УДК 629.114.2

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПОДЪЕМНО-НАВЕСНОГО УСТРОЙСТВА ТРАКТОРА «ХТЗ-16131-05», ОБЕСПЕЧИВАЮЩИХ ЕГО АГРЕГАТИРОВАНИЕ С КОСИЛКОЙ-ПЛЮЩИЛКОЙ НАВЕСНОЙ КПН-6-Ф

В. Б. ПОПОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

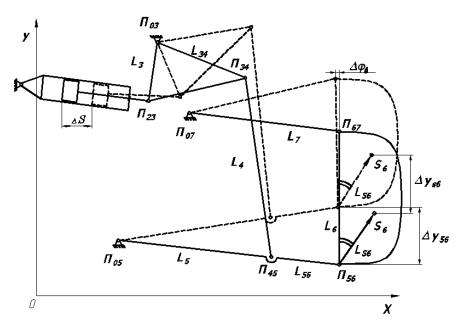
Введение

Универсальное энергетическое средство УЭС-2-280A создано для агрегатирования с адаптерами, предназначенными для уборки кормов. В их числе для уборки трав широко используется навесная ротационная косилка КПР-9. Косилка-плющилка навесная ротационная двухсекционная КПН-6-Ф предназначена для кошения зеленых сеяных и естественных трав с одновременным плющением и укладкой скошенной массы на стерню в два валка на равнинных полях с уклоном до 9° [1]. Она была разработана в Научнотехническом центре комбайностроения (бывшее РКУП «ГСКБ») в соответствии с заданием программы Союзного государства «Создание и организация серийного производства комплексов высокопроизводительных сельскохозяйственных машин на базе универсального мобильного энергосредства мощностью 200—450 л. с.». Российская сторона не выполнила обязательства по разработке универсального энергетического средства с двигателем мощностью от 210 до 280 л. с. (УЭС-210/280), предназначенного для агрегатирования, в том числе и с КПН-6-Ф, поэтому она агрегатируется с отечественным УЭС-2-280А.

Рис. 1. Колесный трактор «ХТЗ-16131-05», агрегатируемый с косилкой-плющилкой навесной ротационной

Другие мобильные энергетические средства (МЭС), в частности трактора «Беларус», уже используются для агрегатирования с КПР-9. Поэтому использование в качестве энергоносителя интегрального колесного трактора «ХТЗ-16131-05» (рис. 1) позволит навешивать КПН-6-Ф на МЭС как отечественного, так и зарубежного производства.

Целью работы является оценка по результатам вычислительного эксперимента возможности агрегатирования XT3-16131-05 и КПН-6-Ф в режиме ее подъема (перевода из рабочего в транспортное положение).


Основная часть

Интегральный колесный трактор «XT3-16131-05» оборудован задним подъемнонавесным устройством (ПНУ) с грузоподъемностью на оси подвеса механизма навески равной $G_m = 50$ кН [2], что существенно превышает вес КПН-6-Ф ($P_6 = 33$ кН). Несмотря на этот факт, энергетическая обеспеченность подъема КПН-6-Ф при помощи ПНУ трактора «XT3-16131-05» не очевидна, поскольку определяется как параметрами ПНУ, так и НМ [3]. Таким образом, паспортной информации по грузоподъемности ПНУ трактора для положительного заключения о возможности агрегатирования с КПН-6-Ф недостаточно.

Необходимыми и достаточными условиями, обеспечивающими агрегатирование XT3-16131-05 и КПН-6-Ф, является одновременное выполнение следующих требований:

- расчетная минимальная грузоподъемность ПНУ МЭС, определенная для заданных веса и координат центра тяжести НМ, с учетом гидромеханических потерь в ПНУ, должна превышать вес НМ;
- управляемость машинно-тракторного агрегата во время транспортного переезда с полностью поднятой КПН-6-Ф должна быть обеспечена;
- в рабочем положении КПН-6-Ф обзор ее секций с рабочего места тракториста XT3-16131-05 должен быть обеспечен;
- компоновочные ограничения для транспортного положения КПН-6-Ф, связанные с углом завала стойки, подлежат выполнению.

