МЕТОДЫ И СРЕДСТВА КОНТРОЛЯ ЭНЕРГОЭФФЕКТИВНОСТИ ТРУБОПРОВОДНОГО ТРАНСПОРТА НЕФТИ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ ЧАСТЬ 2. СТАНЦИОННЫЕ И СИСТЕМНЫЕ ПАРАМЕТРЫ

Ю. Г. КУЗЬМИНСКИЙ

Государственное научное учреждение «Институт механики металлополимерных систем НАН Беларуси имени В. А. Белого», г. Гомель

В. И. ВЬЮН

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

А. А. КОСТЮЧЕНКО

РУП «Гомельтранснефть Дружба», Республика Беларусь

В первой части статьи приведено описание методов и результатов контроля параметров энергоэффективности на линейной части магистрального участка нефтепровода.

Программное обеспечение контроля энергоэффективности

Входными данными подсистем идентификации характеристик насосных агрегатов и параметров НПС являются аналоговые и логические параметры из специальной базы корпоративной сети. В их число входят давления, объемные скорости потоков и температура нефти по данным ультразвуковых расходомеров, активные потребляемые мощности насосных агрегатов, получасовые расходы активной и реактивной энергии по фидерам учета, состояния задвижек и перемычек. Эта база данных пополняется с получасовым интервалом информацией АСУ ТП из технологической сети предприятия и α-системы учета электроэнергии (с ежесуточным опросом по корпоративной сети).

Результирующими параметрами данной подсистемы, представленными на рисунках 1 и 2, являются:

- суммарная потребляемая мощность и расход электроэнергии по НПС за сутки;
- доля насосных агрегатов в потребляемой на НПС электроэнергии;
- потери давления на каждой насосной;
- КПД каждой насосной, определяемый аналогично КПД насосных агрегатов, но на основании разницы давлений на камерах пуска и приема скребка:

$$\eta_{\%}^{\text{\tiny HC}} = 2,724 \frac{Q \cdot \Delta P_{\text{\tiny CKP}}}{\Sigma N};$$

- для каждого насоса данные о потребляемой мощности (текущая, минимальная суточная, максимальная суточная), развиваемом давлении, объемной скорости потока, плотности нефти, коэффициенте мощности соз φ ;
- данные о параметрах энергоэффективности каждого насосного агрегата (текущее КПД и соотношение с паспортным, коэффициенты изменения мощностной и напорной характеристик насосного агрегата по методу «изменения диаметра рабочего колеса»);

 для каждого насосного агрегата строятся графики паспортных и текущих характеристик.

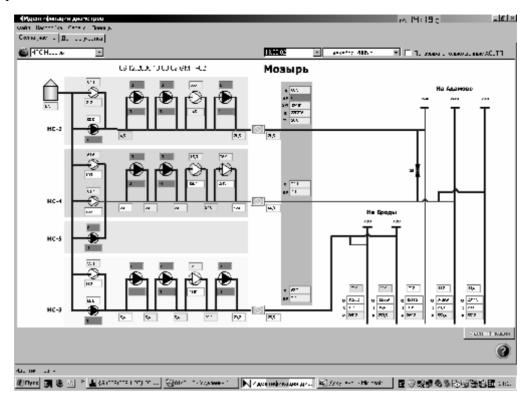


Рис. 1. Данные программы идентификации параметров нефтеперекачивающих станций

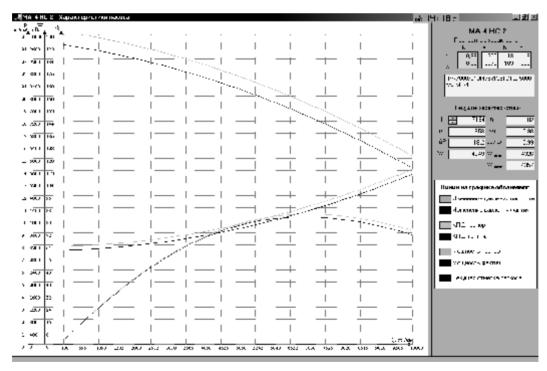


Рис. 2. Данные программы идентификации характеристик насосного агрегата

Применение программы идентификации характеристик насосных агрегатов и параметров НПС характеризуется следующими фактами:

1. При отсутствии информации о межагрегатных давлениях они восстанавливаются для однотипных насосов. Восстанавливаются потребляемые мощности по расходам электроэнергии.

