ОБРАБОТКА КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

УДК 539.21

НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ, ОБУСЛОВЛЕННОЕ ЕДИНИЧНЫМ КЛИНОВИДНЫМ МИКРОДВОЙНИКОМ В ЗЕРНЕ ПОЛИКРИСТАЛЛА С ГЕКСАГОНАЛЬНОЙ СТРУКТУРОЙ

Т. В. ДРОБЫШЕВСКАЯ, О. М. ОСТРИКОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Ввеление

Разработка методики расчета напряженно-деформированного состояния, обусловленного единичным двойником в теле зерна поликристалла, является одной из первостепенных задач в современной теории двойникования. Решение данной задачи позволит выйти на новый уровень прогнозирования, связанного с двойникованием разрушения машин [1]. При решении данной задачи весьма важным является необходимость учета как напряжений, наличие которых обусловлено наличием двойником, так и зернограничных напряжений.

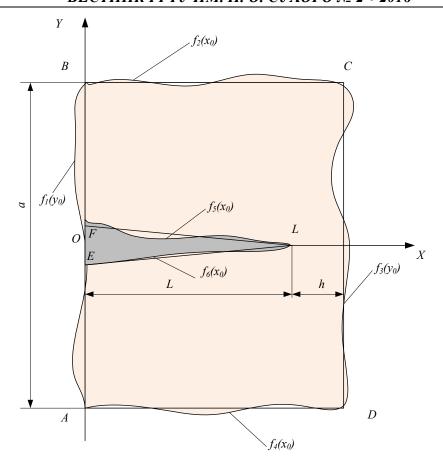
Целью данной работы стало изучение напряженно-деформированного состояния, обусловленного единичным микродвойником в зерне поликристалла, имеющего гексагональную структуру.

Постановка задачи

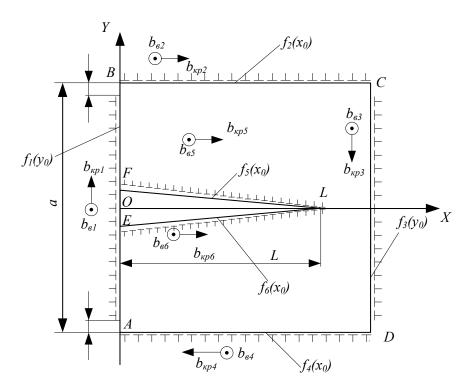
Для достижения поставленной цели будем рассматривать единичное зерно поликристалла, расположенное на некотором ненулевом расстоянии от поверхности двойникующегося материала (рис. 1). При этом границы зерна представим в виде плоского скопления полных дислокаций (рис. 2). Данный тип границ описывается в [2] и в случае поликристалла с гексагональной структурой моделируется цепочками дислокаций.

В теле зерна расположен единичный двойник, имеющий клиновидную форму [1]. Зарождение таких двойников чаще всего обусловлено наличием некого концентратора напряжений, который в рассматриваемом случае расположен в точке O (см. рис. 1). Без ущерба общности рассматриваемой задачи не будем рассчитывать смещения и напряжения, созданные этим концентратором напряжений, так как их всегда просто можно учесть, используя принцип суперпозиции. В решении поставленной задачи будем учитывать напряжения на границах зерна и напряжения, обусловленные наличием двойника. Не будем также учитывать и напряжения, обусловленные соседними зернами поликристалла. Принятые допущения необходимы для исключения получения неудобных для анализа громоздких расчетных формул.

Форма границ зерна в рассматриваемой плоскости (XOY), перпендикулярной плоскости двойникования, в общем случае описывается функциями $f_1(y_0)$, $f_2(x_0)$, $f_3(y_0)$, $f_4(x_0)$, а форма двойниковых границ — функциями $f_5(x_0)$ и $f_6(x_0)$ (см. рис. 1 и 2). Для решения данной задачи примем, что дислокации на каждой из рассматриваемых зеренных границ взаимно параллельны и направлены вдоль оси OZ, перпендикулярной плоскости рис. 2. При этом плотность полных дислокаций на границах зерна равна соответственно ρ_1 , ρ_2 , ρ_3 и ρ_4 ; а плотность двойникующих дислокаций на границах клиновидного двойника — ρ_5 , ρ_6 .



