МЕХАНИКА И ЭЛЕКТРОМЕХАНИКА

УДК 62-83:621.313.333

ИССЛЕДОВАНИЕ АВТОКОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ ОДНОФАЗНОГО АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ С ЛИНЕЙНОЙ ПРУЖИНОЙ НА ВАЛУ

В.И. ЛУКОВНИКОВ, Л.В. ВЕППЕР

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Введение

Эффективность применения безредукторного электропривода возвратновращательного (колебательного) движения с мягким реверсом обусловлена тем, что он позволяет не только уменьшить металлоемкость и исключить электромеханические удары в рабочей машине, но и осуществить плавное оперативное регулирование частоты и амплитуды колебаний, облегчить интеграцию привода с рабочим инструментом, повысить динамические и энергетические показатели, а значит, в целом повысить производительность рабочей машины и качество выпускаемой продукции.

Первые работы по созданию теории и практическому внедрению безредукторных электроприводов мягкого колебательного движения основывались на принципе возбуждения качающегося магнитного поля в воздушном зазоре асинхронного электродвигателя [1] или электрической машины двойного питания [2].

В последнее время нами разрабатываются колебательные электроприводы на совершенно новом принципе – создании условий возникновения устойчивого автоколебательного режима в электромеханической системе «однофазный асинхронный электродвигатель – упругий элемент» [3].

Автоколебательный асинхронный электропривод чрезвычайно прост в реализации, поскольку для него в отличие от традиционных колебательных приводов не требуются достаточно сложные силовые электронные блоки модуляции сетевого напряжения для электропитания обмоток, а достаточно статорные обмотки общепромышленного асинхронного электродвигателя подключить к однофазной электросети и на валу разместить пружину или маятник.

Предварительные исследования [4] показали, что введение пружинного или маятникового элемента хотя и упростило колебательный электропривод, но привело к бифуркациям его движения на:

- устойчивое нулевое состояние равновесия;
- предельный неустойчивый автоколебательный цикл;
- предельный устойчивый автоколебательный цикл;
- смещение нейтрали колебаний;
- вращение.

Цель работы

Создать математическое обеспечение для анализа и синтеза условий возникновения, устойчивости и бифуркаций автоколебаний в однофазном асинхронном электродвигателе (ОАД) с пружиной на валу как научной основы его выбора в качестве силового элемента автоколебательного электропривода.

Метод достижения цели

Опуская предварительные математические преобразования, подобные частному случаю, рассмотренному в статье [4], запишем уравнение движения ОАД с пружиной на валу в канонической форме

$$\ddot{\varphi} + \varphi = -M_2 \cdot sign(\dot{\varphi}) + (M_3 - M_1) \cdot \dot{\varphi} - M_4 \cdot \dot{\varphi}^3 + M_5 \cdot \dot{\varphi}^5 + M_6 \cdot \dot{\varphi}^7, \qquad (1)$$

где φ , $\dot{\varphi}$, $\ddot{\varphi}$ – относительная угловая координата положения вала АД и ее первая (скорость) и вторая (ускорение) производные по относительному времени;

 $\mu_{\rm l}$, $\mu_{\rm 2}$ – коэффициенты нагрузки жидкостным и сухим трением;

*μ*₃ – коэффициент электромагнитного демпфирования ОАД;

 μ_4 , μ_5 , μ_6 – коэффициенты полиноминальной аппроксимации механической характеристики АД.

1. Условия равновесных состояний

Представим уравнение (1) в виде системы двух уравнений первого порядка

$$\begin{cases} \cdot \\ \varphi = \Omega, \\ \cdot \\ \Omega = -\varphi - \mu_2 Sign\Omega + (\mu_3 - \mu_1)\Omega - \mu_4 \Omega^3 + \mu_5 \Omega^5 - \mu_6 \Omega^7. \end{cases}$$
(2)

Дифференциальное уравнение интегральных кривых получится делением второго уравнения на первое

$$\frac{d\Omega}{d\varphi} = \frac{-\varphi - \mu_2 Sign\Omega + (\mu_3 - \mu_1)\Omega - \mu_4 \Omega^3 + \mu_5 \Omega^5 - \mu_6 \Omega^7}{\Omega}.$$
(3)

