ПОДРОБНЫЙ ВЫВОД УТОЧНЕННОЙ ФОРМУЛЫ ВЕРОЯТНОСТИ НЕПРИЕМА ПСЕВДОСЛУЧАЙНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ПО ЗАЧЕТНОМУ ОТРЕЗКУ

Е. А. Ильющиц

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Беларусь

Научный руководитель Е. А. Храбров

Прием информации, использующей псевдослучайные последовательности, ведется двумя способами: корреляционным и по зачетному отрезку [1]. Анализ надежности приема первым способом не вызывает трудностей, а вот определение вероятности приема вторым способом до сих пор является непростым по ряду причин [2]. В некоторых источниках даются ссылки на закрытую статью [3], в которой приведен вывод приближенной формулы вероятности приема по зачетному отрезку для небольших последовательностей. В [4] дана приближенная формула, позволяющая найти вероятность приема по зачетному отрезку для последовательностей большой длительности, но до настоящего времени не известна точная формула вероятности приема по зачетному отрезку.

В данной работе показана попытка вывода точной формулы вероятности приема псевдослучайной последовательности по зачетному отрезку. В соответствии с методикой Козлова А. Ф., показанной в [1], «вероятность ошибочного приема одного символа p, а q=1-p вероятность правильного приема символа. Вероятность неприема сигнала фазового пуска длиной n символов запишется в виде:

$$P_{n} = pP_{n-1} + pqP_{n-2} + pq^{2}P_{n-3} + \dots + pq^{s-1}P_{n-s}.$$
 (1)

Причем, если длина сигнала фазового пуска будет равна s, то

$$P_{s-1} = P_{s-2} = \ldots = P_1 = P_0 = 1.$$

Так как появление хотя бы одной ошибки автоматически гарантирует то, что сигнал фазового пуска не будет принят.

$$P_{s} = 1 - q^{s}. \tag{2}$$

Для дальнейших вычислений необходимо найти разность $P_{n-1} - P_n$, для этого в первом члене выражения (1) вместо p следует подставить 1-q, раскрыть скобки, перенести P_{n-1} в левую часть равенства. Затем необходимо представить P_{n-1} по примеру выражения (1) и подставить результат в P_{n-1} находящийся в правой части равенства. В результате получаем рекуррентное соотношение

$$P_{n} = P_{n-1} - pq^{s} P_{n-s-1}, (3)$$

которым будем пользоваться для получения вероятности неприема сигнала.

Учитывая, что
$$P_{s-1} = P_{s-2} = \dots = P_1 = P_0 = 1$$
 и $P_s = 1 - q^s$;

$$P_{s+1} = P_s - pq^s P_0 = 1 - q^s - pq^s; (4)$$

$$P_{s+2} = P_{s+1} - pq^{s}P_{1} = 1 - q^{s} - pq^{s} - pq^{s} = 1 - q^{s} - 2pq^{s};$$
(5)

$$P_{s+3} = P_{s+2} - pq^{s}P_{2} = 1 - q^{s} - 2pq^{s} - pq^{s} = 1 - q^{s} - 3pq^{s};$$
(6)

$$P_{2s} = P_{2s-1} - pq^{s} P_{s-1} = 1 - q^{s} - spq^{s}; (7)$$

$$P_{2s+1} = P_{2s} - pq^{s}P_{s} = 1 - q^{s} - (s+1)pq^{s} + pq^{2s};$$
(8)

$$P_{2s+2} = P_{2s+1} - pq^{s}P_{s+1} = 1 - q^{s} - (s+2)pq^{s} + 2pq^{2s} + p^{2}q^{2s};$$
(9)

$$P_{2s+3} = P_{2s+2} - pq^{s}P_{s+2} = 1 - q^{s} - (s+3)pq^{s} + 3pq^{2s} + 3p^{2}q^{2s};$$
(10)

$$P_{2s+4} = P_{2s+3} - pq^{s}P_{s+3} = 1 - q^{s} - (s+4)pq^{s} + 4pq^{2s} + 6p^{2}q^{2s};$$
(11)

$$P_{2s+5} = P_{2s+4} - pq^{s}P_{s+4} = 1 - q^{s} - (s+5)pq^{s} + 5pq^{2s} + 10p^{2}q^{2s}.$$
 (12)

На данном этапе можно установить закономерности изменения коэффициентов перед q^s , pq^s , pq^{2s} , p^2q^{2s} .