Puc. 1. Схематическое изображение зерна поликристалла и клиновидного двойника в нем



Puc. 2. Схема взаимного расположения дислокаций, их компонент вектора Бюргерса и декартовой системы координат для расчета полей напряжений и смещений у клиновидного двойника в теле зерна

Для определения полей смещений и напряжений, создаваемых рассматриваемым клиновидным двойником и границами зерен, используем принцип суперпозиции компонент тензоров смещений и напряжений. Использование принципа суперпозиции правомерно, так как в данной задаче источники внутренних напряжений неподвижны [2].

Искомые компоненты тензоров смещений и напряжений могут быть определены из следующих соотношений [3]:

$$\begin{pmatrix} u_i \\ \sigma_{ij} \end{pmatrix} = \sum_{m=1}^{6} \begin{pmatrix} u_i^{(m)}(x, y) \\ \sigma_{ij}^{(m)}(x, y) \end{pmatrix},$$
 (1)

где i, j принимают значения x, y или $z; u_i^{(1)}(x, y), u_i^{(2)}(x, y), u_i^{(3)}(x, y), u_i^{(4)}(x, y)$ – смещения, создаваемые границами зерен; $u_i^{(5)}(x, y), u_i^{(6)}(x, y)$ – смещения, создаваемые двойниковыми границами; $\sigma_{ij}^{(1)}(x, y), \sigma_{ij}^{(2)}(x, y), \sigma_{ij}^{(3)}(x, y), \sigma_{ij}^{(4)}(x, y)$ – напряжения, создаваемые каждой из границ зерна; $\sigma_{ij}^{(5)}(x, y)$ и $\sigma_{ij}^{(6)}(x, y)$ – напряжения, обусловленные двойниковыми границами. Искомые величины определяются с помощью криволинейных интегралов вдоль профилей соответствующих границ $L_{AB}, L_{BC}, L_{CD}, L_{DA}, L_{FH}, L_{EH}$ (рис. 1):

$$\begin{pmatrix} u_i^{(m)}(x,y) \\ \sigma_{ij}^{(m)}(x,y) \end{pmatrix} = \int_{L_{\Lambda}} \rho_m \begin{pmatrix} u_i^{(m,0)} \\ \sigma_{ij}^{(m,0)} \end{pmatrix} ds.$$
 (2)

Здесь L_{Δ} принимает значения L_{AB} , L_{BC} , L_{CD} , L_{DA} , L_{FH} или L_{EH} ; $u_i^{(m,0)}$ – смещения, создаваемые отдельными дислокациями на зеренных или двойниковых границах; $\sigma_{ij}^{(m,0)}$ – напряжения, создаваемые отдельными дислокациями на зеренных или двойниковых границах соответственно.

Криволинейные интегралы (2) в соответствии с [3] сводятся к следующим определенным интегралам:

$$\begin{pmatrix} u_i^{(1)}(x,y) \\ \sigma_{ij}^{(1)}(x,y) \end{pmatrix} = \int_{-a_2'+\epsilon}^{a_2'-\epsilon} \sqrt{(1+f_1'(y_0))^2} \rho_1(y_0) \begin{pmatrix} u_i^{(1,0)}(x,y,y_0) \\ \sigma_{ij}^{(1,0)}(x,y,y_0) \end{pmatrix} dy_0;$$
 (3)

$$\begin{pmatrix} u_i^{(2)}(x,y) \\ \sigma_{ij}^{(2)}(x,y) \end{pmatrix} = \int_0^a \sqrt{(1+f_2'(x_0))^2} \rho_2(x_0) \begin{pmatrix} u_i^{(2,0)}(x,y,x_0) \\ \sigma_{ij}^{(2,0)}(x,y,x_0) \end{pmatrix} dx_0;$$
 (4)