- 2. Повышению точности расчетов будут способствовать оснащение всех НПС ультразвуковыми расходомерами и повышение устойчивости функционирования канала связи корпоративной и технологических сетей предприятия. Необходима периодическая поверка оперативных датчиков α-системы.
- 3. Необходимо для устранения задержки с приемом данных от α-системы повысить частоту опросов по выделенным каналам корпоративной сети.

Сводки параметров насосных агрегатов и НПС приведены в табл. 1 и 2. Худшие КПД имеют подпорные насосы и насосы малой производительности. КПД насосов типа НМ 7000 выше, однако паспортных значений не достигает.

Таблица 1

Параметры энергоэффективности насосных агрегатов 06.12.2005 года

параметры энергоэффективности насосных агрегатов 06.12.2005 года										
Hacoc	к напора	k _{мощности}	$k_{ m K\Pi J}$	кпд	cos φ					
Гом ³ 1	0,99	1,02	0,9	73,7	1,0					
Гом ⁴ 1	1,0	1,03	0,93	75,6	0,89					
Γοм ² ₂	0,92	0,96	0,9	75,4	1,0					
Γοм ⁴ ₂	0,97	1,0	0,93	78,4	1,0					
Защ ² ₁	0,96	1,01	0,84	69,8	_					
Защ ⁴ ₁	0,96	1,03	0,81	66,8	_					
Защ ⁴ ₂	0,96	0,98	0,98	82,0	0,99					
$Mo3^{\Pi l}_{2}$	1,02	1,05	0,93	66,5	0,71					
Mo3 ⁴ ₂	0,99	1,01	0,94	69,4	1,0					
Mo3 ³ ₃	1,01	1,02	0,97	78,0	1,0					
Mo3 ^{π1} ₄	0,95	1,03	0,85	61,6	0,82					
Mo3 ^{π2} ₄	0,95	1,01	0,89	64,7	0,79					
Mo3 ³ ₄	1,0	1,01	0,96	78,3	0,88					
Mo3 ⁴ ₄	0,96	0,99	0,95	76,9	0,89					
Typ ¹ ₂	0,97	1,04	0,84	70,3	0,89					
Typ ³ ₂	0,96	1,0	0,9	75,5	0,89					
Typ ⁴ ₂	0,95	0,99	0,89	75,0	0,89					
Π ин $^{1}_{2}$	0,96	1,06	0,82	70,3	1,0					
Пин ² ₂	1,01	1,05	0,89	75,0	0,89					
Пин ³ 2	1,01	1,04	0,93	78,2	0,9					
Коб ² ₂	1,0	1,04	0,86	74,5	1,0					
Коб4 ¹ ₂	1,0	1,05	0,9	75,7	0,89					

 Таблица 2

 Параметры энергоэффективности нефтеперекачивающих станций 06.12.2005 года

Насосная станция	КПД станции, (%)	Средний КПД насосных агрегатов, %	Потери давления, кг/см ²	Доля агрегатов в потреблении электроэнергии НПС, %
Гомель-1	72,1	74,6	1,1	96,4

Гомель-2	73,6	76,9	1,5	
Защебье-1	63,7	68,3	2,0	98,8
Защебье-2	67,8	82,0	3,2	90,0
Мозырь-2	66,5	69,4	_	
Мозырь-3	68,7	78,0	2,2	96,8
Мозырь-4	72,4	77,6	2,4	
Туров-2	67,6	73,6	3,1	98,9
Пинск-2	69,0	74,6	3,7	_
Кобрин-2	68,9	75,1	2,7	99,0

Падение напора в насосных агрегатах в основном объясняется ростом гидравлических потерь в щелевых уплотнениях. За 10000 часов работы зазор увеличивается с 0,3 до 1,5 мм, при этом гидравлические потери насоса HM-7000 растут с 75 до 580 $\rm m^3/\rm q$ [1].

