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Abstract. For cases of isotropic, uniaxial, and biaxial electromagnetic metamaterials (MM), a comparative
analysis of the effect of small deviations of local material parameters from “ideal” values on the realization of MM
applications (“zero” media, the Veselago-Pendry superlens) has been carried out. On the basis of the detailed
investigation of the solutions of dispersion equations, it is established that even a very small dielectric and (or)
magnetic anisotropy of a general form is the universal “non-ideal” factor determining (to a much greater extent
than small losses) the operability of thoseMMapplications where the wavemisphasing in the effectivemedium is
undesirable. The characteristics of wave attenuation in the absorbing isotropic and weakly anisotropic MM are
mainly comparable for the applications. Limitations of the traditional approaches using the second-order curves
(or surfaces) for analytic modeling of the absorbing MM dispersion equations are shown.
1 Introduction

The main ideas and experimental realization of the
composite electromagnetic materials those macroscopic
properties are defined by the elements of their inner
microstructure (metamaterials (MM)) [1–3] have led to
the rapid development of MM theory and applications
during this century (see, e.g., recent reviews [4–10] and
numerous references in these works). Among the promising
and actively discussed MM applications, there are develop-
ment of the “superlens” (the Veselago-Pendry lens, SL) with
resolution higher than the diffraction limit, usage of MM
withtheuniqueopticalproperties includingnegative,near to
zero or extremely large electromagnetic material parame-
ters, creation of the various technologies for controlling the
visibility of micro- and macroscopic objects, integral optics,
information technologies, and many others [4–12].

The majority of the realized electromagnetic MM are
characterized by optical absorption or losses, and compos-
ite MM are often effectively anisotropic (to a greater or
lesser extent) in their dielectric and (or) magnetic
properties. The production of isotropic magnetic MM in
the optical range is a difficult technological problem [13–
15]. On the other hand, it is well known that namely a “non-
idealness” of the effective electromagnetic characteristics
according to various criteria is one of the main factors
limiting the performance capabilities of MM applications.
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So, optical absorption worsens considerably the resolution
of isotropic SL [3,16–18], leads to wave misphasing and
deterioration of the image [19]. As shown in paper [20], even
a very small uniaxial optical anisotropy of a general form is
a more important problem for SL than absorption. It is
caused by the fact that the misphasing of evanescent waves
(that are responsible for “superresolution”) even in the
weakly anisotropic media increases rapidly with increasing
the transversal component of wave vector. The opposite
situation takes place for absorbing isotropic media: the
evanescent wave phase shift decreases with increasing this
wave vector component [19,20]. Undesirable effects of the
phase shift in wave propagation limit also the use of “zero”
media (epsilon-mu-near-zero (EMNZ), epsilon-near-zero
(ENZ)) that are promising for many integral optics
applications [9,21–24].

Moreover, the account of interconnected effects of
absorption (losses) and anisotropy on propagation and
attenuation of electromagnetic waves is also important for
the MM applications. Such investigations were performed
in many works only for some specific cases and concrete
MM realizations (see, e.g., [25–30]). However, it is
interesting to carry out the general comparative analysis
of the “non-ideal” (from viewpoint of MM applications)
features of electromagnetic wave propagation and tunnel-
ing for various absorbing MM: isotropic, uniaxial (at
arbitrary orientations of the optical axis), and biaxial (at
least, for the biaxial MM with most symmetric electro-
magnetic properties). Electromagnetic waves in such MM
are inhomogeneous, and, in the general case, they are not
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
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reduced to TM and TE waves in the presence of effective
anisotropy [11,20]. To reveal the general patterns of the
phase and amplitude effects of the radiation interaction
with the weakly “non-ideal”MM, it is useful to investigate,
at first, the features of solutions of the corresponding
dispersion equations.

In the work, the exact solutions of the dispersion
equations (that describe the complex wave vector
components) are investigated analytically and numerically
for a number of “non-ideal” effectively isotropic and
anisotropic MM with local electromagnetic properties.
The analysis demonstrates new features of proper waves
(PW), backward waves, wave propagation and tunneling
in MM, and the effect of absorption and anisotropy on the
MM applications. The results are obtained using the
invariant (independent of the coordinate system choice)
calculation methods and the refraction vector formalism
[31] taking into account absorption of inhomogeneous PW
in the media.

The rest of the paper is organized as follows. In
Section 2, the general problem statement and main
assumptions used in the work are briefly considered.
Features of the exact solutions of the dispersion equations
for isotropic and anisotropic (uniaxial, biaxial) absorbing
MM are investigated in Sections (3)–(5). By way of
examples of the important MM applications (SL, EMNZ,
ENZ), the general peculiarities of PW misphasing and
damping in such materials are ascertained. First of all,
these peculiarities are caused by very small deviations of
MM effective electromagnetic parameters from the re-
quired “ideal” values. Each of Sections (3)–(5) includes an
analytical consideration of the corresponding type of MM
and a detailed graphical analysis of the effects of small
deviations of material parameters, absorption, and anisot-
ropy on the MM applications. The conclusion (Sect. 6)
includes a brief discussion of the obtained results and
summarizes the paper. The additional material excluded
from the main text of the work is contained in Appendix.

2 Main assumptions

Let us consider interaction of plane monochromatic waves
with effectively homogeneous media characterized by
complex tensors of dielectric permittivity, e, and magnetic
permeability, m. All or some components of tensors e, m can
have the negative real parts, all the imaginary parts of the
components are positive (absorbing linear MM). Phase
multiplier exp[ik0(mr)� ivt] is used in expressions for the
fields where m=(m1, m2, m3)= k/k0 is a complex
refraction vector [31], k is a wave vector (vectors are
denoted with boldface symbols), k0=v/c is a wave number
for vacuum, i2=� 1, r=(x, y, z) is a radius-vector. Here
and below (uv) and [u� v] denote scalar and vector
product of some (both real and complex) vectors u, v. The
denotations a0 =Re(a), a00 =Im(a) are used for the real and
imaginary parts of scalar or vector quantities. The
invariant calculation methods [31] are applied partially
in the present work. At first, the invariant relations are
considered, and then the results are investigated in the
chosen coordinate system where m=(m1, 0, m3), that is,
plane XZ is assumed to be the incidence plane. Meanwhile,
the transversal component of refraction vector is supposed
to be real (m1 does not change at different boundaries in
solutions of the corresponding boundary problems) and the
longitudinal component m3 is complex. The usage of the
chosen coordinate system is caused by the necessity of
obtaining the resulting expressions that include explicitly
the components of tensors e, m, anisotropy and absorption
parameters for the following analysis of the typical for MM
cases of negative or small real parts of the tensors e, m
components.

The validity of material equations D= eE, B=mH for
the effective medium and Maxwell’s equations for
monochromatic waves [31]

E ¼ �e�1½m � H�; H ¼ m�1½m � E�; ð1Þ
where e�1, m�1 are inverse to e, m tensors, is also assumed.
Equations (1) and the following below ones are true for
both homogeneous and inhomogeneous waves (when the
vectors corresponding to the real, m0, and imaginary, m00,
parts of vector m can be non-parallel). Quantities m0 and
m00 describe refraction and damping of the electromagnetic
wave propagating in an absorbing medium, respectively.