$$\begin{pmatrix} u_i^{(3)}(x,y) \\ \sigma_{ij}^3(x,y) \end{pmatrix} = \int_{-a_f'+\varepsilon}^{a_f'-\varepsilon} \sqrt{(1+f_3'(y_0))^2} \rho_3(y_0) \begin{pmatrix} u_i^{(3,0)}(x,y,y_0) \\ \sigma_{ij}^{(3,0)}(x,y,y_0) \end{pmatrix} dy_0;$$
 (5)

$$\begin{pmatrix} u_i^{(4)}(x,y) \\ \sigma_{ij}^{(4)}(x,y) \end{pmatrix} = \int_0^a \sqrt{(1+f_4'(x_0))^2} \rho_4(x_0) \begin{pmatrix} u_i^{(4,0)}(x,y,x_0) \\ \sigma_{ij}^{(4,0)}(x,y,x_0) \end{pmatrix} dx_0;$$
 (6)

$$\begin{pmatrix} u_i^{(5)}(x,y) \\ \sigma_{ij}^{(5)}(x,y) \end{pmatrix} = \int_0^L \sqrt{(1+f_5'(x_0))^2} \rho_5(x_0) \begin{pmatrix} u_i^{(5,0)}(x,y,x_0) \\ \sigma_{ij}^{(5,0)}(x,y,x_0) \end{pmatrix} dx_0;$$
 (7)

$$\begin{pmatrix} u_i^{(6)}(x,y) \\ \sigma_{ij}^{(6)}(x,y) \end{pmatrix} = \int_0^L \sqrt{(1+f_6'(x_0))^2} \rho_6(x_0) \begin{pmatrix} u_i^{(6,0)}(x,y,x_0) \\ \sigma_{ij}^{(6,0)}(x,y,x_0) \end{pmatrix} dx_0,$$
 (8)

где L – длина двойника, которая равна длине отрезка OL (см. рис. 1); a – параметр, определяющий размер зерна; ε – малый параметр порядка межатомного расстояния.

В расчетах будем учитывать представленную на рис. 2 ориентировку винтовой и краевой составляющих векторов Бюргерса, а также тот факт, что рассматриваемое зерно находится вдали от поверхности. Изменение ориентировки составляющих векторов Бюргерса учитывается в расчетах путем использования матрицы поворота согласно [4]:

$$T = \begin{pmatrix} \cos(\alpha_k) & -\sin(\alpha_k) & 0\\ \sin(\alpha_k) & \cos(\alpha_k) & 0\\ 0 & 0 & 1 \end{pmatrix}. \tag{9}$$

Тогда

$$u_i^{(k)}(x,y) = T_{ij}u_j^{(k)}(x_k',y_k'); (10)$$

$$\sigma_{ij}^{(k)}(x,y) = T_{ig}T_{jh}\sigma_{gh}^{(k)}(x_k',y_k'), \tag{11}$$

где α_k — угол поворота в системе координат X_kY_kZ , повернутой относительно системы координат XYZ против часовой стрелки; x'_k , y'_k — координаты в системе координат X_kY_kZ . Данные координаты определяются из зависимостей:

$$x'_{k} = x\cos(\alpha_{k}) + y\sin(\alpha_{k}); \tag{12}$$

$$y_k' = -x\sin(\alpha_k) + y\cos(\alpha_k). \tag{13}$$

Таким образом, выражения для определения компонент тензоров смещений и напряжений, создаваемые каждой из границ зерна, определяем с учетом поворота системы координат $X_k Y_k Z$ относительно системы координат XYZ на угол α_k , имеют вид:

$$u_{x}^{(k)}(x,y) = u_{x_{k}'}^{(k)}(x_{k}',y_{k}')\cos(\alpha_{k}) - u_{y_{k}'}^{(k)}(x_{k}',y_{k}')\sin(\alpha_{1}),$$

$$u_{x}^{(k)}(x,y) = u_{x_{k}'}^{(k)}(x_{k}',y_{k}')\sin(\alpha_{k}) - u_{y_{k}'}^{(k)}(x_{k}',y_{k}')\cos(\alpha_{k}),$$