Координаты точек равновесия, то есть особые точки семейства интегральных кривых на фазовой плоскости, найдем, приравнивая к нулю правые части системы (2).

$$\begin{cases} \Omega = 0, \\ -\varphi - \mu_2 Sign\Omega + (\mu_3 - \mu_1)\Omega - \mu_4 \Omega^3 + \mu_5 \Omega^5 - \mu_6 \Omega^7 = 0. \end{cases}$$
(4)

Видно, что существует одна особая точка в начале координат, для которой $\Omega=0\,,\,\, \varphi=0\,.$

Определим устойчивость этого состояния равновесия. Для этого запишем переменные в виде

$$\begin{cases} \Omega = \Omega_0 + \Delta \Omega, \\ \varphi = \varphi_0 + \Delta \varphi. \end{cases}$$
(5)

Так как $\Omega_0 = \varphi_0 = 0$ координаты особой точки, то после подстановки (5) в (2) получим в отклонениях

$$\begin{cases} \dot{\Delta \varphi} = \Omega \\ \dot{\Delta \Omega} = -\Delta \varphi - \mu_2 Sign\Delta\Omega + (\mu_3 - \mu_1)\Delta\Omega - \mu_4 \Delta\Omega^3 + \mu_5 \Delta\Omega^5 - \mu_6 \Delta\Omega^7 . \end{cases}$$
(6)

ſ

Аппроксимируя функцию $Sign(\Delta \Omega)$ функцией $\frac{2}{\pi} \cdot arctg(b \cdot \Delta \Omega)$ и используя раз-

ложение в степенной ряд, запишем

$$Sign(\Delta\Omega) = \frac{2}{\pi} \cdot arctg(b \cdot \Delta\Omega) = \frac{2b}{\pi} \Delta\Omega - \frac{8b^3 \Delta\Omega^3}{3\pi^3} + \dots$$

где *b* – крутизна касательной к функции *arctg* в начале координат. После подстановки этого ряда во второе уравнение системы (6) и отбрасывания членов со степенями выше первой (слагаемые высших порядков малости) получим систему линейных уравнений для малых отклонений

$$\begin{cases} \dot{\Delta \phi} = \Omega, \\ \dot{\Delta \Omega} = -\Delta \phi - \frac{2b\mu_2}{\pi} \Delta \Omega + (\mu_3 - \mu_1) \Delta \Omega. \end{cases}$$
(7)

Корни характеристического уравнения системы (7) найдутся через определитель |0 - n| = 1

$$\begin{vmatrix} 0 - p & 1 \\ -1 & \mu_3 - \mu_1 - \frac{2b\mu_2}{\pi} - p \end{vmatrix} = p^2 - \left(\mu_3 - \mu_1 - \frac{2b\mu_2}{\pi}\right)p + 1 = 0$$

в виде

$$p_{1,2} = \frac{1}{2} \left(\mu_3 - \mu_1 - \frac{2b\mu_2}{\pi} \right) \pm \sqrt{\frac{1}{4} \left(\mu_3 - \mu_1 - \frac{2b\mu_2}{\pi} \right)^2 - 1}.$$

Очевидно, что при $b \to \infty$ корни $p_{1,2}$ всегда отрицательны, следовательно, рассматриваемое состояние равновесия устойчиво.

Если же сухое трение отсутствует ($\mu_2 = 0$), то состояние равновесия устойчиво при $\mu_3 < \mu_1$, когда суммарное нагрузочное и электромагнитное демпфирование положительно, и неустойчиво при $\mu_3 > \mu_1$, когда суммарное демпфирование отрицательно.

Этот вывод совпадает с известным результатом для линейного осциллятора.

2. Наличие предельных циклов автоколебаний

Будем искать уравнение радиусов и условие устойчивости предельных циклов автоколебаний по методу Ван-дер-Поля.

