УДК 539.12

ЭФФЕКТЫ Z⁻-БОЗОНА НА УСКОРИТЕЛЕ CLIC С УЧЕТОМ ПОЛЯРИЗАЦИИ

В. В. АНДРЕЕВ

Учреждение образования «Гомельский государственный университет имени Ф. Скорины», Республика Беларусь

А. А. ПАНКОВ, И. А. ПАНКОВ

Филиал Международного центра теоретической физики имени А. Салама, г. Триест, Италия Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение

Стандартная Модель (СМ) не может претендовать на роль всеобъемлющей теории по ряду причин. Так, она содержит большое число (более десяти) свободных параметров, внесенных в нее извне искусственно. В то же время способ объединения сильных, электромагнитных и слабых взаимодействий в СМ не является удовлетворительным как из-за значительного различия масштабов содержащихся в ней констант связи, соответствующих трем калибровочным группам симметрии, так и вследствие их взаимной независимости. Поэтому вполне естественно предположить, что существует более фундаментальная теория, низкоэнергетический предел которой совпадает с СМ. К числу подобных теоретических построений относятся модели с расширенным калибровочным сектором, такие, например, как E_6 , LR, ALR и др. [1]–[4]. Их исследование (теоретическое и экспериментальное) представляет значительный интерес с точки зрения изучения эффектов за рамками СМ, или так называемой «новой физики».

На основе данных, полученных из низкоэнергетических экспериментов по нейтральным токам, результатов на e^+e^- коллайдере LEP, а также поиска прямого адронного рождения Z'-бозонов на коллайдере TEVATRON, можно заключить, что для большинства расширенных калибровочных моделей граничные значения на массы дополнительных Z'-бозонов лежат, как правило, выше 800–1000 ГэВ, а современный масштаб ограничений на угол смешивания составляет $|\phi| = 10^{-3}$ рад [1]–[4]. При этом наиболее точная информация об угле смешивания была получена преимущественно из экспериментов на e^+e^- коллайдере LEP по измерению резонансных наблюдаемых физических величин при энергии начальных пучков, равных массе стандартного Z -бозона, $\sqrt{s} = M_Z$, в процессах

$$e^+ + e^- \to f + \overline{f},\tag{1}$$

где конечными фермионными состояниями f были лептоны $f = e, \mu, \tau$ и кварки q = c, b. Кроме того, эта информация дополнялась данными, полученными на ускорителе TEVATRON.

Процесс (1) является весьма эффективным инструментом поиска эффектов Z - Z' смешивания в резонансной области энергии, $\sqrt{s} \approx M_Z$. Однако использование

только этого процесса при более высоких энергиях, например, при энергиях, которые планируется достичь на коллайдере CLIC ($\sqrt{s} = 3$ ТэВ), уже не является очевидным, так как не даст заметного преимущества в точности измерения физических величин по сравнению с другими (конкурирующими) процессами. Это происходит из-за падения чувствительности реакции (1) к параметрам Z'-бозона с ростом энергии. С другой стороны, процесс аннигиляционного рождения пар W^{\pm} -бозонов

$$e^{+} + e^{-} \to W^{+} + W^{-} (\to 2l\overline{\nu}; \to l\overline{\nu} + 2j; \to 4j)$$
⁽²⁾

является чувствительным к параметрам Z'-бозона, а именно к фермионным и бозонным константам связи, к углу Z - Z' смешивания φ и массе $M_{Z'}$ [5]–[13].

Основной целью данной работы является исследование эффектов Z'-бозонов на коллайдере будущего поколения CLIC на основе данных по прогнозируемым параметрам данного ускорителя (светимость, энергия в системе центра масс, степень поляризации начальных пучков). В работе получены модельно независимые ограничения на обобщенные параметры ξ_{+1} и ξ_{-1} , являющиеся индикатором наличия эффектов за рамками CM, и рассчитаны ограничения на динамические параметры Z'-бозона (угол Z - Z' смешивания φ и масса $M_{Z'}$) в рамках различных моделей с расширенным калибровочным сектором. Детально исследована роль поляризации начальных e^+e^- -пучков в увеличении чувствительности исследуемого процесса к параметрам бозонного смешивания.