$$u_{z}^{(k)}(x,y) = u_{z_{k}'}^{(k)}(x_{k}',y_{k}');$$

$$\sigma_{xx}^{(k)}(x,y) = \sigma_{x_{k}x_{k}'}^{(k)}(x_{k}',y_{k}')\cdot\cos^{2}(\alpha_{k}) + \sigma_{y_{k}y_{k}'}^{(k)}(x_{k}',y_{k}')\cdot\sin^{2}(\alpha_{k}) - \sigma_{x_{k}'y_{k}'}^{(k)}(x_{k}',y_{k}')\sin(2\alpha_{k}),$$

$$(14)$$

$$\sigma_{yy}^{(k)}(x,y) = \sigma_{x_{k}x_{k}'}^{(k)}(x_{k}',y_{k}')\sin^{2}(\alpha_{k}) + \sigma_{y_{k}y_{k}'}^{(k)}(x_{k}',y_{k}')\cos^{2}(\alpha_{k}) + \sigma_{x_{k}y_{k}'}^{(k)}(x_{k}',y_{k}')\sin(2\alpha_{k}),
\sigma_{zz}^{(k)}(x,y) = \sigma_{z_{k}z_{k}'}^{(k)}(x_{k}',y_{k}'),
\sigma_{xy}^{(k,0)}(x,y) = \sigma_{x_{k}x_{k}'}^{(k)}(x_{k}',y_{k}')\cos(\alpha_{k})\sin(\alpha_{k}) -
-\sigma_{y_{k}'y_{k}'}^{(k)}(x_{k}',y_{k}')\sin(\alpha^{k})\cos(\alpha_{k}) + \sigma_{x_{k}'y_{k}'}^{(k)}(x_{k}',y_{k}')\cos(2\alpha_{k}),
\sigma_{xz}^{(k,0)}(x,y) = \sigma_{x_{k}'z_{k}'}^{(k)}(x_{k}',y_{k}')\cos(\alpha_{k}) - \sigma_{y_{k}'z_{k}'}^{(k)}(x_{k}',y_{k}')\sin(\alpha_{k}),
\sigma_{yz}^{(k,0)}(x,y) = \sigma_{x_{k}'z_{k}'}^{(k)}(x_{k}',y_{k}')\sin(\alpha_{k}) + \sigma_{y_{k}'z_{k}'}^{(k)}(x_{k}',y_{k}')\cos(\alpha_{k}).$$
(15)

В рассматриваемом случае угол поворота принимает следующие значения для границ зерна:

$$\alpha_k = \begin{pmatrix} \pi/2 \\ 0 \\ \pi \\ -\pi/2 \end{pmatrix}. \tag{16}$$

Таким образом, с учетом (9)–(15) и значений α_k для каждой из границ (16) имеем:

$$u_{x}^{(1,0)} = \frac{b_{e}^{(g)}}{2\pi} \left[\frac{1 - 2\nu}{2\pi} \ln\left((x - f_{1}(y_{0}))^{2} + (y - y_{0})^{2} \right) + \frac{(x - f_{1}(y_{0}))^{2} + (y - y_{0})^{2}}{4(1 - \nu)\left((x - f_{1}(y_{0}))^{2} + (y - y_{0})^{2} \right)} \right],$$

$$u_{y}^{(1,0)} = \frac{b_{e}^{(g)}}{2\pi} \left[\operatorname{arctg} \left(-\frac{x - f_{1}(y_{0})}{y - y_{0}} \right) - \frac{(x - f_{1}(y_{0}))(y - y_{0})}{2(1 - \nu)\left((x - f_{1}(y_{0}))(y - y_{0})^{2} \right)} \right],$$

$$u_{z}^{(1,0)} = \frac{b_{s}^{(g)}}{2\pi} \operatorname{arctg} \left[\operatorname{arctg} \frac{y - f_{2}(x_{0})}{x - x_{0}} + \frac{(y - f_{2}(x_{0}))(x - x_{0})}{2(1 - \nu)\left((y - f_{2}(x_{0}))^{2} + (x - x_{0})^{2} \right)} \right],$$