С этой целью запишем уравнение (1) через малый параметр μ в виде

$$\varphi + \varphi = \mu [-\mu_{2,0} Sign \varphi + (\mu_{3,0} - \mu_{1,0}) \varphi - \mu_{4,0} \varphi^3 + \mu_{5,0} \varphi^5 - \mu_{6,0} \varphi^7],$$
(8)

где $\mu_{2,0} = \mu_2 / \mu$,..., $\mu_{6,0} = \mu_6 / \mu$.

Решение будем искать в виде

$$\varphi = \varphi_m Cos\lambda , \qquad (9)$$

дополнив его по идее метода вариации постоянной связью

$$\varphi = -\varphi_m Sin\lambda . \tag{10}$$

Подстановками (9) и (10) в (8), а также (9) в (10) получим

$$\begin{cases} -\dot{\varphi}_{m}Sin\lambda - \varphi_{m}\dot{\lambda}Cos\lambda + \varphi_{m}Cos\lambda = \mu[\mu_{2,0}Sign(\varphi_{m}Sin\lambda) - (\mu_{3,0} - \mu_{1,0})\varphi_{m}Sin\lambda + \mu_{4,0}\varphi_{m}^{3}Sin^{3}\lambda - \mu_{5,0}\varphi_{m}^{5}Sin^{5}\lambda + \mu_{6,0}\varphi_{m}^{7}Sin^{7}\lambda], \\ \dot{\varphi}_{m}Cos\lambda - \varphi_{m}\dot{\lambda}Sin\lambda + \varphi_{m}Sin\lambda = 0. \end{cases}$$

Решая данную систему уравнений относительно φ_m , найдем

$$\varphi_{m} = -\mu Sin\lambda [\mu_{2,0} Sign(\varphi_{m} Sin\lambda) - (\mu_{3,0} - \mu_{1,0})\varphi_{m} Sin\lambda + \mu_{4,0}\varphi_{m}^{3} Sin^{3}\lambda - \mu_{5,0}\varphi_{m}^{5} Sin^{5}\lambda + \mu_{6,0}\varphi_{m}^{7} Sin^{7}\lambda].$$

Заменим как и ранее $Sign(\varphi_m Sin\lambda) = \frac{2}{\pi} arctg(b \cdot \varphi_m Sin\lambda)$, а затем считая, что амплитуда φ_m по сравнению с фазой λ является «медленной переменной» усредним это

плитуда φ_m по сравнению с фазой λ является «медленной переменной» усредним это уравнение по λ , то есть выделим справа постоянные составляющие и получим

$$\begin{split} \dot{\varphi}_{m} &= -\mu \left[\frac{2\mu_{2,0}}{\pi \cdot b\varphi_{m}} (\sqrt[4]{(b\varphi_{m})^{2} + 1} - 1) - \frac{\mu_{3,0} - \mu_{1,0}}{2} \varphi_{m} + \frac{3\mu_{4,0}}{8} \varphi_{m}^{3} - \frac{3\mu_{5,0}}{16} \varphi_{m}^{5} + \frac{9\mu_{6,0}}{64} \varphi_{m}^{7} \right]. \end{split}$$

Знак $t_{\sqrt{}}$ означает, что учитываются только положительные значения корня.

При установившихся автоколебаниях $\phi_m = 0$ поэтому уравнением радиусов (амплитуд ϕ_m) предельных циклов будет

$$\frac{9\mu_{6,0}}{64}\varphi_m^8 - \frac{3\mu_{5,0}}{16}\varphi_m^6 + \frac{3\mu_{4,0}}{8}\varphi_m^4 - \frac{\mu_{3,0} - \mu_{1,0}}{2}\varphi_m^2 + \frac{2\mu_{2,0}}{\pi} \left(\sqrt[4]{\varphi_m^2 + \frac{1}{b}} - \frac{1}{b}\right) = 0.$$

Переходя к пределу $b\to\infty,$ то есть приближая «arctg» к «Sign», найдем для предельных циклов

$$\varphi_m^8 - \frac{4\mu_{5,0}}{3\mu_{6,0}}\varphi_m^6 + \frac{8\mu_{4,0}}{3\mu_{6,0}}\varphi_m^4 - \frac{32(\mu_{3,0} - \mu_{1,0})}{9\mu_{6,0}}\varphi_m^2 + \frac{128\mu_{2,0}}{9\pi\mu_{6,0}}\sqrt[4]{\varphi_m^2} = 0.$$
(11)

