УДК 539.21

РАСЧЕТ РАСПРЕДЕЛЕНИЯ НОРМАЛЬНЫХ НАПРЯЖЕНИЙ У ДЕФОРМИРУЕМОЙ СОСРЕДОТОЧЕННОЙ НАГРУЗКОЙ ПОВЕРХНОСТИ ПРИ НАЛИЧИИ НЕКОГЕРЕНТНОГО КЛИНОВИДНОГО ОСТАТОЧНОГО МЕХАНИЧЕКОГО ДВОЙНИКА

Ю. С. КРОТЕНОК, О. М. ОСТРИКОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение

Механическое двойникование представляет собой закономерную переориентацию кристаллической решетки под действием механической нагрузки. Атомная перестройка кристаллической решетки при двойниковании происходит с соблюдением определенных кристаллографических соотношений, при этом атомы в соседних плоскостях перемещаются на расстояния, равные долям параметра решетки [1].

Проблема разрушения материалов, неоднократно рассмотренная для различных условий механических испытаний, представляет собой сложный комплекс научных и технических вопросов. Это обусловлено, прежде всего, тем, что разрушение – «процесс кинетический, статистический, многостадийный и многомасштабный» [1]. Одной из наиболее важных стадий в развитии разрушения является стадия накопления повреждений, на которой имеет место дислокационное формирование зародышевой микротрещины [1]. Активную роль в зарождении трещин играет механическое двойникование, которое приводит к концентрации высокого уровня напряжений на границах раздела «двойник – материнский материал», создающих благоприятные условия для образования трещин. Механизмы, вызывающие разрушение при двойниковании, в настоящее время выяснены еще недостаточно [1], [2]. Поэтому разработка методов расчета напряженно-деформированного состояния двойникующихся материалов является актуальной.

Целью данной работы является синтез математической модели для расчета и графической визуализации нормальных компонент напряжений в деформируемом твердом теле при наличии в нем двойника.

Постановка задачи

На рис. 1 схематически представлен клиновидный двойник у поверхности двойникующегося материала. Длина двойника – L, а его ширина у устья – H. Форму границ опишем функциями $f_1(\xi)$ и $f_2(\xi)$. Направим ось X вдоль поверхности кристалла, а ось Y перпендикулярно ей, вдоль направления развития двойника.

Пусть поверхность деформируется в точке O вдоль оси Y сосредоточенной нормальной нагрузкой P, перпендикулярной поверхности, и тангенциальной сосредоточенной нагрузкой Q. Тогда в упругом полупространстве будут действовать нормальные напряжения, которые могут быть определены по формулам [2], [3]:

$$\sigma_{xx}^{e}(x,y) = -\frac{2}{\pi} \left(\frac{x^{2}(P+Q)}{(x^{2}+y^{2})^{2}} \right);$$

$$\sigma_{yy}^{e}(x,y) = -\frac{2}{\pi} \left(\frac{y^{2}(P+Q)}{\left(x^{2}+y^{2}\right)^{2}} \right).$$
(1)

Напряжения, создаваемые клиновидным двойником, можно рассчитать из соотношения [2]:

$$\sigma_{ij}^{(tw)}(x,y) = \sigma_{ij}^{(1)}(x,y) + \sigma_{ij}^{(2)}(x,y),$$
(2)

где $\sigma_{ij}^{(1)}(x, y)$ и $\sigma_{ij}^{(2)}(x, y)$ – напряжения, которые, как это было показано в [2], создаются каждой границей двойника и определяются с помощью криволинейных интегралов:

$$\sigma_{ij}^{(1)} = \int_{L_{d_1}} \rho_1 \sigma_{ij}^{(1,0)} ds;$$
(3)

$$\sigma_{ij}^{(2)} = \int_{L_{dy}} \rho_2 \sigma_{ij}^{(2,0)} ds,$$
(4)

где L_{A1} и L_{A2} – профили двойниковых границ; ρ_1 и ρ_2 – плотности двойникующих дислокаций на двойниковых границах; $\sigma_{ij}^{(1,0)}$ и $\sigma_{ij}^{(2,0)}$ – определяются из соотношений, приведенных в [2].