$$u_{y}^{(2,0)} = -\frac{b_{e}^{(g)}}{2\pi} \left[\frac{1 - 2\nu}{2\pi} \ln\left((y - f_{2}(x_{0}))^{2} + (x - x_{0})^{2} \right) + \frac{(y - f_{2}(x_{0}))^{2} + (x - x_{0})^{2}}{4(1 - \nu)\left((y - f_{2}(x_{0}))^{2} + (x - x_{0})^{2} \right)} \right],$$

$$u_{x}^{(2,0)} = \frac{b_{s}^{(g)}}{2\pi} \operatorname{arctg} \frac{y - f_{2}(x_{0})}{x - x_{0}};$$

$$(18)$$

$$u_{x}^{(3,0)} = -\frac{b_{e}^{(g)}}{2\pi} \left[\frac{1 - 2\nu}{2\pi} \ln\left((x - f_{3}(y_{0}))^{2} + (y - y_{0})^{2} \right) + \frac{(x - f_{3}(y_{0}))^{2} + (y - y_{0})^{2}}{4(1 - \nu)\left((x - f_{3}(y_{0}))^{2} + (y - y_{0})^{2} \right)} \right],$$

$$u_{y}^{(5,0)} = -\frac{b_{x}^{(g)}}{2\pi} \left[\operatorname{arctg} \left(-\frac{x - f_{3}(y_{0})}{y - y_{0}} \right) - \frac{(x - f_{3}(y_{0}))(y - y_{0})}{2(1 - v)((x - f_{3}(y_{0}))^{2} + (y - y_{0})^{2})} \right],$$

$$u_{z}^{(5,0)} = \frac{b_{x}^{(g)}}{2\pi} \operatorname{arctg} \left(-\frac{x - f_{3}(y_{0})}{y - y_{0}} \right);$$

$$u_{y}^{(4,0)} = -\frac{b_{x}^{(g)}}{2\pi} \left[\operatorname{arctg} \frac{y - f_{4}(x_{0})}{x - x_{0}} + \frac{(y - f_{4}(x_{0}))(x - x_{0})}{2(1 - v)((y - f_{4}(x_{0}))^{2} + (x - x_{0})^{2})} \right],$$

$$u_{y}^{(4,0)} = \frac{b_{x}^{(g)}}{2\pi} \left[\frac{1 - 2v}{2\pi} \ln((y - f_{4}(x_{0}))^{2} + (x - x_{0})^{2}) + \frac{(y - f_{4}(x_{0}))^{2} + (x - x_{0})^{2}}{4(1 - v)((y - f_{4}(x_{0}))^{2} + (x - x_{0})^{2})} \right],$$

$$u_{y}^{(5,0)} = \frac{b_{x}^{(g)}}{2\pi} \left[\operatorname{arctg} \frac{y - f_{5}(x_{0})}{x - x_{0}} + \frac{(y - f_{5}(x_{0}))(x - x_{0})}{2(1 - v)((y - f_{5}(x_{0}))^{2} + (x - x_{0})^{2})} \right],$$

$$u_{y}^{(5,0)} = -\frac{b_{x}^{(g)}}{2\pi} \left[\frac{1 - 2v}{2\pi} \ln((y - f_{5}(x_{0}))^{2} + (x - x_{0})^{2}) + \frac{(x - x_{0})^{2} - (y - f_{5}(x_{0}))^{2}}{4(1 - v)((y - f_{5}(x_{0}))^{2} + (x - x_{0})^{2})} \right],$$

$$u_{y}^{(5,0)} = \frac{b_{x}^{(g)}}{2\pi} \operatorname{arctg} \frac{y - f_{5}(x_{0})}{x - x_{0}} + \frac{(y - f_{5}(x_{0}))(x - x_{0})}{2(1 - v)((y - f_{5}(x_{0}))^{2} + (x - x_{0})^{2})} \right],$$