Для оценки энергетической обеспеченности подъема КПН-6-Ф из рабочего в транспортное положение были выполнены многовариантный анализ и синтез ПНУ на основе функциональной математической модели (ФММ) [3]. В результате выполнения этих процедур были получены расчетные значения для выходных параметров нагруженного ПНУ и его основного компонента – механизма навески (рис. 2).

Рис. 2. Кинематическая цепь, состоящая из плоского аналога механизма навески ПНУ трактора «XT3-16131-05» и аналога навесной машины КПН-6- Φ – L_6

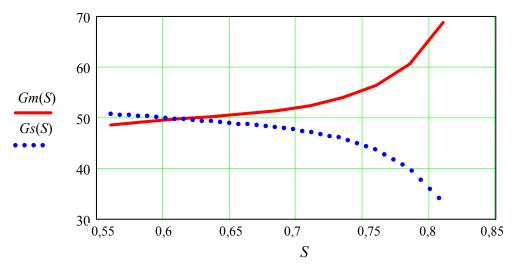

Результаты расчета основных геометрических, кинематических и силовых параметров ПНУ трактора «ХТЗ-16131-05» в процессе перевода КПН-6-Ф в транспортное положение представлены в табл. 1 и на рис. 3.

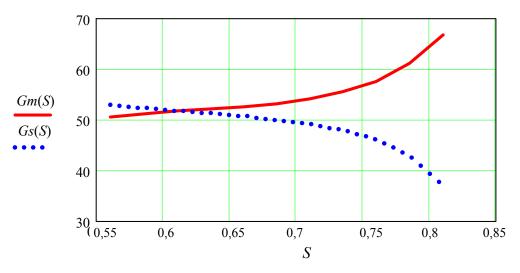
Таблица $\it I$ Основные выходные параметры ПНУ трактора «ХТЗ-16131-05» при агрегатировании с КПН-6-Ф ($\it P_6$ = 33 кH)

<i>S</i> , м	<i>Y</i> ₅₆ , м	φ ₆ , °	φ ₃ ′, 1/м	${U_{63}}^{**}$	I_m	I_{S6}	<i>F</i> , кН	р _{гц} , МПа
0,560	*	_	_	_	_	-	-	_
0,585	0,552	89,997	5,494	-0,015	4,072	3,985	131,5	12,81
0,610	0,653	89,933	5,320	-0,001	4,029	4,021	132,7	12,92
0,635	0,754	89,976	5,263	0,013	3,992	4,063	134,1	13,06
0,660	0,853	90,133	5,302	0,029	3,951	4,112	135,7	13,21
0,685	0,951	90,425	5,426	0,048	3,899	4,171	137,6	13,40
0,710	1,048	90,895	5,650	0,072	3,825	4,249	140,2	13,65
0,735	1,142	91,620	6,003	0,104	3,717	4,368	144,1	14,04
0,760	1,233	92,747	6,545	0,150	3,556	4,578	151,1	14,71
0,785	1,319	94,579	7,421	0,222	3,308	5,006	165,2	16,09
0,810	1,397	97,808	9,034	0,338	2,916	6,005	198,2	19,30

^{*}Подсоединение КПН-6-Ф выполняется, когда высота оси подвеса МН – (Y_{56}) составляет 0,55 м; **безразмерная величина.

Здесь S — обобщенная координата, отражающая ход поршня гидроцилиндра (ΔS); Y_{56} — вертикальная координата оси подвеса (Π_{56}); φ_6 — угол наклона звена L_6 (стойки); φ_3 — аналог угловой скорости поворотного рычага L_3 , L_{34} ; I_m , I_{86} — передаточные числа МН на оси подвеса и в центре тяжести НМ; U_{63} — передаточное отношение угловых скоростей звеньев (L_6 , L_3); F — приведенная к гидроцилиндру полезная нагрузка; $p_{\text{гц}}$ — давление в рабочем гидроцилиндре.