Автоколебания будут устойчивыми, если производная от данного уравнения по φ_m будет отрицательна. Следовательно, условием устойчивости является с учетом в (11) сомножителя $\sqrt[4]{\varphi_m^2}$

$$-\varphi_m^7 + \frac{M_{5,0}}{M_{6,0}}\varphi_m^5 - \frac{4M_{4,0}}{3M_{6,0}}\varphi_m^3 + \frac{8(M_{3,0} - M_{1,0})}{9M_{6,0}}\varphi_m - \frac{16M_{2,0}}{9pM_{6,0}} < 0.$$
(12)

Уравнение (11) дает первый корень $\varphi_{m1} = 0$, что говорит о вырождении предельного цикла в особую точку.

.

Она устойчива, если выполняется неравенство, полученное из (12) при подстановке $\varphi_m = 0$,

$$-\frac{16\mu_{2,0}}{9\pi\mu_{6,0}} < 0$$

Так как $\mu_{2,0} > 0$ и $\mu_{6,0} > 0$, то это неравенство выполняется всегда.

Если сухое трение отсутствует ($\mu_{2,0} = 0$), то из (12) получим неравенство

$$\frac{8(\mu_{3,0}-\mu_{1,0})}{9\mu_{6,0}}<0\,,$$

которое выполняется при $\mu_{3,0} < \mu_{1,0}$ и не выполняется при $\mu_{3,0} > \mu_{1,0}$. Эти результаты совпадают с полученными ранее в разделе 1. Остальные корни определяются из уравнения

$$\varphi_m^7 - \frac{4\mu_{5,0}}{3\mu_{6,0}}\varphi_m^5 + \frac{8\mu_{4,0}}{3\mu_{6,0}}\varphi_m^3 - \frac{32(\mu_{3,0} - \mu_{1,0})}{9\mu_{6,0}}\varphi_m + \frac{128\mu_{2,0}}{9\pi\mu_{6,0}} = 0.$$
(13)

Аналитическое решение этого уравнения, записанное в замкнутой форме, не существует. Можно найти численными методами приближенные значения его корней $\varphi_{m2},...,\varphi_{m8}$, оставить для анализа вещественные и положительные, чтобы далее подстановкой в (12) установить, которые из них дают устойчивые предельные циклы.

Для получения инженерных аналитических соотношений, пригодных для исследования, с целью определения бифуркаций, рассмотрим «усеченное» уравнение (13), отбросив члены с φ_m^7 и φ_m^5 из-за малости коэффициентов при них.

Это уравнение сводится к виду

$$\varphi_m^3 - \frac{4}{3}\lambda_1 \cdot \varphi_m + \frac{16}{3\pi}\lambda_2 = 0, \qquad (14)$$

где $\lambda_1 = (\mu_{3,0} - \mu_{1,0}) / \mu_{4,0}$, $\lambda_2 = \mu_{2,0} / \mu_{4,0}$.

С целью получения общего бифуркационного параметра, пронормируем уравнение (14) введением новой переменной

$$ho = arphi_m \cdot \sqrt[3]{3\pi/16\lambda_2}$$
 .

После преобразования получим

$$c^3 - \epsilon c + 1 = 0, (15)$$

В соответствии с теорией кубического алгебраического уравнения можно получить, что при $\beta < 3/\sqrt[3]{4} \approx 1,889882$ корни уравнения (15) отрицательные и мнимые, что говорит об отсутствии предельных циклов.

При $\beta \ge 3/\sqrt[3]{4}$ имеются один отрицательный и два положительных корня, равных

$$\mathcal{O}_{1,2} = 2\sqrt[3]{\beta/3} \cdot \cos(60^\circ \mp \varphi/3), \qquad (16)$$

где $\varphi = \operatorname{arcCos}\left(0.5\sqrt{(3/s)^3}\right).$

Эти корни дают предельные циклы автоколебаний на фазовой плоскости, устойчивость которых можно определить по условию (12). В «усеченном» виде (12) через переменную ρ можно записать так

$$\rho^3 - 0.5\beta\rho + 0.25 > 0. \tag{17}$$

Прямой подстановкой (16) в (17) можно убедиться, что устойчивыми являются предельные циклы для бо́льших (ρ_1) и неустойчивыми для меньших (ρ_2) радиусов.