$$u_{y}^{(6,0)} = -\frac{b_{x}^{(g)}}{2\pi} \left[\operatorname{arctg} \frac{y - f_{5}(x_{0})}{x - x_{0}} + \frac{(y - f_{5}(x_{0}))(x - x_{0})}{2(1 - v)((y - f_{6}(x_{0}))^{2} + (x - x_{0})^{2})} \right],$$

$$u_{y}^{(6,0)} = -\frac{b_{x}^{(g)}}{2\pi} \left[\operatorname{arctg} \frac{y - f_{5}(x_{0})}{x - x_{0}} + \frac{(y - f_{5}(x_{0}))(x - x_{0})}{2(1 - v)((y - f_{6}(x_{0}))^{2} + (x - x_{0})^{2})} \right],$$

$$u_{y}^{(6,0)} = -\frac{b_{x}^{(g)}}{2\pi} \left[\operatorname{arctg} \frac{y - f_{6}(x_{0})}{x - x_{0}} + \frac{(x - x_{0})^{2} - (y - f_{6}(x_{0}))^{2}}{4(1 - v)((y - f_{6}(x_{0}))^{2} + (x - x_{0})^{2})} \right],$$

$$u_{y}^{(6,0)} = -\frac{b_{x}^{(g)}}{2\pi} \operatorname{arctg} \frac{y - f_{6}(x_{0})}{x - x_{0}} + \frac{(x - x_{0})^{2} - (y - f_{6}(x_{0}))^{2}}{4(1 - v)((y - f_{6}(x_{0}))^{2} + (x - x_{0})^{2})} \right],$$

$$u_{y}^{(6,0)} = -\frac{b_{x}^{(g)}}{2\pi} \operatorname{arctg} \frac{y - f_{6}(x_{0})}{x - x_{0}} + \frac{(x - x_{0})^{2} - (y - f_{6}(x_{0}))^{2}}{4(1 - v)((y - f_{6}(x_{0}))^$$

где v — коэффициент Пуассона; $b_e^{(g)}$ — вектор Бюргерса полной краевой дислокации; $b_s^{(g)}$ — вектора Бюргерса полной винтовой дислокации; $b_e^{(nv)}$ — краевая составляющая вектора Бюргерса двойникующей дислокации; $b_s^{(nv)}$ — винтовая составляющая вектора Бюргерса двойникующей дислокации.

Рассмотрим случай, когда в плоскости XOY зерно имеет квадратную форму со стороной a, при этом границы зерна прямолинейны и параллельны одной из координатных осей (OX или OY). Также принимаем, что $\rho_1 = \rho_2 = \rho_3 = \rho_4 = C_1$; $\rho_5 = \rho_6 = C_2$.

С учетом указанных допущений в соответствии с рис. 2 границы зерен описываются следующими функциями:

$$f_1(y_0) = 0;$$
 (23)

$$f_2(y_0) = \frac{a}{2}; \tag{24}$$

$$f_3(y_0) = a;$$
 (25)

$$f_4(y_0) = -\frac{a}{2}. (26)$$

Границы двойника также принимаем прямолинейными. При этом двойник имеет форму равнобедренного треугольника EFL (рис. 2) с шириной у устья H. Тогда функции, описывающие форму границ двойника в плоскости XOY, примут вид [3]:

$$f_5(x_0) = \frac{H}{2} \left(1 - \frac{x_0}{L} \right); \tag{27}$$

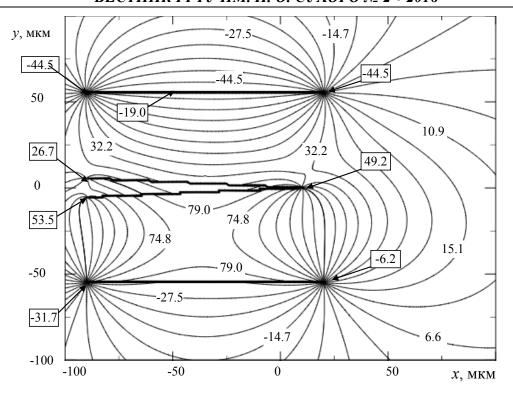
$$f_6(x_0) = -\frac{H}{2} \left(1 - \frac{x_0}{L} \right). \tag{28}$$

Результаты расчетов и их обсуждение

Расчеты проводились для железа. При этом принималось: $b_{\rm kp}^{(1)}=b_{\rm B}^{(1)}=0,248\,$ нм; $b_{\rm kp}^{(2)}=b_{\rm B}^{(2)}=0,124\,$ нм [5]; $\mu=81\,$ ГПа [4]; $\nu=0,29\,$ [5].