Следует особо отметить, что для получения наблюдаемых исследуемого процесса в работе были использованы аналитические вычисления матричных элементов. Эффективность непосредственного расчета матричных элементов особенно проявляется при анализе поляризационных наблюдаемых. В развитие этого направления большой вклад внесла белорусская школа под руководством академика Федора Ивановича Федорова [14]–[18]. Метод Богуша–Федорова [14]–[18] получил дальнейшее развитие и показал свою дееспособность при расчетах процессов взаимодействия элементарных частиц (см. [19]–[21] и др.).

Расширенные калибровочные модели

Общий вид лагранжиана нейтральных токов для групп с расширенным калибровочным сектором можно представить в виде:

$$-L_{NC} = eA_{\beta}J_{\gamma}^{\beta} + eg_{1}Z_{\beta}J_{Z}^{\beta} + eg_{2}Z_{\beta}'J_{Z'}^{\beta}, \qquad (3)$$

где e, g_1 и g_2 – соответственно константы связи γ -кванта, Z-бозона и Z'-бозона с фермионами.

Лагранжиан (3) содержит следующие нейтральные токи:

$$J_{\gamma}^{\beta} = \sum_{f} \overline{f} \gamma^{\beta} Q_{f} f, \quad J_{Z}^{\beta} = \sum_{f} \overline{f} \gamma^{\beta} \big[v - \gamma_{5} a \big] f, \quad J_{Z'}^{\beta} = \sum_{f} \overline{f} \gamma^{\beta} \big[v' - \gamma_{5} a' \big] f.$$

Здесь Q_f – электрический заряд фермиона f; v, a и v', a' – соответственно векторные и аксиальные константы связи Z и Z'-бозонов с фермионами (в нашем случае это электроны).

Остальные параметры определены следующим образом: $e = \sqrt{4\pi\alpha}$, $v = T_3^e - 2Q_e s_W^2 = -1/2 + 2s_W^2$, $a = T_3^e = -1/2$, $g_1 = 1/(2s_W c_W)$, где $s_W = \sin\theta_W$, $c_W = \cos\theta_W$, α – постоянная тонкой структуры, θ_W – угол Вайнберга, а g_2 зависит от расширенной калибровочной модели (значения g_2 для различных моделей приведены ниже). Наиболее популярные модели, предсказывающие существование Z'-бозонов, можно условно разделить на две группы. К первой из них относятся теории, в основе которых лежат расширенные, в сравнении с СМ, калибровочные группы и характеризующиеся элементарной структурой хиггсовского сектора. Это, например, левоправосимметричные модели (*LR*), альтернативные лево-правосимметричные модели (*ALR*), E_6 -модели и т. д. Ко второй группе можно отнести так называемые альтернативные модели, нарушение электрослабой симметрии в которых происходит за счет механизма, отличающегося от хиггсовского. Это, например, модели техницвета, составных *W*- и *Z*-бозонов, модели с нарушенной электрослабой симметрией за счет сильновзаимодействующего сектора (*BESS*-модель) и т. п. В статье анализируются феноменологические следствия наиболее популярных моделей, принадлежащих лишь к первой группе [1]–[4]. В первую очередь это E_6 -, *LR*- и *SSM*-модели.

В теориях с расширенным калибровочным сектором существует связь между состояниями Z и Z', а также их собственными массовыми («физическими») состояниями Z_1 и $Z_2[2]$:

$$Z_1 = Z\cos\varphi + Z'\sin\varphi; \tag{4}$$

$$Z_2 = -Z\sin\varphi + Z'\cos\varphi.$$
⁽⁵⁾

Исходя из соотношений (4) и (5), а также выражения для лагранжиана (3), легко получить формулы для констант связи Z₁- и Z₂-бозонов с фермионами:

$$v_1 = v\cos\phi + \frac{g_2}{g_1}v'\sin\phi, \quad a_1 = a\cos\phi + \frac{g_2}{g_1}a'\sin\phi;$$
 (6)

$$v_2 = -\frac{g_1}{g_2} v \sin \phi + v' \cos \phi, \quad a_2 = -\frac{g_1}{g_2} a \sin \phi + a' \cos \phi.$$
 (7)