We will use the accurate relations considered below for
the graphical analysis of dispersion dependences: equations
(2) and (3) for isotropic, equations (13) and (14) for uniaxial,
and equation (24) for biaxial MM. Let us investigate
functions m3

0 (m1), m3
00 (m1), m3

0 (m3
00) only for the

transmitted waves (m3
00 > 0) at small deviations of effective

dielectric and magnetic characteristics from the “ideal”
valuescorrespondingto the realizationof two importantMM
applications: EMNZ (ENZ) and SL. We will consider the
effects of both propagation (when |m1| values do not exceed
several units) and tunneling of the electromagnetic waves
(up to the values |m1|� 50) in the investigated MM.
Correspondingly, we will use two scales of the parameter
m1 changes in thefiguresbelow.The scaleswill bedesignated
for convenience as “small” (when the graphs specify features
of propagation of the waves) and “large” (when evanescent
waves are essentially considered).

3 Isotropic media

Using the invariant dispersion equation for isotropic
magnetic media, m2= em, one can obtain the following
relations for the real and imaginary parts of the
longitudinal component of refraction vector in the chosen
coordinate system

m3
0 ¼ ±

ðemÞ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fm2

1 � ðemÞ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

1 � ðemÞ0�2 þ ððemÞ00Þ2
q

g
r ;

ð2Þ

m3
00 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þfm2

1 � ðemÞ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

1 � ðemÞ0�2 þ ððemÞ00Þ2
q

g
r

:

ð3Þ
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As usual, the value ofm1 is assumed to be given and the sign
of quantity m3

00 is chosen according to the causality
condition: m3

00 > 0 for the wave propagating into MM in
the positive direction of axis Z with the amplitude decrease
determined by parameter exp(�m3

00 z) (further this wave
is named “transmitted”). The sign of quantity m3

0 is
determined with account of the previously chosen value of
m3

00 and the correspondence of the obtained complex value
of m3 to the dispersion equation. Obviously, parameter
m3

0 z determines the phase shift of the propagating wave.
The similar order of the sign choice of them3

00,m3
0 values is

used for uniaxial (Eqs. (12–14)) and biaxial (Eqs. (22) and
(24)) media.

According to equations (2) and (3), even functions
m3

0 (m1) and m3
00 (m1) are near-hyperbolic and near-

linear, correspondingly, and we have the limiting
relations |m3

0 |!0, |m3
00 |!∞ at |m1|!∞. Functions

m3
0 (m1) (at (em) 00 ≠ 0) and m3

00 (m1) have the single
extremum at m1 = 0 (the presence of either maximum or
minimum depends on the sign choice for these functions).
One can simply show that the intersection of the graph of
function m3

0 (m1) with the abscissa m3
0 =0 is impossible.

That means the impossibility of transition of the forward
wave (m3

0 > 0) into backward one (m3
0 < 0) and vice

versa in the isotropic medium with changing parameter
m1. We also have the relation 2m3

0 m3
00 =(em) 00 from the

dispersion equation m2 = em, so dependences m3
0 (m3

00),
m3

00 (m3
0) are hyperbolic (at (em) 00 ≠ 0). A decrease

(increase) of the wave attenuation in the isotropic
absorbing medium thus leads to an increase (decrease)
of the phase shift.

Equations (2) and (3) can be transformed to the form
of dispersion equations in coordinates (m3

0 , m1), (m3
00 ,

m1):

4ðm3
0Þ2½ðm3

0Þ2 þm2
1 � ðemÞ0� � ððemÞ00Þ2 ¼ 0; ð4Þ

4ðm3
00Þ2½ðm3

00Þ2 �m2
1 þ ðemÞ0� � ððemÞ00Þ2 ¼ 0: ð5Þ

So, even in the simplest case of the isotropic absorbing
medium, equations (4) and (5) are not described by the
usually used second-order curves (or the second-order
surfaces in the general case). Equations (4) and (5) are the
fourth-order equations.

Let us consider some particular cases following from
equations (2) and (3). The case m3

0 =0 (the purely
evanescent wave) is realized for all values ofm1 only under
the condition (em) 00 = e 0 m 00 + e 00 m 0 =0 that can be satis-
fied for absorbing isotropic media (e 00 , m 00 > 0) at e 0 m 0 < 0.

In this case, we have m3
00 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ ðm00=e00Þjej2
q

≠ 0.

According to equation (2), realization of the condition
e 0 m 0 < 0 enables to decrease the phase shift (to 0 at
e 0 m 00 + e 00 m 0 =0) in wave propagation. It is of interest for
the applications where such phase shift is undesirable (SL,
“zero” MM). As follows from equations (2) and (3), both
equality m3

00 =0 and the case of strictly linear dependence
m3

00 (m1) (at m1� 0 or m1≥ 0) are not realized in the
isotropic absorbing media (for both “conventional” media
and MM).
For the analysis of a “non-idealness” of the effective
dielectric and magnetic properties of isotropic MM, let us
assume that quantities e, m are of the form:

e ¼ aþ De; m ¼ bþ Dm; ð6Þ

where a, b are characteristic (“ideal”) real values of e, m for
some effects (particularly, a= b=0 for EMNZ, a= b=� 1
for SL MM), De, Dm are small complex additions to a, b
(|De|, |Dm|<< 1) characterizing the “non-idealness” of MM
properties. Deviations De, Dm from the ideal conditions can
be caused by losses, MM fabrication methods and other
factors [13–15].

The numerical analysis of equations (2) and (3) shows
that under the conditions, e.g., |De|, |Dm|< 0.1 even the
linear Taylor expansion of quantities m3

0, m3
00 in terms of

parameters De, Dm ensures the high accuracy. One can
obtain in this case

m3
0 ≅ ±

aDm00 þ bDe00

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � ab
p ; m3

00 ≅ ±
2ðm2

1 � abÞ � aDm0 � bDe0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � ab
p :

ð7Þ
Equations (7) describe essentially evanescent wave tunnel-
ing inMM ðm2

1 > abÞ. According to equations (7), quantities
m3

0,m3
00 are determined by parameters a, b, m1 and only the

imaginary (for m3
0) or real (for m3

00) parts of deviations De,
Dm. So, for evanescent waves in the isotropic absorbing
medium, the phase shift is determined essentially by the
absorption parameters (De 00 , Dm 00 > 0) and the wave
attenuation is determined by deviations De0, Dm0.

Let us consider the form of equations (7) for some
important MM applications. We have in the case of ideal
EMNZ MM (a= b=0):

m3
0 ≅ 0; m3

00 ≅ ±m1; ð8Þ

that is, the phase shift is absent and the wave attenuation
parameter is equal in magnitude to the value of m1.