Распределение полей напряжений, рассчитанное по формулам (3)–(8), представлено на рис. 3.

Наибольшая концентрация нормальных напряжений σ_{xx} и σ_{yy} наблюдается на зеренных границах, параллельных соответствующим осям — OX или OY соответственно, а нормальные напряжения σ_{xx} локализованы также и на двойниковых границах (рис. 3a и 3δ). Напряжения σ_{yy} , созданные двойником, экранируются напряжениями зеренных границ (рис. 3δ). Наибольшую концентрацию нормальных напряжений σ_{zz} можно отметить на двойниковых и зеренных границах (рис. 3ϵ). При этом максимальные значения нормальных напряжений наблюдаются в узловых точках зерна, а также на границах и в узловых точках двойника (у вершины и устья) (см. рис. 3a— 3ϵ).



Puc. 3a. Распределение напряжений в зерне поликристалла, обусловленных наличием единичного клиновидного двойника $\sigma_{xx}(x,y)$

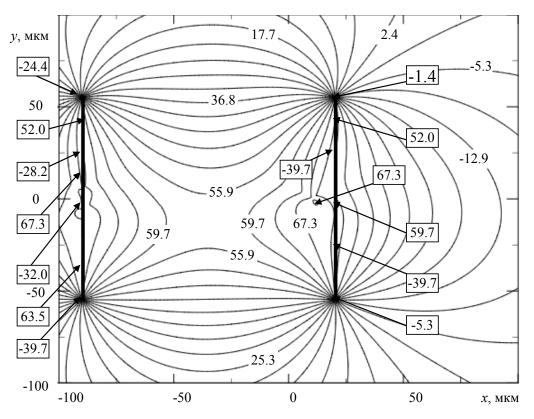


Рис. 3б. Распределение напряжений в зерне поликристалла, обусловленных наличием единичного клиновидного двойника $\sigma_{yy}(x,y)$

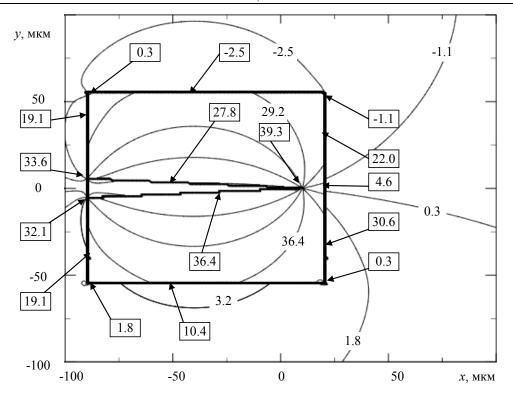


Рис. Зв. Распределение напряжений в зерне поликристалла, обусловленных наличием единичного клиновидного двойника $\sigma_{zz}(x,y)$