Рис. 3. Грузоподъемность базового ПНУ XT3-16131-05 на оси подвеса механизма навески и при агрегатировании с КПН-6-Ф ($G_m = 49.19$ кН, $G_S = 33,34$ кН; $\Delta G_S = 0,01P_6$)


Анализ результатов

Как было отмечено выше, возможность агрегатирования трактора «XT3-16131-05» с косилкой-плющилкой навесной КПН-6-Ф (P_6 = 33 кН) была просчитана с помощью ФММ на ПЭВМ. В базовом варианте ПНУ запас грузоподъемности составил ΔG_S = 1,0 % от веса косилки (рис. 3), а максимум угла наклона стойки в транспортном положении $\Delta \phi_6$ = 7,8°, что, с одной стороны, гарантирует полный подъем НМ, а с другой — удовлетворяет требованиям по стандарту [4]. Однако запас грузоподъемности явно недостаточен из-за известной нестабильности параметров ПНУ в процессе эксплуатации, и в первую очередь его КПД.

С целью повышения запаса грузоподъемности в соответствии с методикой, изложенной в работе [5], была выполнена модернизация исходных параметров механизма навески данного ПНУ. В результате параметрической оптимизации были получены результаты, представленные в табл. 2 и на рис. 4.

Таблица 2 Основные выходные параметры модернизированного ПНУ трактора «ХТЗ-16131-05» при агрегатировании с КПН-6-Ф (P_6 = 33 кH)

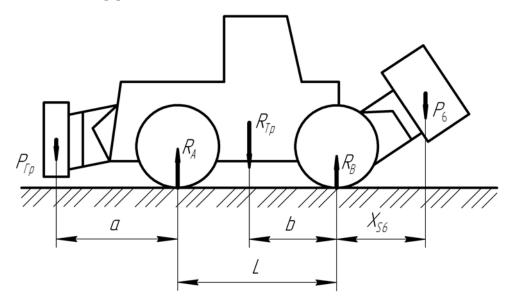

<i>S</i> , м	Y ₅₆ , M	φ ₆ , °	φ ₃ ′, 1/м	U_{63}^{**}	I_m	I_{S6}	<i>F</i> , кН	ргц, МПа
0,560	*	_	_	_	-	_	_	_
0,585	0,550	89,999	5,494	-0,015	3,911	3,827	126,3	12,30
0,610	0,648	89,934	5,320	-0,002	3,878	3,866	127,6	12,43
0,635	0,744	89,968	5,263	0,011	3,848	3,909	129,1	12,56
0,660	0,840	90,106	5,302	0,026	3,814	3,957	130,6	12,72
0,685	0,935	90,367	5,426	0,043	3,769	4,011	132,4	12,89
0,710	1,028	90,784	5,650	0,063	3,705	4,080	134,6	13,11
0,735	1,120	91,420	6,003	0,091	3,613	4,180	137,9	13,43
0,760	1,209	92,338	6,545	0,127	3,478	4,347	143,4	13,97
0,785	1,293	93,914	7,421	0,182	3,281	4,675	154,3	15,03
0,810	1,372	96,494	9,034	0,265	2,998	5,439	179,5	17,48

Рис. 4. Грузоподъемность модернизированного ПНУ ХТЗ-16131-05 на оси подвеса МН и при агрегатировании с КПН-6-Ф $(G_m = 51,19 \text{ kH}; G_S = 36,82 \text{ kH}; \Delta G_S = 0,116P6)$

При увеличении размера L_5 , представляющего длину нижней тяги МН до ее контакта с раскосом до 750 мм, что больше чем у базового исполнения на 25 мм (рис. 2), и при высоте стойки $L_6 = 560$ мм был достигнут необходимый рост грузоподъемности до $G_S = 36,82$ кН. При этом ее запас составил $\Delta G_S = 11,6$ %, а завал стойки несколько уменьшился и составил $\Delta \phi_6 = 6,49^\circ$. Дальнейшее увеличение L_5 сопровождается уже не столь интенсивным ростом грузоподъемности.

Для устойчивости движения МТА во время транспортного переезда часть его веса, приходящаяся на мост управляемых колес МЭС, должна составлять не менее 20 % от общего веса МТА [6].