Рис. 1. Схематичное объемное изображение клиновидного двойника у деформируемой сосредоточенной нагрузкой поверхности твердого тела

Двойникующие дислокации являются частичными дислокациями Шокли [4], [5]. Поэтому их вектор Бюргерса b можно разложить на винтовую $b_{\rm B}$ и краевую $b_{\rm KP}$ составляющие, направление которых примем таким, как это показано на рис. 1. Тогда выражения (3) и (4) можно свести к определенным интегралам вида [2]:

$$\sigma_{ij}^{(1)}(x,y) = \int_{0}^{L} \sqrt{1 + (f_{1}'(\xi))^{2}} \rho_{1}(\xi) \sigma_{ij}^{(1,0)}(x,y,\xi) d\xi;$$
(5)

$$\sigma_{ij}^{(2)}(x,y) = \int_{0}^{L} \sqrt{1 + (f_{2}'(\xi))^{2}} \rho_{2}(\xi) \sigma_{ij}^{(2,0)}(x,y,\xi) d\xi.$$
(6)

Здесь ξ – параметр интегрирования.

При фиксированных источниках внутренних напряжений в упругом полупространстве справедлив принцип суперпозиции, согласно которому результирующие напряжения в деформируемом сосредоточенной нагрузкой полупространстве при наличии у поверхности двойника, могут быть найдены по следующей формуле:

$$\sigma_{ij}(x,y) = \sigma_{ij}^e(x,y) + \sigma_{ij}^{(tw)}(x,y).$$
(7)

При рассмотрении случая прямолинейных двойниковых границ, как это было показано в [2], функции $f_1(\xi)$ и $f_2(\xi)$ будут иметь вид:

$$f_1(\xi) = \frac{H}{2} \left(1 - \frac{\xi}{L} \right), \tag{8}$$

$$f_2(\xi) = -\frac{H}{2} \left(1 - \frac{\xi}{L} \right). \tag{9}$$

Результаты и их обсуждение

Рассмотрим распределение нормальных компонент σ_{xx} и σ_{yy} тензора напряжений при следующих схемах деформирования поверхности сосредоточенной нагрузкой: 1) P = 0; Q = 0 (рис. 2); 2) P = 100 H; Q = 0 (рис. 3 и 6); 3) P = 0; Q = 100 H (рис. 4 и 7); 4) P = 50 H; Q = 50 H (рис. 5 и 8). Примем: H = 19 мкм; L = 100 мкм; $b_{\kappa p} = 0,124$ нм, где $b_{\kappa p}$ – модуль краевой составляющей вектора Бюргерса частичной двойникующей дислокации; для железа: a = 0,248 нм [2] (здесь a – межатомное расстояние).

Линейная плотность двойникующих дислокаций на двойниковых границах определяется по формуле [2]:

$$\rho = \frac{H}{2aL}.$$
(10)

Тогда получим: $\rho = 3.9 \cdot 10^8 \text{ м}^{-1}$. В (5) и (6) примем этот параметр постоянным.

На рис. 2 показано распределение нормальных компонент тензора напряжений у клиновидного двойника при отсутствии внешней силы (P = 0; Q = 0). Наблюдается симметричная конфигурация полей напряжений. При этом σ_{yy} положительны у одной из границ двойника и отрицательны – у другой. Локализация напряжений происходит у вершины и на границах двойника. Внутри двойника напряжения неоднородны и максимальное значение достигают у вершины. Область сжатия и растяжения у вершины двойника наблюдается в случае напряжений σ_{xx} . Эти напряжения знакопеременны по отношению к оси *OY*.

В случае действия на поверхность нормальной сосредоточенной нагрузки P = 100 H (рис. 3) при наличии клиновидного двойника с некогерентными границами ситуация меняется. Существенное искажение получают нормальные напряжения σ_{xx} (рис. 3, *a*). Локализация напряжений σ_{yy} происходит в месте действия силы, где оно имеет отрицательное значение напряжений, повышается общий уровень сдвиговых напряжений у двойниковой границы, а максимальное значение достигается у вершины двойника (рис. 3, *б*). Наблюдается несимметричная конфигурация полей напряжений, с положительной областью справа от двойника и отрицательной – слева.

При действии на поверхность сосредоточенной касательной силы Q = 100 Н при наличии клиновидного двойника (рис. 4) напряжения σ_{yy} также локализуются в области действия сосредоточенной нагрузки с образованием двух участков положительных и отрицательных напряжений (рис. 4, δ). Искажения напряжений σ_{xx} в этом случае меньше, чем при действии на поверхность нормальной сосредоточенной нагрузки (рис. 4, a).