Коэффициент перед p^2q^{2s} изменяется следующим образом: 1, 3, 6, 10, ..., – эту закономерность изменения коэффициентов можно описать с помощью известной формулы комбинаторики:

$$C_{ks+i-2s}^2 = \frac{(ks+i-2s)!}{2!(ks+i-2s-2)!}.$$

Пример

Вычисляем вероятность для P_{2s+3} , k=2, i=3, следовательно, коэффициент стоящий перед p^2q^{2s} , будет равен

$$C_{2s+3-2s}^2 = C_3^2 = \frac{3!}{2! \cdot 1!} = 3;$$

– для вероятности P_{2s+5} , k=2, i=5:

$$C_{2s+5-2s}^2 = C_5^2 = \frac{5!}{2! \cdot 3!} = 10;$$

– для вероятности P_{3s+4} , k=3, i=4:

$$C_{3s+4-2s}^2 = C_{s+4}^2 = \frac{(s+4)!}{2!(s+4-2)!} = \frac{(s+2)!(s+3)(s+4)}{2!(s+2)!} = \frac{(s+3)(s+4)}{2!} = \frac{s^2+7s+12}{2};$$

– для вероятности P_{4s+11} , k = 4, i = 11:

$$C_{4s+11-2s}^2 = C_{2s+11}^2 = \frac{(2s+11)!}{2!(2s+9)!} = \frac{(2s+9)!(2s+10)(2s+11)}{2!(2s+9)!} = \frac{4s^2+42s+110}{2};$$

– для вероятности $P_{s,s+3}$, k = s, i = 3:

$$C_{s\cdot s+3-2s}^2 = C_{2s+11}^2 = \frac{(s^2 - 2s + 3)!}{2!(s^2 - 2s + 1)!} = \frac{s^4 - 4s^2 + 9s^2 - 10s + 6}{2}.$$

Коэффициент перед pq^{2s} равен $C^1_{ks+i-2s}$.

Коэффициент перед pq^s равен C^1_{ks+i-s} .

Для получения следующих выражений необходимо воспользоваться свойствами числа сочетаний, такими как:

$$C_{i}^{m} + C_{i}^{m-1} = C_{i+1}^{m}; (13)$$

$$C_i^0 = C_i^j = 1; (14)$$

$$C_j^1 = C_j^{j-1} = j; (15)$$

$$P_{3s} = P_{3s-1} - pq^{s} P_{2s-1} = 1 - q^{s} - C_{2s}^{1} pq^{s} + C_{s}^{1} pq^{2s} + C_{s}^{2} p^{2} q^{2s};$$
(16)

$$P_{3s+1} = P_{3s} - pq^{s} P_{2s} = 1 - q^{s} - C_{2s+1}^{1} pq^{s} + C_{s+1}^{1} pq^{2s} + C_{s+1}^{2} p^{2} q^{2s};$$
(17)

$$P_{3s+2} = P_{3s+1} - pq^{s}P_{2s+1} = 1 - q^{s} - C_{2s+2}^{1}pq^{s} + C_{s+2}^{1}pq^{2s} + C_{s+2}^{2}p^{2}q^{2s} - p^{2}q^{3s};$$
(18)

$$P_{3s+3} = P_{3s+2} - pq^{s}P_{2s+2} = 1 - q^{s} - C_{2s+3}^{1}pq^{s} + C_{s+3}^{1}pq^{2s} + C_{s+3}^{2}p^{2}q^{2s} - C_{3}^{2}p^{2}q^{3s} - p^{3}q^{3s};$$
 (19)

$$P_{3s+4} = P_{3s+3} - pq^{s}P_{2s+3} = 1 - q^{s} - C_{2s+4}^{1}pq^{s} + C_{s+4}^{1}pq^{2s} + C_{s+4}^{2}p^{2}q^{2s} - C_{4}^{2}p^{2}q^{3s} - C_{4}^{3}p^{3}q^{3s}.$$
 (20)