Коэффициент роста зазора определяется по следующему алгоритму:

- по фактическим напору и подаче, коэффициентам паспортной характеристики определяем гидравлические потери Δq из уравнения

$$h_{\text{факт}} = a + b(q_{\text{факт}} + \Lambda q) + c(q_{\text{факт}} + \Delta q)^2;$$

 по фактическим давлениям, плотности, размерам колеса и вычисленным гидравлическим потерям определяем коэффициент роста зазора из уравнения

$$k_{\varepsilon} = \frac{\Delta q}{2\pi d_1 b \frac{1}{\sqrt{\frac{0,06l}{2b} + 1,5}} \sqrt{\frac{2 \cdot 10^5 (p_2 - p_1)}{\rho(t)}}}.$$

Так, при $k_h = 0.99$ для MA-2 насосной Пинск-2 коэффициент роста зазора имеет значение 2,9, что соответствует наработке примерно в 7500 часов и гидравлическим потерям в 240 м 3 /ч.

Входными параметрами подсистемы суточных сводок энергоэффективности являются данные отчетов энергетиков и диспетчеров по энергопотреблению НПС и массе перекачанной нефти по направлениям. Диспетчерами дополнительно вносятся существенные для анализа параметры технологического процесса — температура нефти, количество пусков насосов, факт пропуска очистных устройств, режим перекачки, идентифицированный диаметр.

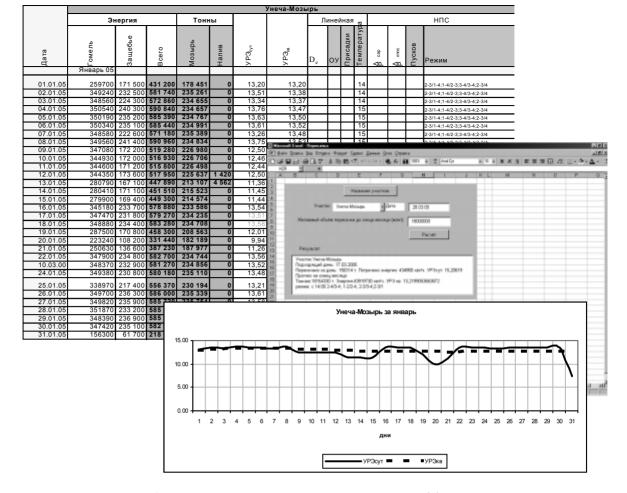


Рис. 3. Данные программы суточных сводок энергоэффективности

Выходными параметрами сводки энергоэффективности, представленными на рис. 3, являются:

- удельные расходы электроэнергии по направлениям перекачки за сутки;
- удельные расходы электроэнергии по направлениям перекачки с начала квартала;
- графики изменения удельного расхода электроэнергии по направлениям за месяц;
- процедура расчета времени перехода с режима на режим в последние сутки месяца с целью точного выполнения плана перекачки.

В табл. 3 приведены сведения о параметрах энергоэффективности на основных направлениях перекачки за 11 месяцев 2005 г. Наиболее эффективным оказался месяц май, наименее эффективным — февраль. Максимальная температура достигнута в сентябре, несмотря на это максимальная энергоэффективность не достигнута. Не оказывает влияния на показатели энергоэффективности количество пусков насосных агрегатов.