Выражения для трехбозонных констант $g_{\scriptscriptstyle WWZ_1}$ и $g_{\scriptscriptstyle WWZ_2}$ получаются аналогично:

$$g_{WWZ_1} = \cos \varphi \, g_{WWZ}, \, g_{WWZ_2} = -\sin \varphi \, g_{WWZ},$$

где $g_{WWZ} = c_W / s_W$ – трехбозонная константа стандартного *Z*-бозона (без *e*).

Соотношения (6) и (7) содержат константы v', a' и g_2 , значения которых определяются отдельно для каждой из моделей. В табл. 1 приведены формулы, позволяющие рассчитать значения этих констант в рамках исследуемых моделей.

Таблица 1

Модель	v′	<i>a'</i>	g_2
<i>Е</i> ₆ -модели	$\frac{2\cos\beta}{\sqrt{10}}$	$\frac{\cos\beta}{\sqrt{10}} + \frac{\sin\beta}{\sqrt{6}}$	$\sqrt{\frac{5}{3}}g_1s_W$
LR-модели	$\frac{1}{\alpha} - \frac{\alpha}{2}$	$\frac{1}{\alpha}$	$g_1 s_W$
SSM-модель	ν	a	g ₁

Константы v', a' и g₂ для различных моделей с расширенным калибровочным сектором

Матричные элементы процесса $e^+e^- \rightarrow W^+W^-$

В СМ процесс (2) в борновском приближении состоит из двух *s*-канальных диаграмм с обменом γ -квантом и Z-бозоном и *t*-канальной диаграммы с обменом нейтрино v. Для моделей с расширенным калибровочным сектором возникает иной набор диаграмм. А именно, диаграммы с обменом нейтрино v и γ -квантом не изменяются. Диаграмма с обменом Z-бозоном видоизменяется за счет Z - Z' смешивания, и состояние Z переходит в состояние Z_1 . Также появляется диаграмма с обменом тяжелым Z_2 -бозоном. Матричный элемент процесса (2) можно представить как сумму частей:

$$M = M(v) + M(\gamma) + M(Z_1) + M(Z_2).$$
 (8)

Выражение (8) перепишем в виде:

$$M = M_{SM} + \Delta M = M(v) + M(\gamma) + M(Z) + \Delta M, \quad \Delta M = M(Z_1) + M(Z_2) - M(Z), \quad (9)$$

разделяя части, связанные с вкладом СМ и эффектами Z'-бозона.

Матричные элементы процесса (2) в рамках СМ, а также с учетом АКК рассмотрены в работах [22]–[24]. В данной статье приведены выражения матричных элементов с учетом дополнительного Z'-бозона. Для получения компактных выражений с произвольными значениями спиральностей фермионов (в безмассовом случае) и W-бозонов использовался метод базисных спиноров [21].

Для диаграмм с обменом нейтрино в системе центра инерции получаем:

$$M_{0,0}^{\lambda,\lambda'}(\mathbf{v}) = 2\,\delta_{\lambda',-\lambda}\delta_{\lambda,-1}\,n_s \left(\frac{t_w(0)}{\gamma_w^2} - \gamma_w^2\right)\sin\theta,$$
$$M_{\tau,\tau'}^{\lambda,\lambda'}(\mathbf{v}) = \delta_{\lambda',-\lambda}\delta_{\lambda,-1}\,n_s \left[1 - t_w(\theta)(1 + \tau\beta_w)(1 - \tau'\beta_w)\right]\sin\theta,$$
$$M_{0,\tau'}^{\lambda,\lambda'}(\mathbf{v}) = -M_{-\tau,0}^{\lambda,\lambda'}(\mathbf{v}) = \delta_{\lambda',-\lambda}\delta_{\lambda,-1}\,n_s\sqrt{2}\,\gamma_w\tau(1 + \tau\cos\theta)\left[1 - \frac{(1 - \tau\beta_w)t_w(\theta)}{\gamma_w^2}\right]. \tag{10}$$