При $\beta = 3/\sqrt[3]{4}$ эти циклы сливаются в один и дают полуустойчивый цикл с радиусом $\rho_1 = \rho_2 = 1/\sqrt[3]{2}$.

На рисунке 1а представлена бифуркационная диаграмма, на которой параметром бифуркаций является величина *β*.

Рис. 1. Бифуркационная диаграмма (а) и граница раздела существования и отсутствия предельных циклов автоколебаний (б)

1

Предельные циклы вне кривой $\rho(\beta)$ не существуют. Верхняя часть кривой определяет устойчивые, а нижняя (помечена крестиками) – неустойчивые циклы, точка А (координаты указаны на графике) дает полуустойчивый цикл.

Из экспликации к (15) следует, что параметр β связывает две величины λ_1 и λ_2 соотношением

$$\boldsymbol{e} = \sqrt[3]{\frac{p^2}{12}} \cdot \frac{\pi_1}{\sqrt[3]{\pi_2^2}}.$$

Тогда по условию $\beta = 3/\sqrt[3]{4}$ можно получить уравнение границы

$$\lambda_1 = \sqrt[3]{(9\lambda_2/\pi)^2} , \qquad (18)$$

разделяющей области существования и отсутствия предельных циклов автоколебаний (рис. 1б).

Для определения бифуркационных диаграмм в реальных амплитудах автоколебаний через параметры λ_1 и λ_2 осуществим обратные замены в (16), после чего получим

$$\varphi_{m1,2} = \frac{4}{3} \cdot \sqrt{\pi_1} \cdot Cos\left(60^\circ \mp \frac{\varphi}{3}\right),$$

$$\varphi = arcCos(9\pi_2/p\sqrt{\pi_1^3}).$$
(19)

При расчете диаграмм по (19) параметры бифуркаций λ_1 и λ_2 задаются в соответствии с рисунком 16 или соотношением (18).

По представленным на рисунке 2а бифуркационным диаграммам видно, что рост параметра λ_2 , который определяется сухим трением, уменьшает амплитуду предельных устойчивых циклов (верхняя часть кривых), но увеличивает амплитуду неустойчивых циклов (нижняя часть кривых). При значениях λ_2 , связанных с λ_1 соотношением (18), циклы сливаются и становятся полуустойчивыми (точки A₁, A₂, A₃). Этот результат с точностью до коэффициентов совпадает с полученным в [6].

Рост же параметра λ_1 , который определяется превышением электромагнитного восстанавливающего демпфирования АД ($\mu_{3,0}$) над демпфированием от жидкого трения, приводит к росту амплитуды устойчивых колебаний и уменьшению амплитуды неустойчивых, начиная с точек A_1 , A_2 , A_3 полуустойчивых циклов.

Таким образом, кривая $\lambda_1(\lambda_2)$ на рисунке 16 является сепаратрисой, фиксирующей области существования и отсутствия предельных циклов.

Изложенное иллюстрируется изображенными на рисунке 3 характерными фазовыми портретами рассматриваемой автоколебательной системы.

Наличие устойчивого и неустойчивого фокуса (рис. 36, в) было показано в разделе 1, а отсутствие вращательного движения при использовании пружинного КРЭ не только очевидно физически, но и легко подтверждается прямой подстановкой в (8) предполагаемого решения при вращении $\varphi = \Omega \cdot \tau$. Поведение системы при нулевых значениях бифуркационных параметров достаточно просто проанализировать по уравнениям (8) или (14).

Например, при $\lambda_1 = \lambda_2 = 0$, когда согласно экспликаций к (14) должно быть $\mu_{1,0} = \mu_{2,0} = \mu_{3,0} = 0$, что означает отсутствие в автоколебательной системе АД сухого и жидкостного трения, в уравнении движения (8) исчезает правая часть и остается

хорошо исследованное уравнение гармонического осциллятора без потерь, дающее на фазовой плоскости один устойчивый цикл автоколебаний (рис. 3а).