For ideal ENZ MM ða ¼ 0; b ¼ 1Þ

m3
0 ≅ ±

De00

2m1
; m3

00 ≅ ±
2m2

1 � De0

2m1
; ð9Þ

where m1≠ 0, we have the strictly hyperbolic dependence
m3

0 (m1) and the difference of the linear and hyperbolic
dependences for function m3

00 (m1). Meanwhile, parameter
Dm has no effect on quantitym3 for EMNZ and ENZMM in
the first approximation.

In the case of ideal SL MM (a= b=� 1), we have:

m3
0 ≅ ±

�De00 � Dm00

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � 1
p ; m3

00 ≅ ±
2ðm2

1 � 1Þ þ De0 þ Dm0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � 1
p ;

ð10Þ
where |m1|> 1, the dielectric and magnetic absorption
effects amplify the wave phase shift simultaneously. It is
possible to decrease the wave damping at De 0 +Dm 0 < 0 in
comparison with the more “ideal” case De 0 =Dm 0 =0.



Fig. 1. The effect of small values of quantities e0, m0 (the top
panels) and e00, m00 (the bottom panels) on dependences m3

0 (m1)
for isotropic EMNZ (a–d) and ENZ (e–h)ММ. Figures b, d, f and
h detail the corresponding graphs at small values of m1.
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For nonmagnetic SL (NMSL) ða ¼ �1; b ¼ 1Þ

m3
0 ≅ ±

De00 � Dm00

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 1
p ; m3

00 ≅ ±
2ðm2

1 þ 1Þ þ Dm0 � De0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 1
p ;

ð11Þ

the full phase shift compensation at De00 =Dm 00 and the
wave damping decrease at De0 >Dm 0 are possible.

In spite of the approximate character, equations (7)–
(11) (along with the accurate relations (2) and (3)) can be
applied for optimization of the devices using EMNZ (ENZ)
and SL (NMSL) ММ. That is confirmed by the results of
the numerical and graphical analysis executed below.

Subject to parity of functionsm3
0 (m1) andm3

00 (m1) for
the isotropic media (Eqs. (2) and (3)), their graphs are
symmetric with respect to the ordinate m1= 0. So, it is
enough to consider the effect of only positive values of
parameter m1 on quantities m3

0, m3
00.

Figures 1 and 2 illustrate the effect of small values of
quantities e0, m0 (the top panels) and e00, m00 (the bottom
panels) on dependences m3

0 (m1), m3
00 (m1) for the weakly

absorbing EMNZ and ENZ MM. At the large scale,
dependences m3

0 (m1) are near-hyperbolic (Fig. 1 a, c, e
and g), and the phase shift decreases quickly with the
parameterm1 growth for both EMNZ and ENZMM.At the
small scale (Fig. 1b, d, f, h), the dependences are different
from hyperbolic and have the pronounced maximum at
m1= 0 (the normal incidence of the wave on MM when the
boundary problem is solved). For EMNZMM, values of the
maximum at variation of the parametrs e0, m0 (Fig. 1b) are
greater (approximately by a factor of 102) than ones at the
comparable variation of quantities e00, m00 (Fig. 1d). For
ENZ MM, maxima of function m3

0 (m1) have the close
values with changing parameters e0 and e00 (Fig. 1f and h).

The similar variations of quantities e0, m0 and e00, m00
affect dependences m3

00 (m1) (characterising the wave
amplitude attenuation) considerably more weakly (Fig. 2).
At the large scale, the graphs in Figure 2a are practically
coincident and correpond to all the parameters sets given in
Figure 2 (for both EMNZ and ENZ, Fig. 2b–e). Depend-
ences m3

00 (m1) for EMNZ and ENZ MM are slightly
different at small values of m1. In particular, the variation
of quantities e, m affects parameterm3

00 for ENZММ at the
same values of m1 more strongly (Fig. 2b and c in
comparison with Fig. 2d and e). The growth of the values of
e0, m0 (e ", m00) leads to a decrease (increase) of parameter
m3

00, correspondingly, at fixed values ofm1 (Fig. 2b, d, c and
e).

The considered features are characteristic and take
place at various values of the parameters, e.g., under the
condition e 0 m 0 < 0 (Fig. 2b, the top curve). At
e0 ¼ m0 ¼ �0:001; �0:01; �0:1 the graphs of function
m3

00 (m1) are practically invariable in comparison with
ones given in Figure 2a, and graphs m3

0 (m1) became
“mirror-image”with respect to the abscissa axis (that is, the
transmitted wave becames backward wave).

The graphical analysis also shows that at the relation
(em) 00 ≈ 0 (the values je0j ¼ jm0j ¼ 0:001; 0:01; 0:1 ,
e 0 m0 < 0 are taken) the condition m3

0 ≈ 0 is satisfied with
the very high accuracy up to distinct values of absorption
parameters of the order of e 00 , m 00 ≈ 0.1. In this case, the
graphs of function m3

00 (m1) correspond to ones in
Figure 2a.

The results of the graphical analysis which is similar to
Figures 1 and 2 data (but for the conditions of isotropic SL
and NMSL realization) are given in Figures 3 and 4.
According to data in Figure 3 a–d, the transmitted wave in
the case of SL is backward (m3

0 < 0), and functions
m3

0 (m1) at varying parameters e0, m0 and e00, m00 are
characterized by the close values of minima m3

0 (0) in the
diapason (�0.8,�1) (Fig. 3b and d). In the NMSL case, the
wave is forward (m3

0 > 0, Fig. 3e–h). At varying
parameters e0 and e00, functions m3

0 (m1) have maxima
m3

0 (0) which values differ in approximately two orders
(Fig. 3f and h). For both cases (SL, NMSL) the phase shift
decreases quickly according to the near-hyperbolic law
with the growth of m1 up to the large values (Fig. 3a, c, e
and g). In the case of NMSL, the smaller values of |m3

0 | in
comparison with SL at the samem1 values (Fig. 3a, c, and e,
g) are realized. In Figure 3e and f the graphs are given for
the cases e 00 =0.001, m 00 =0 (“magnetic” absorption is
absent) and e 00 =m 00 =0.001 (the coincident parameters of
“dielectric” and “magnetic” absorption that corresponds to
the condition De00 =Dm 00 in the expression for m3

0 (Eq.
(11)). The significant decrease of the phase shift takes place
in the last case, as here the condition (em) 00 ≈ 0 is satisfied
with the high accuracy.

The graphs in Figure 4 for functionm3
00 (m1) at the SL,

NMSL regimes are qualitatively similar to the correspond-
ing graphs in Figure 2 at small values of m1 and are
practically coincident at the large scale (Fig. 2a and
Fig. 4a). However, we have the relations of the parameters
describing the given effects at small coincident values ofm1:
ðm3

00ÞSL << ðm3
00ÞEMNZ (Fig. 4b, c and Fig. 2b, c),

ðm3
00ÞNMSL > ðm3

00ÞENZ (Fig. 4d, e and Fig. 2d, e). At
small values of m1, varying quantities e0, m0 affects
dependences m3

00 (m1) for NMSL more strongly in
comparison with SL (Fig. 4b and d). Changing e00, m00



Fig. 2. The effect of small values of quantities e0, m0 (the top
panels) and e00, m00 (the bottom panels) on dependences m3

00 (m1)
for isotropic EMNZ (a–c) and ENZ (d, e) ММ. Figure a
corresponds to all the data given in Figures b–e.