Здесь λ , λ' – спиральности электрона и позитрона, соответственно, $\tau(\tau') = \pm 1(T)$, 0(L) – спиновые состояния $W^{-}(W^{+})$ -бозонов, $t_{W}(\theta) = (1 + \beta_{W}^{2} - 2\beta_{W} \cos \theta)^{-1}$, $\beta_{W} = \sqrt{1 - 1/\gamma_{W}^{2}}$, $\gamma_{W} = \sqrt{s}/(2M_{W})$, $n_{s} = (2\pi\alpha)/(\beta_{W}s_{W}^{2})$, M_{W} – масса W-бозона, θ – угол рассеяния (между W^{-} -бозоном и электроном) в системе центра масс.

Для диаграмм с обменом *у* -квантом и *Z* -бозоном имеем:

$$M_{\tau,\tau'}^{\lambda,\lambda'}(\gamma) + M_{\tau,\tau'}^{\lambda,\lambda'}(Z) = 4\pi\alpha\lambda\beta_{W}\delta_{\lambda,-\lambda'}\left(g_{WW\gamma}A_{\tau,\tau'}^{\lambda}(\gamma) - g_{WWZ}\frac{g_{-\lambda}\chi}{2s_{W}c_{W}}A_{\tau,\tau'}^{\lambda}(Z)\right), \quad (11)$$

где $\chi = s/(s - M_Z^2)$, $g_{-\lambda} = v - \lambda a$, $g_{WW\gamma}$ – трехбозонная константа γ -кванта. Ниже приведены выражения для $A_{\tau,\tau'}^{\lambda}$:

$$A_{0,0}^{\lambda}\left(\gamma,Z\right) = -\left(1+2\gamma_{W}^{2}\right)\sin\theta, \quad A_{\tau,\tau'}^{\lambda}\left(\gamma,Z\right) = -\delta_{\tau,\tau'}\sin\theta, \quad (\tau,\tau'=\pm1); \quad (12)$$

$$A_{0,\tau}^{\lambda}(\gamma,Z) = -A_{-\tau,0}^{\lambda}(\gamma,Z) = \sqrt{2}\gamma_{W}(\tau\lambda - \cos\theta), (\lambda,\tau = \pm 1).$$
(13)

Рассмотрим часть матричного элемента ΔM из формулы (9).

$$\Delta M_{\tau,\tau'}^{\lambda,\lambda'} = 4\pi\alpha \lambda \,\delta_{\lambda,-\lambda'} \beta_W [g_1 \,g_{WWZ} \,g_{-\lambda} \,\chi \,A_{\tau,\tau'}^{\lambda}(Z) - g_1 \,g_{WWZ_1} \,g_{-\lambda,1} \,\chi_1 \,A_{\tau,\tau'}^{\lambda}(Z_1) - g_2 \,g_{WWZ_2} \,g_{-\lambda,2} \,\chi_2 \,A_{\tau,\tau'}^{\lambda}(Z_2)].$$

$$(14)$$

Структуры χ_1, χ_2 и $g_{\lambda,1}, g_{\lambda,2}$ имеют следующий вид:

$$\chi_{1,2} = s/(s - M_{Z_{1,2}}^2), \ g_{\lambda,1} = v_1 + \lambda a_1, \ g_{\lambda,2} = v_2 + \lambda a_2.$$