Таблица 3

Сводные данные по энергоэффективности за 2005 год

Месяц	«Унеча – Мозырь»	«Мозырь – Адамова Застава»

	Температу	Брутто	Удельный	Темпера	Брутто	Удельный
	pa	перекачки,	расход	тура	перекач	расход
		%	электроэнер		ки, %	электроэне
			гии, %			ргии, %
Среднее	_	6786399 т	12,72	_	4145161 т	14,59
		100 %	кВт-ч/тыс. т-км		100 %	кВт-ч/тыс. т-км
			100 %			100 %
Январь	14,5	102,16	100,93	16,5	102,88	105,51
Февраль	14,5	93,84	104,29	16,5	93,32	106,18
Март	14,0	102,67	105,82	14,5	103,10	106,58
Апрель	17,5	98,50	100,41	17,5	98,39	100,55
Май	21,5	106,19	101,85	21,5	103,22	99,48
Июнь	22,5	95,06	101,03	25,0	95,40	95,23
Июль	26,0	100,01	96,04	27,0	101,51	95,15
Август	28,0	102,07	97,27	28,0	99,36	93,40
Сентябрь	29,5	101,35	97,77	27,5	98,77	97,31
Октябрь	27,0	97,04	92,84	27,0	99,11	95,80
Ноябрь	23,0	99,59	100,61	22,0	101,50	104,28

В целях долгосрочного планирования были разработаны и уточнены по фактическим данным аналитические зависимости энергопотребления, включающие:

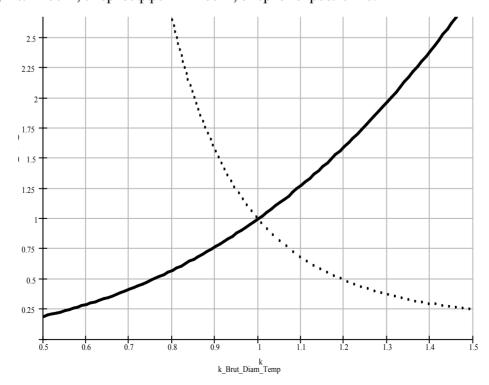
- расчет эквивалентного диаметра для лупинга $Flup(d_1, d_2)$ и вставки $Fvst(l_1, d_1, l_2, d_2)$, распределения потоков $xq(d_1, d_2)$, плотности p(t) и вязкости v(t) по температуре;
 - прогноз энергопотребления

$$E = \frac{k_E G}{\eta_{\text{MA}} \eta_{\text{собств}} \eta_{\text{HПC}} \eta_d \eta_t \eta_T \eta_q} \times \left(\frac{v(t)^{\alpha} \left(\frac{G}{T \rho(t)} \right)^{2-\alpha}}{d^{5-\alpha}} l + (h_{\text{K}} - h_{\text{H}}) + k_p \frac{\Delta p_{\text{HПC}} + p_{\text{K}} - p_{\text{H}}}{\rho(t)} \right),$$

где G — масса планируемой к перекачке нефти в тоннах; T — длительность периода в секундах; l — длина участка в километрах; d — эквивалентный диаметр участка нефтепровода в миллиметрах; t — средняя температура за период; $h_{\rm H}$ — высота в начале участка в метрах; $h_{\rm K}$ — высота в конце участка в метрах; $p_{\rm H}$ — начальное давление в кг/см²; $p_{\rm K}$ — конечное давление; $\Delta p_{\rm HIIC}$ — суммарные потери давления на НПС участка; $\eta_{\rm MA}$ — средний КПД магистральных насосных агрегатов; $\eta_{\rm cofcтB}$ — средняя доля насосных агрегатов в энергопотреблении участка; $\eta_{\rm HIIC}$ — коэффициент планируемых изменений потерь давления на НПС; η_d — коэффициент планируемых изменений эквивалентного диаметра; η_t — коэффициент планируемых изменений длительности периода; η_q — коэффициент планируемых изменений распределения потоков; k_E — масштабный множитель перевода произведения массы и напора в кВт·ч; k_m — масштабный множитель перевода исходных параметров в систему СИ, k_p — масштабный множитель перевода давления в напор;