Fig. 3. The effect of small values of quantities e0, m0 (the top
panels) and e00, m00 (the bottom panels) on dependences m3

0 (m1)
for isotropic SL (a–d) and NMSL (e–h) ММ. Figures b, d, f and h
detail the corresponding graphs at small values of m1.
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values does not affect practically the graphs of function
m3

00 (m1) for NMSL (Fig. 4e) but becomes significantly
apparent for SL (Fig. 4c).

The data in Figures 1–4 are represented in Figure 5 in
axes (m3

0,m3
00) where the left (Fig. 5a and c) and right

(Fig. 5b and d) panels characterize the effect of varying
parameters e0, m0 and e00, m00. For the graphs in Figure 5, the
removal of the curves from the coordinate origin (m3

0 =
m3

00 =0) corresponds to amplification of the “non-ideal-
ness” of theMM effective characteristics. According to data
in Figure 5, dependences m3

0 (m3
00) are hyperbolic for the

isotropic MM, and the absorption parameters effect on
m3

0 (m3
00) graphs determinatively (especially for ENZ, SL,

NMSL MM, Fig. 5b and d). The same changes of
parameters e0, m0 and e00, m00 lead to the practically
coincident m3

0 (m3
00) graphs for EMNZ MM and strongly

different ones for ENZMM (Fig. 5a and b). The variation of
the values of quantities e0, m0 effects on dependences
m3

0 (m3
00) for ENZ, SL, NMSLMMweakly (Fig. 5a and c).

The comparison of the data in Figures 1–5 shows that
the phase shift decrease is accompanied by the increase of
the wave damping with the growth of m1 (in the general
case, |m1|) values. So, for the isotropic absorbing EMNZ
(ENZ) and SL (NMSL) MM the phase and amplitude
effects actuate mutually antithetically with the growth of
transversal wave number k1= kom1 (that is, at the
transition to “more evanescent” waves): the phase shift
decrease is accompanied by the increase of wave attenua-
tion, and vice versa. The increase of the effective medium
absorption leads, as a rule, to the phase shift increase (with
the exception of the case (em) 00 ≈ 0 where the “dielectric”
and “magnetic” absorption effects compensate mutually
their impact on the phase shift).
4 Uniaxial media

In the general case of the uniaxial magnetic medium, non-
diagonal tensors e,m have the form [31]: e= eo+(ee� eo)c.c,
m=mo+(me�mo)c.c where eo(mo) is double singular,
ee(me) is non-singular complex eigenvalue of tensor e(m),
c is a unit real vector in the optical axis direction, c.c is a
dyadic product. This case is described by the invariant
dispersion equations [20]

eeðm2 � eomoÞ ¼ ðee � eoÞ½m � c�2;

meðm2 � eomoÞ ¼ ðme � moÞ½m � c�2; ð12Þ
corresponding to TM and TE waves only in the particular
case of the optical axis orientation in the incidence plane.
According to equations (12), the waves in such medium are
not strictly propagating or evanescent (for the transmitted
waves alwaysm3

00 > 0 and, in the general case,m3
0 ≠ 0 even

at the incidence on a MM layer of the purely evanescent
wave for which m3

0 =0, m3
00 > 0).

Further we use the chosen coordinate system where
m=(m1, 0, m3), c=(cos(a), cos(b), cos(g)) and consider
the first equation from equations (12) corresponding to TM
waves in the particular case cos(b)= 0. The results
presented below are analogous to the second equation
from equations (12) (corresponding to TE waves at
cos(b)= 0) at the substitutions mo↔ eo, ee↔me. Conse-
quently, we obtain the quadratic equation in complex
parameter m3 with complex coefficients:

½eo þ ðee � eoÞcos2ðgÞ�m2
3 þ 2ðee � eoÞcosðaÞcosðgÞm1m3

þ½eo þ ðee � eoÞcos2ðaÞ�m2
1 ¼ moeoee ð13Þ



Fig. 4. The effect of small values of quantities e0, m0 (the top
panels) and e00, m00 (the bottom panels) on dependences m3

00 (m1)
for isotropic SL (a–c) and NMSL (d, e) MM. Figure (a)
corresponds to all the data given in b–e. Fig. 5. The effect of small values of quantities e0, m0 (the left

panels) and e00,m00 (the right panels) on dependencesm3
0 (m3

00) for
the isotropic EMNZ and ENZ (a, b), SL and NMSL (c, d) ММ.
The corresponding data of Figures 1–4 are taken for the function
m3

0 (m3
00) graphs.

6 E. Starodubtsev: EPJ Appl. Metamat. 2018, 5, 1
The extraction of the real and imaginary parts in
equation (13) leads to a system of two complete fourth-
order equations of the form f(m3

0 ,m1)= 0, g(m3
00 ,m1)= 0

both in quantities m3
0, m3

00 and parameter m1. Meanwhile,
the solubility conditions for these equations (availability of
the real solutions form3

0,m3
00 having the physical sense) are

identical. The real solutions of these equations can be
obtained using the standard analytical method on the basis
of the cubic resolvent:

m3
0 ¼ m1A

0 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBj �B0

q
;

m3
00 ¼ m1A

00 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBj þB0

q
; ð14Þ

where the denotations are used (p= ee/eo, q= eemo):

A ¼ ð1� pÞcosðaÞcosðgÞ
1� ð1� pÞcos2ðgÞ ;

B ¼ ½pþ ð1� pÞcos2ðbÞ�m2
1 � ½1� ð1� pÞcos2ðgÞ�q

2½1� ð1� pÞcos2ðgÞ�2 :

According to equations (14), quantities m3
0, m3

00 are
determined by the following parameters: the optical axis
direction, quantity m1, two complex parameters dependent
on themediummaterial properties, ee/eo and eemo. Thus, the
waves with the same refraction vector can be excited in the
different uniaxial media (characterized by the different
parameters eo, ee,mo) at the identicalaforesaidparameters. It
is also followed from equations (14), that functionsm3

0 (m1),
m3

00 (m1) are near-linear, especially with the growth of the
|m1| values corresponding to evanescent waves. So, depend-
ences m3

00 (m1) for the isotropic and uniaxial media are
qualitatively similar, anddependencesm3

0 (m1) are different
in essence.With increasing |m1| values the phase shift of the
wave in the isotropicmedium decreases quickly according to
a near-hyperbolic law, but in the uniaxial medium it
increases practically linearly. One can simply show that,
in the general case, dependences m3

0 (m1), m3
00 (m1) take

place in any (non-magnetic, magnetic, MM) uniaxial
absorbing medium. Meanwhile, in contrast to the isotropic
medium, the accurate (and even approximate, to the first
order approximation on the absorption and anisotropy
parameters) realization of the condition m3

0 =0 at all the
parameter m1 values is impossible. So, it is impossible to
obtain the strictlyplanedispersion surface required formany
MMapplications. According to equations (14), the intersec-
tion of the functionm3

0 (m1) graphwith the abscissam3
0 =0

is possible. That is one more difference from the isotropic
medium case, and itmeans the possibility of transition of the
forward wave into backward one (and vice versa) in the
uniaxial medium at changing parameter m1 [32].