Поскольку $A_{\tau,\tau'}^{\lambda}(Z) = A_{\tau,\tau'}^{\lambda}(Z_1) = A_{\tau,\tau'}^{\lambda}(Z_2)$, выражение для ΔM принимает вид:

$$\Delta M_{\tau,\tau'}^{\lambda,\lambda'} = \frac{4\pi\alpha\,\lambda\,\delta_{\lambda,-\lambda'}\beta_W}{2s_W c_W}\,A_{\tau,\tau'}^{\lambda}(Z)\,g_{WWZ}\,g_{-\lambda}\,\chi \left[1 - \cos\varphi\,\frac{g_{-\lambda,1}\,\chi_1}{g_{-\lambda}\,\chi} + \sin\varphi\,\frac{g_2}{g_1}\,\frac{g_{-\lambda,2}\,\chi_2}{g_{-\lambda}\,\chi}\right] = \frac{4\pi\alpha\,\lambda\,\delta_{\lambda,-\lambda'}\beta_W}{2s_W c_W}\,A_{\tau,\tau'}^{\lambda}(Z)\,g_{WWZ}\,g_{-\lambda}\,\chi\xi_{\lambda},$$
(15)

где

$$\xi_{-\lambda} = 1 - \cos \varphi \frac{g_{-\lambda,1} \chi_1}{g_{-\lambda} \chi} + \sin \varphi \frac{g_2}{g_1} \frac{g_{-\lambda,2} \chi_2}{g_{-\lambda} \chi}.$$
 (16)

Таким образом, функция ΔM представляет собой произведение двух частей. Первая является чисто кинематической. Вторая эффективно содержит в себе «новую физику» и охватывает весь спектр моделей с расширенным калибровочным сектором, предполагающим наличие Z'-бозона. Эту часть можно представить как пару обобщенных параметров ξ_{-1} , ξ_{+1} , которые и будут использоваться для анализа эф-фектов «новой физики».

В качестве наблюдаемых в данной работе будем использовать дифференциальные сечения процесса (2). В общем виде такое сечение для частично продольно поляризованных фермионных пучков имеет вид [25], [26]:

$$\frac{d\sigma}{dz} = \frac{1}{4} \left[\left(1 + P_L \right) \left(1 - P_L' \right) \frac{d\sigma^+}{dz} + \left(1 - P_L \right) \left(1 + P_L' \right) \frac{d\sigma^-}{dz} \right], \quad z = \cos\theta, \tag{17}$$

где

$$\frac{d\sigma^{\lambda}}{dz} = \sum_{\tau,\tau'} \frac{\beta_W}{32\pi s} |M_{\tau,\tau'}^{\lambda,-\lambda}|^2 \operatorname{Br}\left(W \to q\overline{q}\right) \operatorname{Br}\left(W \to l\nu_l\right), \ (\tau,\tau'=0(L),\pm 1(T)).$$

Множители $Br(W \to q\bar{q})$ и $Br(W \to l\nu_l)$ представляют собой сечения распадов *W*-бозона в пару кварков и пару лептонов соответственно. То есть в данной работе учитывается так называемая «полулептонная» мода распада *W*-бозонов.

Численные результаты

Подробное описание метода получения ограничений на исследуемые параметры в данной статье приводиться не будет. Отметим лишь, что данная методика основана на использовании функции χ^2 . Подробную информацию об этой методике можно узнать, например, в работе [27].

Следует также отметить, что при энергиях, которые планируется достичь на коллайдере CLIC, существенный вклад (вплоть до 50 %) в дифференциальные сечения (17) будут вносить радиационные поправки. Поэтому в работе проводился полный учет электрослабых $O(\alpha)$ радиационных поправок. Расчеты проводились с использованием пакетов *Feynarts/Formcalc* [28], [29].

Процедура получения ограничений была выполнена с использованием системы аналитических и численных вычислений «*Mathematica 7.0*». При этом использовались следующие прогнозируемые параметры установки CLIC [30]:

 $L_{int} = 1860 \ \text{d}6^{-1}, \ \sqrt{s} = 3000 \ \Gamma \Rightarrow \text{B}, \ \epsilon = 0,3, \ P_L = 80 \ \%, \ P'_L = 0 \ \%, \ 60 \ \%.$

Одной из основных задач данной работы является определение влияния поляризации начальных и конечных пучков на получаемые ограничения. Поэтому было рассмотрено несколько различных случаев.