- расчет специфических для каждого участка нефтепровода коэффициентов изменения энергопотребления при малом изменении:
 - длительности планируемого периода η_T ($T_{\text{нов}}/T_{\text{исх}}$): так, при изменении длительности годового периода с 365 до 357 дней КПД использования электроэнергии на участке «Мозырь Адамова Застава» снизится до 93,7 % от исходного;

- идентифицированных эквивалентных диаметров $\eta_d(d_{\text{нов}}/d_{\text{исх}})$: так, при изменении диаметра с 1078 до 1070 мм на участке «Мозырь Адамова Застава» КПД использования электроэнергии снизится до 98,9 % от исходного;
- температуры $\eta_t(t_{HOB}/t_{UCX})$;
- распределения потоков по трубопроводам $\eta_a(k_{\text{pacct}}, q^1_{\text{факт}}/q^1_{\text{теор}}, d_1, d_2)$:


$$\eta_{q}(k_{l},k_{q1},d_{1},d_{2}) = \frac{100}{1 + \left[\frac{(1 - fq(d_{1},d_{2})k_{q1})^{3-\alpha}}{d_{2}^{5-\alpha}} + \frac{(fq(d_{1},d_{2})k_{q1})^{3-\alpha}}{d_{1}^{5-\alpha}} - 1\right]k_{l}}.$$

Так, при объемной фактической скорости $1100~{\rm m}^3/{\rm q}$ по трубопроводу $D_{\rm y}=630~{\rm перегона}$ Мозырь — Туров, составляющего ¼ длины участка «Мозырь — Адамова Застава», КПД использования электроэнергии составит 98,9 % в сравнении с режимом при теоретической скорости $1500~{\rm m}^3/{\rm q}$;

– суммарных потерь давления на НПС $\eta_{HПC}(\Delta P_{HOB}/\Delta P_{ucx})$.

На рис. 4 приведена нелинейность изменения коэффициента энергопотребления при изменении производительности и идентифицированных диаметров (пунктир) на участке «Мозырь – Адамова Застава».

Ранее активно использовалась в целях прогноза энергопотребления программная система ДИМОНТ, разработанная как и все вышеперечисленные программные продукты ОДО «Техносистемпроект». На основании задания входных параметров (включенные насосы И их характеристики, диаметры, температура) рассчитываются: производительность режима перекачки, потребляемая мощность, объемные скорости, давления, плотность и вязкость, стоимость потребляемой в сутки электроэнергии, удельный расход электроэнергии. Имеются разнообразные формы отображения расчетных параметров, в том числе и в графическом виде. На рис. 5 приведена форма сопоставления расчетного и контрольного режимов по основным параметрам - включенные насосы, производительность, энергоэффективность, энергопотребление.

Puc. 4. Изменение энергопотребления при изменении производительности и диаметров (пунктир)

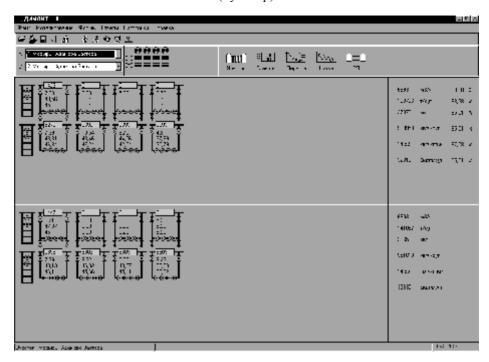


Рис. 5. Сопоставление режимов перекачки в системе ДИМОНТ

Предлагаемые расширения инструментальных средств

Действенным инструментом оперативного управления энергоэффективностью будет форма основных параметров технологического процесса перекачки нефти, отображающая в реальном масштабе времени расходы нефти и потребления электроэнергии, удельный расход электроэнергии на основных объектах предприятия (витрина данных). Форма выполняет сопоставление этих показателей за различные промежутки времени.

