^{\frac{T}{\tau}} - 1} = I_{m} \frac{e^{\frac{T}{\tau}} + 1 - e^{\frac{T - t_{H}}{\tau}} - e^{\frac{t_{H}}{\tau}}}{e^{\frac{T}{\tau}} - 1}.$$
 (4)

Из (4) видно, что пульсация тока ПМ, или же пульсация усилия, зависит не только от электрических параметров обмотки возбуждения τ , но и от длительности импульсов питающего напряжения $t_{\rm H}$. Причем, как видно из (4), при $t_{\rm H}$, стремящемся к 0 и T, ΔI также стремится к 0. Отыщем $t_{\rm H}$, при котором ΔI максимальна при заданных T и τ . Для чего исследуем (4) на экстремум. Для нахождения $t_{\rm H}^*$, при котором $\Delta I(t_{\rm H}^*)=$ тах, необходимо взять производную от ΔI по $t_{\rm H}$ и, приравняв ее к нулю, найти $t_{\rm H}^*$:

$$\frac{d\Delta I}{dt_{\rm H}} = \left[-e^{\frac{T - t_{\rm H}^*}{\tau}} \left(-\frac{1}{\tau} \right) - e^{\frac{t_{\rm H}^*}{\tau}} \left(\frac{1}{\tau} \right) \right] = 0, \text{ или } e^{\frac{T - t_{\rm H}^*}{\tau}} = e^{\frac{t_{\rm H}^*}{\tau}}, \tag{5}$$

следовательно $t_{\rm H}^* = T/2$.

То есть пульсация ΔI максимальна при длительности импульса, равной половине периода питающего напряжения, и не зависит от постоянной времени τ и периода ШИМ.

$$\Delta I_{m} = \Delta I \left(t_{\text{M}} = \frac{T}{2} \right) = I_{m} \frac{e^{\frac{T}{\tau}} - 2e^{\frac{0.5T}{\tau}} + 1}{e^{\frac{T}{\tau}} - 1}.$$
 (6)

Среднее значение тока $I_{\rm cp}$, протекающего через ПМ, можно найти как $I_{\rm cp}=I_0+0.5\Delta I$. Из условия того, что постоянная времени магнита τ много больше, чем период T питающего напряжения и с учетом (2) и (4), можно записать средний ток в следующем виде:

$$I_{\rm cp} = I_m \frac{e^{\frac{T}{\tau}} - 1 + e^{\frac{t_{\rm H}}{\tau}} - e^{\frac{T - t_{\rm H}}{\tau}}}{2\left(e^{\frac{T}{\tau}} - 1\right)}.$$
 (7)

Полученные выражения для токов I_0 , I_Π , ΔI и $I_{\rm cp}$ позволяют вычислить значения средней силы и пульсаций средней силы через ΠM .

$$F_{\rm cp} = kI_{\rm cp}, \ \Delta F = k\Delta I.$$

Из выражения (4) видно, что при увеличении периода T, при сохранении скважности $t_{W/T}=$ const ΔI растет, т. е. растет и ΔF . Это должно приводить к уменьшению влияния гистерезиса, обусловленного силами трения. Для экспериментальной проверки отмеченного были сняты тяговые характеристики магнита ПЭМ8 при различных частотах питающего напряжения. При измерении σ поддерживалось равенство $t_{\rm u}=0.5T$, обеспечивающее режим максимальной пульсации тока (силы). Данные эксперимента приведены в таблице. Результаты эксперимента представлены на рис. 4.

Максимальный ток магнита равен $I_m = 1,1\,$ А, омическое сопротивление обмотки возбуждения ПМ $r = 22,8\,$ Ом. Из полученных данных $\sigma(f)$ видно, что гистерезис уменьшается с уменьшением частоты питающего напряжения ПМ. При этом с уменьшением частоты растет пульсация тока ΔI . В первом приближении можно предполо-

жить, что величина гистерезиса обратно пропорциональна пульсации тока ΔI . Для вычисления значения ΔI по (4), (6) необходимо иметь значение постоянной времени обмотки возбуждения τ . Однако этот параметр производитель ПМ не нормирует.