Рис. 2. Бифуркационные диаграммы в координатах «амплитуда – сухое трение» (а) и «амплитуда – суммарное демпфирование» (б)

При $\lambda_2 = 0$, что означает отсутствие сухого трения, из уравнения (14) получаем три корня

$$\varphi_{m1} = 0,$$

 $\varphi_{m2,3} = \pm 2\sqrt{\lambda_1/3}.$
(20)

Первый корень дает устойчивый фокус при $\lambda_1 < 0$ (рис. 36) и неустойчивый при $\lambda_1 > 0$ (рис. 3в). В последнем случае положительный корень (19) дает один устойчивый предельный цикл.

Результаты по фазовым траекториям электромеханической автоколебательной системы с пружинным и пружинно-маятниковым КРЭ сведены в таблицу 1.

Таблица 1

Фазовые траектории автоколебательной электромеханической системы с пружинным и пружинно-маятниковым КРЭ

🔪 Вид фазовой	Устой	Устойчи-	Неустой-	Неустойчи-	Неустойчивый фокус с
траектории	чивый	вый фокус	чивый фо-	вый фокус с	одним неустойчивым и
	пре-		кус с ус-	полуустой-	другим устойчивым
	дель-		тойчивым	чивым пре-	предельными циклами
	ный		предель-	дельным	
	цикл		ным цик-	циклом	
Параметры			ЛОМ		
λ_1	0	0 или < 0	> 0	$\sqrt[3]{(9\lambda_2/\pi)^2}$	$>\sqrt[3]{(9\lambda_2/\pi)^2}$
λ_2	0	>0 или 0	0	$\pi\sqrt{\lambda_1^3}/9$	$<\pi\sqrt{\lambda_1^3}/9$
<i>φ</i> _{m1} (уст.)	<i>φ</i> (+0)	_	$2\sqrt{\lambda_1/3}$	-	$\frac{4\sqrt{\lambda_1}}{3} \cos\left(60^\circ - \frac{\varphi}{3}\right),$
					$\cos\varphi = 9\lambda_2 \big/ \pi \sqrt{\lambda_1^3}$
<i>φ</i> _{m2} (неуст.)	_	_	_	$\pi\sqrt{\lambda_1}/3$	$\frac{4\sqrt{\lambda_1}}{3} \cos\left(60^\circ + \frac{\varphi}{3}\right),$
					$\cos\varphi = 9\lambda_2 \big/ \pi \sqrt{\lambda_1^3}$

Заключение

Проведенные исследования автоколебательного движения ОАД с линейной пружиной на валу показали, что имеются его бифуркации в виде:

- устойчивый предельный цикл;
- устойчивый фокус;
- неустойчивый фокус с устойчивым предельным циклом;
- неустойчивый фокус с полуустойчивым предельным циклом;

– неустойчивый фокус с одним неустойчивым и другим устойчивым предельным циклами.

Определяющие эти виды движения аналитические соотношения, представленные в таблице 1, определяют собой основы методики научно-обоснованного выбора общепромышленного АД в качестве силового элемента автоколебательного электропривода.

Литература

- 1. Луковников В.И. Электропривод колебательного движения. М.: Энергоатомиздат, 1984. 152 с.
- 2. Аристов А.В. Электропривод колебательного движения с машиной двойного питания. – Томск: Изд.-полиграфическая фирма ТПУ, 2000. – 176 с.
- 3. Луковников В.И., Тодарев В.В., Веппер Л.В. Автоколебательный режим однофазного асинхронного электродвигателя //Известия ВУЗов и ЭО СНГ. Энергетика. 1998. № 2. С. 45-49.
- Веппер Л.В. Анализ уравнения движения асинхронного автоколебательного электропривода //Сборник материалов межвузовской конференции аспирантов и студентов. – Гомель: ГКИ-ГПИ, 1997. – С. 25-27.

Получено 01.10.2001 г.