 $\it Tаблица~4$ Макет витрины параметров технологического процесса 05.03.2006 года в 12:44

Пара	метры	энерг	эффек	стивно	сти в ре	еально	м врем	ени 21	.05.2006	б г. в 12:	45		
	Расход нефти					Удельный расход электроэнергии				Расход электроэнергии			
Участки магистральных нефтепроводов	Сутки	План месяца	Предыдущие сутки	Предыдущий месяц	За сутки	За месяц	Предыдущие сутки	Предыдущий месяц	За сутки	Среднее за месяц	Предыдущие сутки	Предыдущий месяц	
	Т	%	%	%	кВт∙ч/ тыс.	кВт∙ч/ тыс.	%	%	тыс. кВт∙ч	тыс. кВт∙ч	%	%	
					т•км	т•км							
«Унеча –													
Мозырь»	110085	80,01	99,7	100,00	11,21	11,26	99,8	100,01	230,25	491,00	99,8	100,01	
«РНГДУ –													
Мозырь»	_	_	-	_	_	_	-	_	-	_	-	_	
«Мозырь –													
Адамова													
Застава»	65021	80,03	99,5	99,98	14,55	14,53	99,4	100,00	456,33	790,00	99,3	99,98	
«Мозырь –	_		_		_	_	_	_	_		_	_	

Броды»												
«Мозырь –												
НПЗ»	_	_	_	_	_	_	_	_	_	_	_	_

Целесообразно иметь следующие сводки, отражающие текущее положение с техническими параметрами энергоэффективности:

- 1. Суточная сводка параметров энергоэффективности НПС. Сводка включает суточные и среднемесячные данные о потерях давления, КПД каждой насосной, доле насосов в энергопотреблении НПС.
- 2. Декадная сводка по предприятию параметров энергоэффективности основного оборудования. Сводка включает соотношение паспортных и идентифицированных диаметров всех трубопроводов; КПД, наработка, коэффициенты изменения характеристик и щелевого зазора всех насосов.

Для детального анализа состояния насосного агрегата требуется построение математической модели энергопотребления. Локальные АСУ ТП НПС собирают необходимые параметры – температуры насоса, воздуха, масла, нефти, давление масла и воздуха, объемы подачи воздуха и масла, токовые нагрузки, напряжения. АСУ ТП верхнего уровня добавляет давления нефти, расход нефти и электроэнергии, потребляемые мощности, температура нефти. По расчетным энергетическим параметрам будет возможно восстановить значения основных параметров состояния насосного агрегата – величина щелевых зазоров, состояние изоляции, состояние подшипников. Более детальный анализ требует использования данных вибродиагностики.

Согласно расчетам рост температуры нефти на 4 °C приводит к снижению кинематической вязкости нефти на 2 сСт. Для режимов перекачки на участке «Мозырь – Адамова Застава» это означает рост производительности на 1,3 % (2000 т/сутки), рост энергопотребления на 0,5 % и снижение удельного расхода электроэнергии на 1,0 %. Подогрев нефти на каждой НПС участка на 1 °C требует 2900 кВт потребляемой мощности (для НПС Пинск это составляет 26 % суммарной потребляемой насосными агрегатами мощности). Эти аргументы дают основание считать затраты на подогрев нефти в насосе полезным использованием электроэнергии.

Заключение

Предложено на предприятиях трубопроводного транспорта службы создать энергоэффективностью, управления оснащенных не только достаточными инструментальными средствами прогноза соответствующим И анализа, но И правовым обеспечением. методическим Приведено описание применяемых программных средств контроля параметров энергоэффективности технологического процесса трубопроводного транспорта нефти в РУП «Гомельтранснефть Дружба» в текущего реальном масштабе времени И результаты анализа энергоэффективности. Предложены пути развития инструментальных средств контроля энергоэффективности. Приведены оценки тепловых потерь в насосах, которые позволяют частично отнести эти потери электроэнергии к полезному ее использованию.

Литература

1. Руководство по организации эксплуатации и технологии технического обслуживания и ремонта оборудования и сооружений нефтеперекачивающих станций: РД 39-30-1209-84. — Введ. 01.03.85. — Москва, 1985. — 278 с.

Получено 10.10.2006 г.