The important particular case of equations (12) is
determined by the condition [m� c]2 = 0 corresponding to
realization of the peculiar PW, the Fedorov � Petrov
waves [33] considered for uniaxial MM in [20]. The other
interesting cases are realizations of the conditions eo=0 or
ee=0 in equation (13) corresponding to the cases of
“partially absorbing” ENZ MM.

At eo=0, any values of mo and ee≠ 0, we have from
equation (13):

m3 ¼ m3
0 ¼ � cosðaÞ

cosðgÞm1; m3
00 ¼ 0; ð15Þ



Fig. 6. The effect of small birefringence (a, b) and mutual effect
of birefringence and dichroism (c, d, values of the parameters for
curves 1–3 are given in the table) on dependences m3

0 (m1) (the
left panels) and m3

00 (m1) (the right panels) for the uniaxial
EMNZ ММ.
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that is, an arbitrarily large MM absorption determined by
parameters mo

00, ee00 does not influence quantities m3
0, m3

00.
It is interesting that, according to the relations for PW
polarization in the uniaxial medium [20], vector E is
“parallel” to the optical axis in this case (it means that
[E� c] = 0 with account of complexity of E).

At ee=0, any values of mo and eo≠ 0, one can obtain
from equation (13):

m3 ¼ cosðaÞcosðgÞ± icosðbÞ
1� cos2ðgÞ m1: ð16Þ

The feature of equations (15) and (16) is their linearity with
respect to quantities m1, m3. Meanwhile, they determine
the only possible value of m3

0 (and in the case of Eq. (15)
also the only value of m3, and, therefore, the only PW
polarization state) at a given m1 for both the transmitted
(m3

00 > 0) and reflected (m3
00 < 0) waves characterized by

equation (13). One of these waves is forward (m3
0 > 0) and

the other is backward (m3
0 < 0) subject to the optical axis

orientation. Note, that the similar case of the linear
dispersion equation is impossible for the isotropic medium.
It is also seen that explicit dependences of quantities m3

0,
m3

00 on MM material parameters are vanished in these
particular cases, and quantitym3 is determined only by the
optical axis direction and m1 value. Under the additional
conditions to the optical axis orientations cos(a)= 0,
cos(g)≠ 0 (the case of Eq. (15)) or cos(g)= cos(b)= 0 (the
case of Eq. (16)) such MM are “ideal” ENZ ММ:
m3

0 =m3
00 =0 at any values ofm1. Thus, for the considered

cases (Eqs. (15) and (16)) the dispersion equations are
determined only by the optical axis direction that,
obviously, depends on tensor e, m components.
Let us use equation (13) for obtaining the approximate
relations that are similar to equations (7) and characterize
dependences m3

0 (m1), m3
00 (m1) in the first order

approximation on the “non-ideal” deviations of the
absorption and anisotropy parameters. As in equations
(6), we assume that

eo ¼ aþ Deo; mo ¼ bþ Dmo; ee � eo ¼ De; ð17Þ

where a, b, are “ideal” (for some effects) real values of
quantities eo, mo, small complex parameters Deo, Dmo, De
(|Deo|, |Dmo|, |De|<< 1) describe small deviations of the
MM effective parameters from “ideal” conditions, and De
characterizes small dielectric anisotropy. According to the
numerical analysis, the condition |Deo|, |Dmo|, |De|� 0.1
ensures the high accuracy again. Consequently, we obtain

ðm3
0Þ± ≅

�m1De0cosðaÞcosðgÞ
a

±
½bDeo þ aDmo þ ðQ=aÞDe�00

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � ab
p :

ð18Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

ðm3

00Þ± ≅ ± m2
1 � ab

�m1De00cosðaÞcosðgÞ
a

∓
½bDeo þ aDmo þ ðQ=aÞDe�0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � ab
p ;

ð19Þ
where m2

1 > ab, Q ¼ absin2ðgÞ �m2
1½cos2ðaÞ � cos2ðgÞ�,

and only the upper or only lower sign is chosen in each
relation. Expressions (18) and (19) generalize the relations
for SL MM (a= b=� 1) [20] in the case of arbitrary real
values of a≠ 0, b.

At a=0 (EMNZ or ENZ ММ) the following expression
is a highly accurate approximation for parameter m3

See equation (20) below:
ðm3Þ± ≅m1
�DecosðaÞcosðgÞ± ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Deo½Deo þ Deðcos2ðaÞ þ cos2ðgÞÞ�p

Deo þ Decos2ðgÞ : ð20Þ
According to equation (20), parameter m3 is directly
proportional to m1 and independent of the effective
medium magnetic properties.

In the general case of anisotropic media, functions
m3

0 (m1) and m3
00 (m1) are not appeared to be even (Eqs.

(14) and (24)). So, let us consider the effect of not only
positive but also negative values of parameter m1 in the
diapason |m1|� 50 on quantities m3

0, m3
00 for the

transmitted waves. For all the graphs in Figures 6–8
the values of the angles a=p/4, b= g=p/3 determining
the optical axis direction in the chosen coordinate system
are used. The features considered below take place also for
the different orientations of the optical axis.

The graph of linear function m3
0 (m1) for the case eo=0

(Eq.(15))isgiveninFigure6a.Inthiscase,thewaveamplitude
attenuation is absent: m3

00 =0. The very small change of
parametereo(from0to10�11i,Fig.6b) leadstotheappearance
of the strong and near-linear dependences m3

00 (m1) that are
very “sensitive” to very small changes of quantity ee0. The



Fig. 8. The effect of small dichroism (a), mutual effect of
birefringence and dichroism (b, c) (values of the parameters for
curves 1–9 are given in the corresponding tables) on dependences
m3

0 (m1) for the uniaxial SL ММ. Figure d corresponds to the
cases (a–c) at small values of m1.

Fig. 7. The effect of small birefringence on dependencesm3
0 (m1)

(a, b) and m3
00 (m1) (c, d) for the nonabsorbing uniaxial SL ММ.

Figures b, d detail the corresponding graphs at small values ofm1.
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simultaneouspresenceofsmallbirefringenceanddichroism(of
the order of |eo|, |ee|≈ 10�5) leads to near to piecewise-linear
graphs of functions m3

0 (m1) and m3
00 (m1) that are

asymmetric with respect to the positive and negative values
of m1 (Fig. 6c and d). With that, it is possible to change the
transmittedwave type (forward,m3

0 > 0,backward,m3
0 < 0)

withvaryingparameterm1 (Fig. 6a andFig. 6c, curve 1).Also
thedifferentcharacterofthechangesofdependencesm3

00 (m1)
at m1< 0 and m1> 0 (Fig. 6d) is possible. The graphs in
Figure 6 do not practically change also at the small scale of
valuesofm1andundertheconditionmo=1,thatis, forthecase
of weakly anisotropic uniaxial ENZ MM.