На рис. 5 приведены результаты расчета распределения напряжений σ_{xx} и σ_{yy} при P = 50 H; Q = 50 H. Напряжения σ_{yy} достигают максимального значения в месте действия сосредоточенной нагрузки (рис. 5, δ). При этом данные напряжения уменьшили свои значения с удалением от устья двойника. Распределение напряжений σ_{xx} имеет особенность у вершины двойника, где наблюдается область чередования сжатия и растяжения (рис. 5, a).

При сравнении полученных результатов с классическими расчетами полей напряжений в упругом полупространстве, деформируемом сосредоточенной нагрузкой при отсутствии у поверхности двойника (рис. 6, 7, 8), становится очевидным, что наличие двойникования способствует концентрации высокого уровня напряжений вдали от поверхности, где с позиций классических представлений локализации напряжений быть не должно. Отсутствие учета напряжений, обусловленных двойникованием, приводит к ошибкам расчетов. А так как локализация напряжений на двойниковых границах может приводить к образованию трещин, то использование классических методов расчета напряженно-деформируемого состояния, обусловленного сосредоточенной нагрузкой, в случае двойникующихся материалов приводит к непрогнозируемому разрушению, что нежелательно в случае технических систем, к которым предъявляются высокие требования к степени надежности.

у, мкм

a)

б)

Рис. 2. Распределение нормальных напряжений у клиновидного двойника, находящегося у недеформируемой поверхности:

 $a - \sigma_{xx}$ (MПa); $\delta - \sigma_{yy}$ (МПа)

Рис. 3. Распределение нормальных напряжений у клиновидного двойника, находящегося у поверхности, деформируемой нормальной сосредоточенной нагрузкой *P*:

б)

 $a - \sigma_{xx}$ (MIIa); $\delta - \sigma_{yy}$ (MIIa)

Рис. 4. Распределение нормальных напряжений у клиновидного двойника, находящегося у поверхности, деформируемой касательной сосредоточенной нагрузкой *Q*: a – σ_{xx} (МПа); б – σ_{yy} (МПа)

б)

Puc. 5. Распределение напряжений у клиновидного двойника при действующей в точке *O* сосредоточенной нормальной нагрузки *P* и сосредоточенной касательной нагрузки *Q*:

 $a - \sigma_{yy}$ (MIIa); $\delta - \sigma_{xx}$ (MIIa)

у, мкм

б)

Рис. 6. Распределение нормальных напряжений у поверхности, деформируемой нормальной сосредоточенной нагрузкой *P*:

 $a - \sigma_{yy}$ (MIIa); $\delta - \sigma_{xx}$ (MIIa)

$$a$$
)

б)

Рис. 7. Распределение напряжений у поверхности, деформируемой сосредоточенной касательной нагрузкой *Q*: *a* – σ_{yy} (МПа); *δ* – σ_{xx} (МПа)

Рис. 8. Распределение напряжений у поверхности, деформируемой сосредоточенной нормальной нагрузкой *P* и сосредоточенной касательной нагрузкой *Q*: $a - \sigma_{_{xy}} (M\Pi a); \delta - \sigma_{_{xx}} (M\Pi a)$

Заключение

В результате разработан метод расчета нормальных компонент тензора напряжений в деформируемом сосредоточенной нагрузкой твердом теле при наличии в нем остаточного двойника с некогерентными границами. Проведенные расчеты показали, что локализация нормальных компонент тензора напряжений происходит в месте действия сосредоточенных сил, что ведет к потере симметрии в конфигурации полей напряжений у клиновидного двойника по сравнению со случаем отсутствия действия внешних сил. Установлено, что наличие двойника в деформируемом упругом полупространстве приводит к концентрации опасных в плане разрушения напряжений в непрогнозируемых классическими методами областях.

Литература

- 1. Федоров, В. А. Дислокационные механизмы разрушения двойникующихся материалов / В. А. Федоров, Ю. И. Тялин, В. А. Тялина. М.: Машиностроение, 2004. 215 с.
- 2. Остриков, О. М. Механика двойникования твердых тел / О. М. Остриков. Гомель : ГГТУ им. П. О. Сухого, 2008. 301 с.
- 3. Джонсон, К. Механика контактного взаимодействия / К. Джонсон. М. : Мир, 1989. 510 с.
- 4. Судзуки, Т. Динамика дислокаций и пластичность / Т. Судзуки, Х. Есинага, С. Такеути ; пер. с яп. М. : Мир, 1989. 296 с.
- 5. Новиков, И. И. Кристаллография и дефекты кристаллической решетки / И. И. Новиков, К. М. Розин. М. : Металлургия, 1990. 336 с.

Получено 20.12.2013 г.