Puc. 5. Схема сил, действующих на машинно-тракторный агрегат с навесной машиной (КПН-6-Ф) в транспортном положении

Для расчета управляемости МЭС (рис. 5) было составлено уравнение равновесия моментов сил, действующих на компоненты МТА относительно точки опоры ведуших колес:

$$\sum M_{\rm B} = P_{\rm rp}(a+L) + P_{\rm Tp}b - P_6X_{S6} - R_AL = 0,$$

где $P_{\rm rp}$ — вес балласта; $P_{\rm Tp}$ — вес XT3-16131-05; P_6 — вес КПН-6-Ф; R_A — нагрузка, приходящаяся на мост управляемых колес; X_{S6} — горизонтальная координата центра тяжести НМ в транспортном положении; L — база МЭС; a и b — расстояние от вертикальной проекции центра тяжести МЭС до вертикальных проекций центра тяжести балласта и оси моста ведущих колес, соответственно.

Разрешив уравнение моментов сил относительно реакции на управляемом колесе $R_{\scriptscriptstyle A}$, получим:

$$R_{A} = \frac{P_{\rm rp}(a+L) + P_{\rm Tp}b - P_{6}X_{S6}}{L}.$$

Результаты расчетов по распределению веса МЭС и МТА на ведущие и управляемые колеса МЭС представлены в табл. 3.

Таблица 3 Развесовка МЭС и МТА по управляемому и ведущему мостам, %

	КПН-6-Ф					
MTA	M	ЭС	ХТЗ-16131-05 + КПН-6-Ф в транспортном положении			
Реакции на колесах МЭС	$R_{\scriptscriptstyle A}$	$R_{\scriptscriptstyle B}$	$R'_{\scriptscriptstyle A}$	$R_{\scriptscriptstyle B}^{\prime}$		
XT3-16131-05	60,53	39,47	21,86	78,14		

Во всех вариантах на управляемые колеса XT3-16131-05 с КПН-6- Φ в транспортном положении приходится более 20 % от его общего веса (табл. 3), даже без использования балласта ($P_{\rm rn}$), поэтому требования по управляемости МЭС удовлетворяются.

Заключение

Полный подъем КПН-6-Ф при навеске на XT3-16131-05 вполне осуществим, т. е. в энергетическом аспекте агрегатирование XT3-16131-05 с КПН-6-Ф с помощью минимально модернизированного ПНУ обеспечено.

Существующие требования по управляемости МТА с КПН-6-Ф в транспортном положении, связанные с перераспределением нагрузки на мостах XT3-16131-05, удовлетворяются.

Компоновочные ограничения, касающиеся угла завала стойки в транспортном положении КПН-6-Ф, удовлетворяются как в базовом, так и модернизированном вариантах.

Заключение об обзорности секций навесной косилки-плющилки КПН-6-Ф с рабочего места тракториста в ее рабочем положении можно будет сделать после дополнительных исследований.

В целом проведенная работа полезна для рационального выбора и наладки параметров механизма навески ПНУ ХТЗ-16131-05, так как расширяет возможности агрегатирования как интегрального трактора, так и навесной косилки-плющилки КПН-6-Ф.

Литература

- 1. Косилка-плющилка ротационная двухсекционная навесная КПН-6-Ф «Палессе CH-60F». Руководство по эксплуатации. Гомель: Гомсельмаш, 2009. С. 78.
- 2. XT3-16131-05. Характеристики трактора. 2012. Режим доступа: http://www.xtz.ua/tractor/xtz 16131-05.
- 3. Попов, В. Б. Расчет грузоподъемности подъемно-навесного устройства универсального энергетического средства третьего поколения / В. Б. Попов // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. 2012. № 3. С. 43–48.
- 4. ГОСТ 10677–2001. Устройство навесное заднее сельскохозяйственных тракторов классов 0,6–8. Типы, основные параметры и размеры (Межгосударственный стандарт). Минск, 2002. С. 8.
- 5. Попов, В. Б. Параметрическая оптимизация подъемно-навесного устройства универсального энергетического средства УЭС 290/450 «Полесье», агрегатируемого с навесным кормоуборочным комбайном КНК-500 / В. Б. Попов // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. 2013. № 1. С. 35–43.
- 6. ГОСТ 12.2.111–85. Система стандартов безопасности труда. Машины сельскохозяйственные навесные и прицепные. Общие требования безопасности (Межгос. стандарт). Минск, 2006. С. 10.