According to Figure 6 data, the very small changes of
parameters eo, ee (of the order of |eo|, |ee|≈ 10�5� 10�4 and
less) lead to the significant changes of quantities m3

0
(Fig. 6c) and m3

00 (Fig. 6b and d and the transition from
Fig. 6a to b) for evanescent waves (at |m1|>> 0). Such
features of the considered near to “zero” MM can be of
interest for controlling these waves characteristics and
sensor applications.

The data in Figures 7 and 8 characterize the effect of
parameters of small birefringence (Fig. 7), dichroism
(Fig. 8 a and d), birefringence and dichroism (Fig. 8b–d)
on the conditions of the SL MM realization (the analogous
features take place for NMSLMM). At the large scale ofm1
values, dependences m3

0 (m1), m3
00 (m1) are near-linear

(Fig. 7a, c, and Fig. 8a–c), and the graphs m3
0 (m1) are

qualitatively similar to the graphs for EMNZММ (Fig. 6c).
However, the phase shifts are appeared to be in 3–4 order
smaller in comparison with the EMNZ ММ regime with
changing valuesm1 in the case of SL (Fig. 7a and Fig. 8a–c
in comparison with Fig. 6a and c). At small m1 values,
dependences m3

0 (m1) are nonlinear and symmetric with
respect to axism1= 0 (Fig. 7b, d, and Fig. 8d). At the large
scale, the function m3

00 (m1) graphs in Figure 7c coincide
and correspond to all the parameters sets given in Figures 7
and 8. The comparison of the data in Figure 8a–c shows that
asymmetry of the function m3

0 (m1) graphs with respect to
the positive and negativem1 values is determinedmainly by
the effective medium birefringence. With that, the phase
shifts due to birefringence are appeared to be in several times
greater than ones due to dichroism (at the same values of
birefringence, |ee 0 � eo 0 |, and dichroism, |ee 00 � eo 00 |, param-
eters, curves 4–9 and 1–3 in Fig. 8).

Figure 9 generalizes Figures 6–8 data in the form of
dependencesm3

0 (m3
00). According to Figure 9 graphs at the

large scale of m1 values (at large m3
00 values), dependences

m3
0 (m3

00) are near-linear for the weakly uniaxial MM. At
smallm1 values (at smallm3

00 values), graphsm3
0 (m3

00) are
near-linear only for EMNZMM (for the data in Fig. 9a and
b). In the case of SL MM with small uniaxial anisotropy,
dependences m3

0 (m3
00) can be close to piecewise-linear

(Fig. 9d and f) and nonlinear (Fig. 9h). Also the data in
Figure 9 illustrate clearly thedifferent scale of parameterm3

0
changeswith thegrowthof theabsorptionparameters for the
considered EMNZ and SL MM.
5 Biaxial media

The cases of biaxial absorbing media can be realized in
modeling and experimental determination of effective
electromagnetic MM characteristics. With that, MM
dielectric and magnetic characteristics can demonstrate
the different symmetry properties. Consequently, e.g.,
effective tensors e, m cannot be reduced to the diagonal
form in the same coordinate system. Obviously, the
properties of such MM become more complex in compari-
son with the cases of isotropic and uniaxial media. For such
problems (as for cases of “conventional” anisotropic media),
the invariant methods of phenomenological electrodynam-
ics [31,34] are high-performance ones.



Fig. 9. Dependencesm3
0 (m3

00) for the data given in Figures 6–8.
The data correspondence is: a�Figures 6a, b; b�Figures 6c, d; c,
d � Figure 7a–d; e, f � Figure 8a; g, h � Figure 8b (the same line
types are used for the corresponding data). Figures d, f and h
detail the data in Figures c, e and g at small values of m3

00.
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Meanwhile, as a rule, MM are artificial materials from
“meta-atoms” ordered spatially according to some rules,
that is, the given materials are more frequently
characterized by pronounced symmetry properties.
Therefore, let us consider as a biaxial MM model a
rather general case of one from the most symmetric
configurations such as absorbing magnetic medium of
orthorhombic symmetry with the identical structure of
effective tensors e, m.

In this case, non-diagonal tensors e,m are reduced to the
diagonal form in the same real coordinate system and can
be expressed in the following form [31]:

e ¼
X3
q¼1

eqcq:cq; m ¼
X3
q¼1

mqcq:cq; ð21Þ

where eq, mq are complex scalars (eigenvalues of tensors e,
m), cq are unit real vectors (q=1, 2, 3, c2q ¼ 1) directed
along the second order symmetry axes which are
mutually orthogonal in the considered media (cq are
also perpendicular to the planes of the medium mirror
symmetry), cq.cq are dyads. For example, for layered
MM, one of the vectors cq can be perpendicular to the
layers boundaries and two others can lie in the layers
plane.

Substitution of expressions (21) into the well-known
invariant equation of normals for magnetoanisotropic
media characterized by arbitrary tensors e, m [31,34] leads
to the dispersion equation:

X3
q¼1

eqM2
q

 ! X3
q¼1

mqM
2
q

 !

� e1e2e3 m1F23M
2
1 þ m2F13M

2
2 þ m3F12M

2
3 � m1m2m3

� �
¼ 0;

ð22Þ
where the denotations are used: Mq=(mcq),
Fpr=mp/ep+mr/er (q, p, r=1, 2, 3).

One can show that only in the particular cases Mq=0
the left part of equation (22) is representable in the form of
the product of two multipliers that are quadratic with
respect to refraction vector m. Then complex vector m
“lies” in one from three principal planes of the medium (one
from three scalar products (mcq) is equal to 0). Only in
these cases it is possible to separate PW in the medium into
two groups corresponding to TM and TE waves at the
transition to diagonal tensors e, m.

One more particular case of equation (22) is realized
under the condition e=Km where K is a complex scalar
(direct proportionality of tensors e andm, the onerefringent
medium case [31]). Under this condition, equation (22)
leads to the relations

X3
q¼1

eqM2
q

 !
� m1e2e3 ¼

X3
q¼1

mqM
2
q

 !
� e1m2m3 ¼ 0: ð23Þ

In this case, refraction vector depends on the direction
of the wave propagation but it does not depend on the wave
polarization (birefringence is absent) [31].

At the transition to the chosen coordinate systemwhere
m=(m1, 0, m3), cq=(cos(aq), cos(bq), cos(gq)) equation
(22) leads to the complete fourth-order equation in
quantity m3 (and also in m1)

Am4
3 þBm3

3 þ Cm2
3 þDm3 þ E ¼ 0; ð24Þ

where the expressions for coefficients A, B, C, D, E are
given in Appendix.

