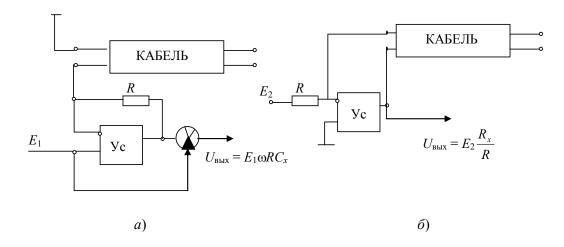
ОПРЕДЕЛЕНИЕ МЕСТА ПОВРЕЖДЕНИЯ КАБЕЛЯ


А. И. Никеенков, В. В. Щуплов

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Беларусь

Проведение сейсморазведочных работ требует использования многоканальных кабелей для подключения сейсмодатчиков. Длина сейсмокабеля достигает величины в несколько километров. Это и предполагает определение исправности кабеля только с одной стороны. Наиболее часто встречающееся повреждения кабеля либо обрыв жилы, либо междужильное короткое замыкание.

Разработано устройство, позволяющее определить вид повреждения и место повреждения. В качестве параметров для определения места обрыва используется распределенная емкость кабеля C_x , по величине которой и определяется место обрыва. Причем такое измерение производится на переменном токе с последовательным включением кабеля. При определении места короткого замыкания используется измерение на постоянном токе и параллельное включения кабеля, а в качестве измеряемого параметра используется распределенное сопротивление жилы R_x .

Стандартные значения распределенной емкости — $80~\text{н}\Phi/\text{к}\text{м}$, распределенного сопротивления примерно 500~Ом/км. При таких значениях питание переменного напряжения должно иметь частоту примерно $500~\Gamma$ ц и напряжение источника постоянного тока примерно несколько вольт. Схема включения кабеля на постоянном и переменном токе приведена на рис. 1.

 $Puc.\ 1.$ Схема включения кабеля на постоянном и переменном токе: a — последовательное включение; δ — параллельное включение. E_1 — напряжение питания переменного тока, частотой ω ; E_2 — напряжение источника постоянного тока

124 Секция Г. Приборы и системы автоматического управления

закорачиваются на землю.

При таких включениях кабеля на выходе схемы формируется напряжение пропорциональное расстоянию до места короткого замыкания $S_{\kappa 3}$ или до места обрыва $S_{\kappa 3}$. Для увеличения чувствительности изменяют частоту или напряжение питания. Для проверки многожильных кабелей используются многоканальные аналоговые коммутаторы, причем при измерении выбирается одна жила, а все остальные