СРАВНИТЕЛЬНЫЕ ИСПЫТАНИЯ ПОДШИПНИКОВЫХ МАТЕРИАЛОВ И ПОДШИПНИКОВ ИЗ ДРЕВЕСИНЫ ТОРЦОВО-ПРЕССОВОГО ДЕФОРМИРОВАНИЯ

А. Б. Невзорова, В. Б. Врублевский, В. И. Врублевская

Учреждение образования «Белорусский государственный университет транспорта», г. Гомель

Ю. Е. Кирпиченко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого, Беларусь

Целью настоящей работы является анализ работоспособности известных подшипниковых материалов по имеющимся данных и проведение сравнительных испытаний наилучшего самосмазывающегося полимерного материала CAM-4 с самосмазывающимися подшипниками скольжения (ПСС) на основе древесины торцовопрессового деформирования по износостойкости, надежности и техническому ресурсу. На основании результатов испытаний оценить возможности замены подшипников скольжения из традиционных материалов на ПСС.

Методы исследования. Оценка фрикционных свойств подшипниковых материалов проводилась в отделе трибоиспытаний ИММС НАНБ на машине трения типа 2070 СМТ-1 по схеме «вал—частичный вкладыш». В качестве контртела использовались ролики из стали 45. Испытания проводились при различных скоростях и нагрузках, при этом фактор pv не превышал 2,5 МПа·м/с. Одновременно проводились стендовые испытания ПСС-202 и производственные испытания

Результаты и их обсуждение. Анализ различных источников по исследованию антифрикционных свойств полимерных материалов (капрон, полиамид, полиимид, фторопласт, флубон, эпоксипластик и САМ-4) показал, что они значительно уступают по таким характеристикам как нагрузочная способность, износостойкость, работоспособность и некоторым физико-механическим свойствам ПСС на основе древесины торцово-прессового деформирования.

Сравнение результатов фрикционных испытаний показало, что коэффициент трения у ПСС в 6–9 раз ниже, чем у полимерного материала САМ-4, а ресурс работы по данным оценки скорости изнашивания при нагрузке 1000 Н превысил ресурс подшипника из САМ-4 в 4,5 раза.

Достоинством ПСС является то, что они не теряют работоспособного состояния при кратковременных температурах в зоне контакта 180–220 °C, в тоже время полимерные материалы подплавляются, теряют работоспособность и приводят к заклиниваю узел трения.

Сравнительные испытания с наиболее распространенным металлическим антифрикционным материалом на медной основе — бронзе, показали, что при работе без смазки уже при нагрузке 2 МПа и скорости скольжения 0,5 м/с происходит значительный износ бронзы с одновременным ее массопереносом на поверхность ролика. При таких же условиях износ вкладыша у ПСС практически не наблюдается.

На Гомельском ПО хлебопродуктов бала проведена замена бронзового подшипника в узле трения шнекового транспортера на ПСС. Узел трения работает в абразивно-агрессивной среде, замена привела к увеличению срока службы этого узла в 10 раз. При этом не требовалось техосмотра и техухода.

Вывод. На основании представленных результатов установлено, что ПСС на основе древесины торцово-прессового деформирования, установленные в соответствующие узлы трения скольжения, приводят к увеличению срока службы в 2–10 раз и повышению надежности работы машин и механизмов.