<i>f</i> , Гц	500	400	300	200	150	100	75
σ, %	6,1	5,4	5,3	4,5	3,5	2,5	1,9
$\Delta I_{3\kappa\epsilon\pi}$	0,1	0,12	0,13	0,15	0,165	0,21	0,27
F2, %	6,1	5,1	4,7	4,1	3,7	2,9	2,3
F1, %	6,1	4,88	3,72	2,48	1,88	1,3	1,03
т, мс	5,49	5,71	6,95	9,1	11,1	12,94	13,27

Зависимости параметров ПМ от частоты ШИМ

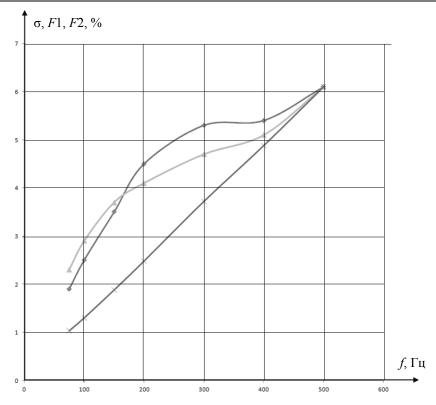
Найти τ по I_m и измеренному ΔI можно из (4) при условии, что $t_{\rm H}=0.5T$, следовательно, справедливо выражение

$$\Delta I = I_m \frac{e^{\frac{T}{\tau}} - 2e^{\frac{0.5T}{\tau}} + 1}{e^{\frac{T}{\tau}} - 1},$$

обозначая $e^{\frac{0.5T}{\tau}}=x$, $e^{\frac{T}{\tau}}=x^2$, $\frac{\Delta I}{I_m}=a$, приходим к уравнению

$$(1-a)x^2-2x+a+1=0.$$

Решением этого уравнения является $x_1 = \frac{(1+a)}{(1-a)}$, $x_2 = 1$. Второе решение не имеет физического смысла $(\tau = \infty)$. Тогда τ можно записать в следующем виде:


$$\tau = \frac{T}{2\ln\left(\frac{I_m + \Delta I}{I_m - \Delta I}\right)}.$$
 (8)

По экспериментальным данным для частоты 500 Гц (T=2 мс), $\Delta I=0,1$ А, $I_m=1,1$ А из (8) находим $\tau=5,49$ с (L=0,24 Гн).

На рис. 4 дана зависимость $F1(f) = \frac{b}{\Delta I}$, где b — масштабный коэффициент, приведенный к точке f = 500 Гц, $\sigma = 6$ % в предположении, что $\tau(f) = \text{const.}$

Заключение

Из таблицы видно, что пульсации тока завышены по сравнению с экспериментальными. В результате график зависимости F1(f) значительно ниже $\sigma(f)$. Это объясняется тем, что эквивалентная постоянная времени τ является функцией частоты. Пересчитывая σ для каждого значения частоты по измеренному ΔI , можно получить зависимость $\tau(f)$. Откуда видно, что с уменьшением частоты реальная зависимость $\tau(f)$ растет, τ . е. увеличивается эквивалентная индуктивность. Зависимость $\tau(f) = \frac{b}{\Delta I_{max}}$ более приближена к зависимости $\sigma(f)$.

Из вышеизложенного следует, что пульсация тока в ПМ при питании его ШИМ напряжением выполняет роль вибрационной линеаризации. Причем чем ниже частота ШИМ, тем эффективней эта линеаризация. Кроме того, в работе представлены расчетные соотношения, позволяющие находить токи в ПМ и рассчитывать его постоянную времени по экспериментально снятым тяговым характеристикам. Показано, что эквивалентная постоянная времени т с уменьшением частоты питающего напряжения увеличивается.

Литература

- 1. ТУ-053-1916-90. Технические условия. Пропорциональные электромагниты.
- 2. Теория автоматического управления : учеб. для вузов : в 2 ч. / под ред. А. В. Нетушила. М. : Высш. шк., 1972. Ч. II.
- 3. Наладка средств автоматизации и автоматических систем регулирования : справоч. пособие / А. С. Клюев [и др.] ; под ред. А. С. Клюева. 2-е изд., перераб. и доп. М. : Энергоатомиздат, 1989. 386 с.
- 4. Иванов Г. М. Цифровая электрогидравлическая автоматика нового поколения / Г. М. Иванов, В. К. Свешников, И. В. Орлик // Гидравлика и пневматика. -2006. № 21. С. 3–8.

Получено 11.03.2014 г.