Начальные пучки: исследовались неполяризованные и частично продольно поляризованные пучки со степенью поляризации электронов $P_L = 80$ % (минимальное значение, которое планируется достичь на коллайдере CLIC) и степенями поляризации позитронов $P'_L = 0$ % и $P'_L = 60$ %. Данный выбор обусловлен тем фактом, что поляризации позитронов тяжелее достичь в технологическом плане, поэтому рассматриваются варианты как с неполяризованными позитронами, так и с возможностью их поляризации вплоть до 60 %.

Конечные состояния: проводились исследования неполяризованных и продольно поляризованных (τ , $\tau' = 0$) W^{\pm} -бозонов. Интерес представляют именно эти поляризационные состояния, поскольку чувствительность поперечно поляризованных (τ , $\tau' = \pm 1$) и интерференционных ($\tau = 0$, $\tau' = \pm 1$) состояний значительно подавляется вкладом *t*-канальной диаграммы с обменом нейтрино.

На рис. 1 представлены области ограничений на обобщенные параметры ξ_{+1} , ξ_{-1} с уровнем достоверности *C.L.* = 95 % для различных случаев поляризации начальных и конечных пучков. Так, на рис. 1, *а* получены ограничения для случая неполяризованных *W*-бозонов при степени поляризации электронов, равной 80 %, а позитронов – 60 %. На рис. 1, *б* представлены аналогичные результаты, но для неполяризованных позитронов ($P'_L = 0$ %).

Рис. 1. Разрешенные области для параметров $\xi_{_{+1}}$ и $\xi_{_{-1}}$ в случае неполяризованных *W*-бозонов и частично поляризованных начальных пучков: $a - P_L = 80$ %, $P'_L = 60$ %; $\delta - P_L = 80 \%, P'_L = 0$

На графиках отдельно представлен случай неполяризованных начальных пучков (штрихпунктирная линия). Штриховыми и пунктирными линиями обозначены соответственно лево-правые и право-левые поляризационные состояния. Сплошной линией обозначены непосредственно сами ограничения на исследуемые параметры, получающиеся путем комбинирования лево-правых и право-левых состояний.

На основе полученных данных можно сделать вывод о том, что чем выше степень поляризации начальных пучков, тем более точными и строгими получаются ограничения на параметры, характеризующие эффекты Z'-бозона. Таким образом, поляризация позитронов на коллайдере CLIC будет являться весьма желательной опцией. Что касается поляризационных состояний W-бозонов, то здесь более предпочтительным, с точки зрения строгости ограничений, является вариант с регистрацией и учетом лишь продольно поляризованных состояний последних. Следует, однако, отметить, что тем самым мы можем потерять часть важной информации, которую несут остальные поляризационные состояния. К тому же экспериментальная регистрация поляризации *W*-бозонов представляется довольно проблематичной. В силу вышеупомянутых фактов рассмотрение неполяризованных *W*-бозонов является более предпочтительным. Очевидно, что коэффициент корреляции между обобщенными параметрами ξ₊₁ и ξ₋₁ является крайне малым [27].

Воспользуемся далее формулой (16) для перехода от обобщенных параметров ξ_{+1}, ξ_{-1} к таким параметрам, как угол смешивания φ и масса Z_2 -бозона M_{Z_2} . Для этого необходимо зафиксировать фермионные константы связи $v_{1,2}$ и $a_{1,2}$, а также константу g_2 , то есть перейти к рассмотрению конкретных моделей с расширенным калибровочным сектором. Для получения выражений $v_{1,2}$ и $a_{1,2}$ необходимо воспользоваться формулами (6) и (7), куда входят константы v', a' и g_2 .

На графиках (рис. 2) представлены полученные ограничения на угол смешивания φ (ось X) и массу Z_2 -бозона M_{Z_2} (ось Y). В силу того что рассматриваемых моделей довольно много, будут представлены результаты лишь для одной из них (η -модель). На рис. 2 сплошная и штриховая линии обозначают ограничения для случая неполяризованных и продольно поляризованных W-бозонов, соответственно.