Extraction of the real and imaginary parts of equation
(24) leads to the system of two sufficiently awkward
equations and each of them is the complete fourth-order
equation in quantitiesm3

0,m3
00,m1. In the general case, the

analytical solution of the given system is seemed to be
impossible. Obviously, knowing the coefficients of equation
(24), one can obtain complex analytical solutions for
quantitym3 using the well-known formulas or applying the
numerical methods to find four complex roots of the
equation. Both these methods (analytical and numerical)
of the solution of dispersion equation (24) are used for
finding and verification of the values ofm3. Then the values
of m3

0, m3
00 are chosen with account of execution of the

causality conditions and correpondence of the obtained
values pairs (m3

0, m3
00) to equation (24).

The results of the graphical analysis of equation (24)
under the conditions that are close to realization of EMNZ
(Figs. 10 and 13a–c) and SL (Figs. 11, 12, 13d and e) MM
are given in Figures 10–13. For visualization, the different



Fig. 10. The effect of small birefringence (a–c), the mutual effect
of birefringence and dichroism (d–f) on dependences m3

0 (m1) (a,
b, d, e) and m3

00 (m1) (c, f) for the biaxial EMNZ ММ. Figure b
details the data in Figure a at small values ofm3

0, Figure e details
the data in Figure d at small values of m1.
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solutions of equation (24) are designated by the different
curve types in Figures 10–13. Only transmitted waves are
considered (m3

00 > 0). The Figures 10–13 data illustrate
availability of two transmitted waves for each m1 value,
and all four (Fig. 10a–c and Fig. 13a) or only two (Fig. 10d–
f, Figs. 11, 12 and 13b–e) solutions of equation (24) are
used. For all the graphs in Figures 10–13, we use the values
of the angles determining vectors cq (q=1, 2, 3) in the
chosen coordinate system: a1= g3=p/4, a2=b3= 3p/4,
a3=p/2, b1=b2= g1= g2=p/3.

Figure 10a–c, Figures 11 and 13a illustrate the effect of
small dielectric birefringence (here the very small e00, m00
values are taken for extraction of the transmitted waves),
Figure 10 d–f, c and Figures 12, 13b–e characterize the
mutual effect of birefringence and dichroism on depend-
ences m3

0 (m1), m3
00 (m1), m3

0 (m3
00) for the biaxial MM.

The graphs at the large scale ofm1 values in Figure 10 (that
is, besides of Fig. 10e) correspond qualitatively to the case
of the weakly anisotropic EMNZ MM (Fig. 6b and c). In
this case, even very small birefringence parameters (of the
order of 10�5, Fig. 10a and b) lead to the phase shifts that
exceed in 5–6 orders and greater the corresponding values
for the isotropic MM (Fig. 1). The growth of the dielectric
and magnetic anisotropy parameters (Fig. 10d and e) leads
to more strongerm3

0 (m1) dependences and nonlinearity of
these dependences at small m1 values (Fig. 10e). It is
significant that dependences m3

00 (m1) are appeared to be
“steady” to MM small anisotropy (Fig. 10c, f, and 11d, the
similar graphs take place also for the data in Fig. 12).

For the nonabsorbing SL MM (Fig. 11, the data in
Fig. 11a at small m3

0 and m1 values are specified by the
graphs in Fig. 11b and c), the presence of small
birefringence of the order of 10�5 leads to the qualitative
changes of dependences m3

0 (m1) in comparison with the
isotropic SL case (Fig. 3). In particular, the forward wave
appears additionally to the backward wave in MM, with
that, phase incursions of these waves rise with growing |m1|
values (Fig. 11b). At the same parameters and mq

0 =1 (the
case of NMSL), the functionm3

00 (m1) graphs (Fig. 11d) do
not change practically. In this case, dependences m3

0 (m1)
correspond to Fig. 11b (but without the features in the
diapason m1∈ (� 1, 1), the graphs are near-linear). The
similar characteristic properties take place also at small
deviations of the same order from the values eq 0 =� 1 to the
larger values.

In the case of SL MM (Fig. 12a), the presence of
dichroism leads to m3

0 (m1) dependences that are practi-
cally symmetric with respect to the axism1= 0 and become
stronger with the growth of quantities |e2 00 � e1 00 |, |e3 00 �
e1 00 | (determined by parameter p). These dependences are
near-linear at the values |m1|> 5� 10. As for the uniaxial
MM (Figs. 7 and 8), birefringence (characterized in this
case by quantities |e2 0 � e1 0 |, |e3 0 � e1 0 |) determines the
asymmetry of the functionm3

0 (m1) graphs with respect to
the parameter m1 sign (Fig. 12b). Small dichroism and
anisotropy (of the order of 10�4–10�3) in the considered
MM lead to the phase shift values corresponding to rather
large absorption in the isotropic ММ (Fig. 1). At the small
scale of |m1| values, the graphs in Figure 12a and b are
practically coincident and correspond to the data in
Figure 12c. The similar features take place also in the
presence of small magnetic anisotropy of the same order
and at the eq, mq values near to �1, 1 correspondingly (the
NMSL case).

The Figures 10 and 12 data are illustrated by Figure 13
in axes (m3

0,m3
00). In the case of EMNZMM, the presence of

only small birefringence leads to near-linear dependences
m3

0 (m3
00) for both the large (Fig. 13a) and small scale of

|m1| values. With the growth of the dielectric and magnetic
anisotropy parameters, dependences m3

0 (m3
00) became

significantly stronger (Fig. 13b) and nonlinear at small
values ofm1 (Fig. 13c). In the case of SL MM (Fig. 13d and
e), the mutual effect of birefringence and dichroism also
leads to the nonlinear graphs for both small and large
absorption corresponding to the small and large values of
parameter |m1|. In the given case (as for the uniaxial MM),
the different scale of parameter m3

0 changes takes place
(the difference is approximately in a three order of
magnitude) for EMNZ (Fig. 13a and b) and SL
(Fig. 13d and e) MM at the comparable variations of the
anisotropy parameters.

The features of the dispersion dependences of uniaxial
(Figs. 6–9) and biaxial (Figs. 10–13) MM are characteristic
and take place also at other MM material parameters,
directions of the optical axis for the uniaxial MM and
orientations of vectors cq for the biaxial MM.
6 Conclusion

The executed analysis points to the crucial role of effective
dielectric and magnetic anisotropy (in comparison with
absorption) in forming the undesirable phase incursion of
electromagneticwaves intheMMapplications.Thepresence
of even a very small anisotropy leads generally to near-linear
(piecewise-linear) dependences of the phase shift on the
transversal wave number (the phase incursion increases



Fig. 13. Dependencesm3
0 (m3

00) for the data given in Figures 10,
12. The data correspondence is: a � Figures 10a–c; b, c �
Figures 10d–f; d, e � Figures 12b, c (at m1< 0 and m1> 0). The
same line types are used for the corresponding data in Figures 10,
12 and 13. Figure c details the data in Figure b at small values of
m3

00.
Fig. 11. The effect of small birefringence on dependences
m3

0 (m1) (a–c) and m3
00 (m1) (d) for the biaxial SL ММ.