Продолжая получение выражений через рекуррентное соотношение, можно заметить, что на этапе $P_{ks+(k-1)}$ появляется новый член выражения со своим коэффициентом, верхний индекс числа сочетаний которого совпадает с индексом числа сочетаний члена выражения, стоящего перед ним, а нижний индекс уменьшен на s.

На этапе P_{ks+k} тоже появляется новый член в выражении со своим коэффициентом, его верхний индекс числа сочетаний больше на единицу индекса числа сочетаний члена выражения, стоящего перед ним, а нижний индекс совпадает. Далее, начиная с P_{ks+k+1} число членов в выражении остается неизменным до $P_{(k+1)s+k}$.

В результате работы получены три варианта формулы неприема:

- первый вариант действителен в случае, когда остаток от деления n/s равен или больше целой части результата этого деления и совпадает с формулой, данной в [1]:

$$P_{n} = 1 - \sum_{i=1}^{\lfloor n/s \rfloor} (-1)^{i-1} p^{i-1} q^{i} (C_{n-is}^{i-1} + p C_{n-is}^{i}),$$
 (21)

где n/s — целая часть дроби n/s;

- второй вариант действителен в случае, когда остаток от деления n/s меньше целой части результата этого деления на 1 и имеет более сложный вид:

$$P_{n} = 1 - \left[\sum_{i=1}^{[n/s]} (-1)^{i-1} p^{i-1} q^{i} (C_{n-is}^{i-1} + p C_{n-is}^{i}) \right] - (-1)^{[n/s]-1} p^{[n/s]} q^{[n/s]s} C_{n-[n/s]s}^{[n/s]};$$
(22)

- третий вариант действителен в случае, когда остаток от деления n/s меньше целой части результата этого деления более, чем на 1:

$$P_{n} = 1 - \left[\sum_{i=1}^{[n/s]} (-1)^{i-1} p^{i-1} q^{i} \left(C_{n-is}^{i-1} + p C_{n-is}^{i} \right) \right] - (-1)^{[n/s]-1} p^{[n/s]-1} q^{[n/s]s} \left[C_{n-[n/s]s}^{[n/s]-1} + p C_{n-[n/s]s}^{[n/s]} \right].$$
 (23)

Таким образом, при определении надежности приема псевдослучайной последовательности по зачетному отрезку следует выбрать одну из трех точных формул, две из которых отличаются от известной формулы, приведенной в [1].

Литература

- 1. Радиолинии космических систем передачи информации / И. М. Тепляков [и др.]. М. : Сов. Радио, 1975. 174 с.
- 2. Хисамов, Д. Ф. Граничные оценки вероятности синхронизации псевдослучайной последовательности на каналах с произвольным распределением ошибок / Д. Ф. Хисамов // Междунар. конгресс «МАТЕМАТИКА в XXI в. Роль ММФ НГУ в науке, образовании и бизнесе», 25–28 июня 2003 г., Академгородок.
- 3. Козлов, А. Ф. О приближенном вычислении вероятности неприема сигнала фазового пуска : сб. науч. трудов / А. Ф. Козлов // МО СССР. 1965. № 11.
- 4. Храбров, Е. А. Разработка систем группового запуска и синхронизации сейсмических вибраторов при разведке нефти и газа: дис. ... канд. техн. наук: 05.09.03 / Е. А. Храбров. Гомель, 1999. 227 с.