Рис. 2. Разрешенные области для параметров φ и M_{Z_2} (η-модель), полученные для поляризованных электрон-позитронных пучков: $a - P_L = 80 \%, P'_L = 60 \%; \delta - P_L = 80 \%, P'_L = 0$

Из графиков видно, что на основе анализа процесса (2) при энергиях, планируемых к реализации на коллайдере CLIC, можно будет получить довольно строгие ограничения на угол Z - Z' смешивания $\varphi \sqcup 10^{-4}$, масштаб которых совпадает с радиационными поправками.

Заключение

В работе предложен метод модельно независимого анализа эффектов Z'-бозонов в процессе $e^+ + e^- \rightarrow W^+ + W^-$ с помощью обобщенных параметров ξ_{+1} и ξ_{-1} , которые позволяют охватить целый класс моделей с расширенным калибровочным сектором. На основе предложенного метода проведен модельно независимый анализ эффектов, индуцируемых Z'-бозонами, а также анализ ряда конкретных моделей (E_6 , LR и SSM). Получены интервальные оценки для обобщенных параметров ξ_{+1} и ξ_{-1} . Получены также ограничения на угол Z - Z' смешивания φ и массу Z_2 -бозона для исследуемого класса моделей. Исследовано влияние поляризации начальных пучков на получаемые ограничения. Было выяснено, что использование поляризованных начальных пучков позволяет получить более строгие (по сравнению с неполяризованным случаем) ограничения. Поляризация конечных состояний (например, использование продольно поляризованных W-бозонов) также позволяет существенно уменьшить области ограничений на исследуемые параметры.

Литература

- 1. Hewett, J. L. Low-Energy Phenomenology of Superstring Inspired E(6) Models / J. L. Hewett, T. G. Rizzo // Phys. Rept. 1989. Vol. 183. P. 193.
- 2. Leike, A. The Phenomenology of Extra Neutral Gauge Bosons / A. Leike // Phys. Rept. 1999. Vol. 317. P. 143.
- Rizzo, T. G. Z-prime phenomenology and the LHC / T. G. Rizzo // Boulder 2006, Colliders and neutrinos. 2006. P. 537.
- 4. Langacker, P. The Physics of Heavy Z-prime Gauge Bosons / P. Langacker // Rev. Mod. Phys. 2009. Vol. 81. P. 1199.
- 5. Pankov, A. A. Manifestations of heavy extra neutral E(6) gauge bosons in e⁺ e⁻ ---> W⁺ W⁻ at LEP2 / A. A. Pankov, N. Paver // Phys. Lett. 1991. Vol. B272. P. 425.
- 6. Бабич, А. А. Дополнительный Z'--бозон и поляризационные асимметрии в процессе аннигиляционного рождения пары скалярных кварков / А. А. Бабич, А. А. Панков // Изв. вузов. Физика. – 1991. – № 34. – С. 365.
- Pankov, A. A. A-dependence of perturbative predictions of extended standard model on Z – Z-prime mixing and QCD renormalization scheme parameters / A. A. Pankov, R. Raczka, I. S. Satsunkevich // Nuovo Cimento. – 1991. – Vol. A104, ser. 12. – P. 1697.
- 8. Панков, А. А. О механизме усиления эффектов новой физики в процессе e⁺e⁻ → W⁺W⁻/ А. А. Панков // Ядер. физика. – 1992. – № 55. – С. 461.
- 9. Pankov, A. A. Looking for extra neutral gauge boson effects in longitudinally polarized e⁺ e⁻ ---> W⁺ W⁻ / A. A. Pankov, N. Paver // Phys. Lett. – 1992. – Vol. B274. – P. 483.
- 10. Babich, A. A. Lepton mixing in W⁺ W⁻ pair production with polarized e⁺ e⁻ collisions / A. A. Babich, A. A. Pankov, N. Paver // Phys. Lett. 1993. Vol. B299. P. 351.
- 11. Pankov, A. A. Probing Z Z-prime mixing at future $e^+ e^-$ colliders / A. A. Pankov, N. Paver // Phys. Rev. 1993. Vol. D48. P. 63.
- Панков, А. А. Эффекты Z Z'-смешивания на будущих линейных коллайдерах с поляризованными e⁺e⁻-пучками / А. А. Панков // Ядер. физика. – 1994. – № 57. – С. 472.
- 13. Бабич, А. А. Эффекты лептонного смешивания в процессе парного рождения W-бозонов на линейных коллайдерах с поляризованными e⁺e⁻-пучками / А. А. Бабич, А. А. Панков // Ядер. физика. – 1994. – № 57. – С. 2061.
- Богуш, А. А. Ковариантное описание спиновых релятивистских частиц и его применение / А. А. Богуш // Вес. АН БССР. Сер. фіз.-тэхн. навук. – 1962. – № 2. – С. 26.
- 15. Богуш, А. А. Общий расчет матричных элементов продольно-поляризованных частиц / А. А. Богуш // Вес. АН БССР. Сер. физ.-техн. наук. 1964. № 2. С. 29.
- 16. Федоров, Ф. И. Группа Лоренца / Ф. И. Федоров. Москва : Наука, 1974. 384 с.
- 17. Федоров, Ф. И. Ковариантное вычисление матричных элементов / Ф. И. Федоров // Изв. вузов. Физика. 1980. № 2. С. 32.
- 18. Федоров, Ф. И. О матричных элементах квантовой электродинамики / Ф. И. Федоров // Теор. и мат. физика. 1974. № 18. С. 329.
- 19. Сикач, С. М. Матричные элементы диагональных амплитуд / С. М. Сикач // Вес. АН БССР. Сер. фіз.-мат. навук. – 1984. – № 2. – С. 84.