Figures b and c detail the data in Figure a at small values of
m3

0 and m1, correspondingly.

Fig. 12. The effect of small dichroism (a), the mutual effect of
birefringence and dichroism (b) on dependences m3

0 (m1) for the
biaxial SL ММ. Figure c corresponds to the cases (a, b) at small
values of m1.

E. Starodubtsev: EPJ Appl. Metamat. 2018, 5, 1 11
quickly with the growth of values |m1|). The characteristics
of wave attenuation for the absorbing isotropic and weakly
anisotropic MM are comparable (the function m3

00 (m1)
graphs at the large scale ofm1 values areweaklydiscriminated
for all the considered cases excepting some peculiar cases,
Fig. 6b). However, very small (and so hardly controllable for
realMM) anisotropy (of the order of |De|, |Dm|≈ 10�5� 10�3)
leads to the same phase shifts as ones caused by rather large
absorption in the isotropic MM (of the order of e 00 , m 00 ≈ 0.1
and larger) intherangeof “workingvalues”ofm1.Thatcausesa
quick violation of “ideal” conditions for the MM applications:
the image deterioration and withdrawal from the “super-
lensing” regime for SL (NMSL), unwanted misphasing of the
waves for EMNZ (ENZ) MM.
So, one of the conclusions of paper [20] (where uniaxial
MM and the realization of SL were considered) about the
crucial influence of small anisotropy on the SL operability
can be significantly generalized. Small electromagnetic
anisotropy of a general form (dielectric, magnetic, uniaxial,
biaxial) is the universal “non-ideal” factor determining (to a
much greater extent than small losses) the operability of SL
(NMSL), EMNZ (ENZ) MM and, apparently, also the
other MM applications where the wave misphasing in the
effective medium is undesirable. The presence of effective
anisotropy (either required for applications or unwanted) is
the feature of many realized MM. Therefore, the careful
account of both losses and even a very small permittivity
(permeability) anisotropy for various MM applications is
necessary. Besides the comparative analysis of dispersion
equations for MM with various anisotropic properties, a
number of important particular cases (that can be of
interest for optimization of the MM applications) has been
investigated.

Obviously, the obtained results accounting mainly the
dispersion equations can be considered only as initial
estimations of the operability of “non-ideal” MM applica-
tions. For a more detailed analysis, e.g., of SL MM, one can
determine the fields in the image region or transfer functions
for the concrete SL devices [3,17,19,26,35] and consider the
change of the images with increasing absorption and
anisotropy parameters. However, the ascertained features
of the wave misphasing and damping in MM are rather
general (“from first principles”). So, they will appear also in
cases of amore detailed consideration of the concrete devices
usingMM.The results canbeuseful also in the investigations
of interactionof electromagneticfields of amore complicated
structure (wave beams, waveguide modes, et al.) with MM
for the cases when these fields are represented by
monochromatic waves superpositions.

Moreover, one can note the limitations of the traditional
approaches using the second-order curves (or surfaces) for
analytical modeling of the dispersion curves (surfaces) of
absorbing MM. The obtained analytical and numerical
results illustrate clearly that even a very small electromag-
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netic absorption and anisotropy lead to the cardinal changes
of complex solutions of the second-order dispersion equa-
tions. Even for the simplest cases of the absorbing isotropic
and uniaxial media (including MM), dependences m3

0 (m1)
and m3

00 (m1) are characterized by the fourth-order curves,
and these curves (surfaces) have evenhigher than four orders
in the case of absorbing biaxialmedia.Rise of the order of the
dispersion dependences complicates appreciably MM inves-
tigations but leads tomore realistic andusefulmodels ofMM
and devices on the basis of MM.

6.1 Implications and influences

On the basis of the detailed analysis “from first principles”,
it is established that even a very small (hundredths of a
percent and less) effective electromagnetic anisotropy is
the universal “non-ideal” factor determining (to a much
greater extent than small losses) the operability of the MM
applications (“zero” media, “superlens”). So, a careful
account of both the material absorption and even small
permittivity (permeability) anisotropy of the general form
for various MM applications is necessary. Limitations of
the traditional approaches using the second-order disper-
sion curves (or surfaces) for analytic modeling of the
absorbing electromagnetic MM with local material param-
eters are shown. It is required to use the dispersion
equations of the fourth and higher orders as more realistic
and useful models of the considered MM.

Appendix

The coefficients of equation (24) can be represented in the
form:

A ¼ ðQðg1; g2Þ þ e3Pðg1; g2ÞÞðMðg1; g2Þ
þ m3Pðg1; g2ÞÞ; ðA1Þ

B ¼ 2m1 ðFðt1; t2Þ � 2e3m3Fð1; 1ÞÞPðg1; g2Þ½

�Gðg1; g2ÞFð1; 1Þ þ Fðm1;m2ÞQðg1; g2Þ
þMðg1; g2ÞFðe1; e2Þ�; ðA2Þ

C ¼ ðm2
1Mða1;a2Þ � e3m1m2ÞQðg1; g2Þ þ ðm2

1Qða1;a2Þ

�m3e1e2ÞMðg1; g2Þ þ ðm2
1Gða1;a2Þ

� e3m3t3ÞPðg1; g2Þ þm2
1 4Fðm1;m2ÞFðe1; e2Þ½

�4Fðt1; t2ÞFð1; 1Þ þGðg1; g2ÞPða1;a2Þ
þ 2e3m3ðPða1;a2ÞPðg1; g2Þ þ 2F 2ð1; 1ÞÞ�; ðA3Þ

D ¼ 2m3
1Pða1;a2ÞðFðt1; t2Þ � 2e3m3Fð1; 1ÞÞ

þ2m1 ðm2
1Mða1;a2Þ � e3m1m2ÞFðe1; e2Þ

�
þðm2

1Qða1;a2Þ � m3e1e2ÞFðm1;m2Þ
� ðm2

1Gða1;a2Þ � e3m3t3ÞFð1; 1Þ�; ðA4Þ
E ¼ m4
1e3m3P

2ða1;a2Þ þm2
1Pða1;a2Þðm2

1Gða1;a2Þ

�e3m3t3Þ þ ðm2
1Mða1;a2Þ

� e3m1m2Þðm2
1Qða1;a2Þ � m3e1e2Þ; ðA5Þ

where the denotations are used: t1= e3m1+ e1m3, t2=
e3m2+ e2m3, t3= e1m2+ e2m1, Q(’1, ’2)= e1cos

2(’1)+
e2cos

2(’2), M(’1, ’2)=m1cos
2(’1)+m2cos

2(’2),
P(’1, ’2)= 1� cos2(’1)� cos2(’2), F(x, y)= xcos(a1)cos
(g1)+ ycos(a2)cos(g2), G(’1, ’2)= t1cos

2(’1)+ t2cos
2(’2).

According to expressions (A1)–(A5), coefficient A does not
depend on parameter m1, and coefficients B, C, D, E are
incomplete polynomials of the orders 1, 2, 3, 4 with respect
to m1, correspondingly.
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