- Галынский, М. В. Диагональный спиновый базис и вычисление процессов с поляризованными частицами / М. В. Галынский // Элементар. частицы и атомное ядро. – 1998. – № 29. – С. 1133.
- 21. Андреев, В. В. Аналитическое вычисление фейнмановских амплитуд / В. В. Андреев // Ядер. физика. 2003. № 66. С. 410.
- 22. Bilenky, M. *et al.* Trilinear couplings among the electroweak vector bosons and their determination at LEP-200 / M. Bilenky // Nucl. Phys. 1993. Vol. B409. P. 22.
- 23. Gounaris, G. *et al.* Analytic expressions of cross-sections, asymmetries and W density matrices for e⁺ e⁻ ---> W⁺ W⁻ with general three boson couplings / G. Gounaris // Int. J. Mod. Phys. 1993. Vol. A8. P. 3285.
- 24. Hagiwara, K. *et al.* Probing the Weak Boson Sector in e⁺ e⁻ ---> W⁺ W⁻// K. Hagiwara // Nucl. Phys. 1987. Vol. B282. P. 253.
- 25. Zeppenfeld, D. Measuring The Gamma W W And Z W W Three Gauge Vertex With Polarized Beams / D. Zeppenfeld // Phys. Lett. 1987. Vol. B183. P. 380.
- 26. Fleischer, J. Transverse versus longitudinal polarization effects in e⁺ e⁻ ---> W⁺ W⁻ / J. Fleischer, K. Kolodziej, F. Jegerlehner // Phys. Rev. 1994. Vol. D49. 2174.
- 27. Nakamura, K. (Particle Data Group) Review of particle physics / K. Nakamura // J. Phys. 2010. Vol. G37. P. 075021.
- 28. Hahn, T. Automatized one loop calculations in four-dimensions and D-dimensions / T. Hahn, M. Perez-Viktoria // Comput. Phys. Commun. 1999. Vol. 118. P. 153.
- 29. Hahn, T. Generating Feynman diagrams and amplitudes with FeynArts 3 / T. Hahn // Comput. Phys. Commun. 2001. Vol. 140. P. 418.
- 30. Tomas, R. The CLIC BDS Towards the Conceptual Design Report / R. Tomas // IPAC-2010-WEPE030. 2010.

Получено 16.02.2011 г.