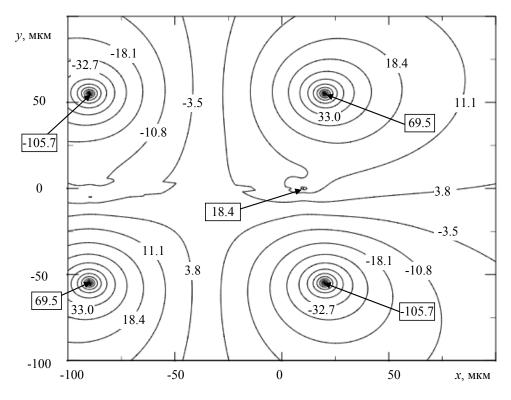
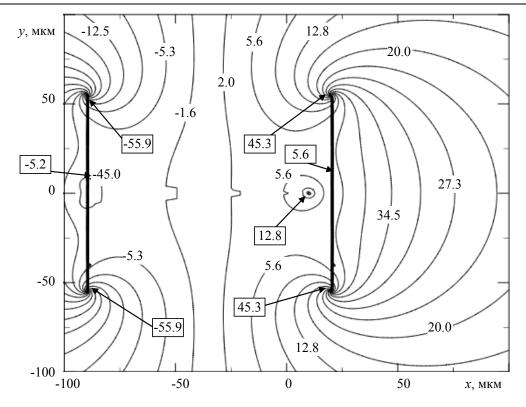
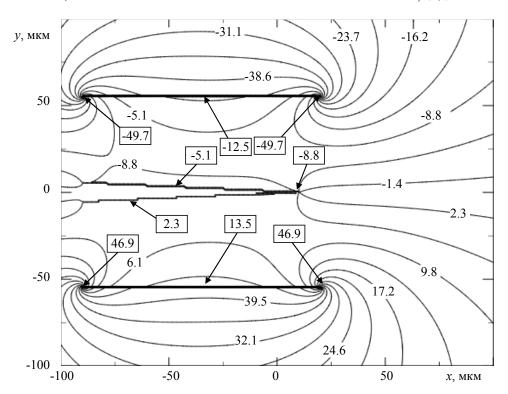


Рис. 3г. Распределение напряжений в зерне поликристалла, обусловленных наличием единичного клиновидного двойника $\sigma_{xy}(x,y)$



Puc. 3д. Распределение напряжений в зерне поликристалла, обусловленных наличием единичного клиновидного двойника $\sigma_{yz}(x,y)$



Puc. 3е. Распределение напряжений в зерне поликристалла, обусловленных наличием единичного клиновидного двойника $\sigma_{xz}(x,y)$

Нормальные напряжения σ_{xx} положительны внутри зерна, а отрицательны на зеренных границах и за пределами зерна. Таким образом, внутри зерна имеют место растягивающие напряжения, а за его пределами – сжимающие. Численные значения напряжений в нижней части зерна выше, чем в верхней его части (см. рис. 3a).

Напряжения σ_{yy} положительны внутри зерна, а на зереннах границах имеют место как положительные, так и отрицательные напряжения. При этом максимальные значения σ_{yy} наблюдаются на зеренных границах, параллельных оси OY, а двойниковые границы явно не выражены (см. рис. 3δ).

Концентрация напряжений σ_{zz} значительно ниже, чем концентрация напряжений σ_{xx} и σ_{yy} . При этом внутри зерна имеют место растягивающие напряжения σ_{zz} , а за пределами зерна напряжения знакопеременны относительно оси OX, причем в первой и второй четвертях они являются сжимающими, а в третьей и четвертой растягивающими. Следует также отметить, что максимальные значения σ_{zz} наблюдаются в узловых точках двойника и на его границах. Кроме того, численные значения напряжений σ_{zz} за пределами зерна на порядок ниже напряжений в пределах зерна (см. рис. 3e).

Скалывающие напряжения σ_{xy} локализованы в узловых точках зерна (рис. 3ε). При этом напряжения σ_{xy} знакопеременны по отношению к оси, параллельной оси OY, а также по отношению к оси OX. Так, в первой и третьей четверти они положительны, а во второй и четвертой — отрицательны. Максимальные значения напряжений σ_{xy} наблюдаются в узловых точках зерна, при этом в вершинах, расположенных на одной диагонали напряжения, имеют одинаковые численные значения. Границы двойника на поле напряжений σ_{xy} четко не просматриваются (см. рис. 3ε). Это указывает на то, что напряжения σ_{xy} существенно выше напряжений, которые создает двойник. Поэтому скалывающие напряжения σ_{xy} , обусловленные двойником, экранируются напряжениями границ зерна.

Скалывающие напряжения σ_{yz} (рис. 3θ) и σ_{xz} (рис. 3e) имеют высокую концентрацию на границах зерна, параллельных оси OY, либо OX соответственно.

Поле напряжений σ_{yz} знакопеременно относительно оси, параллельной оси OY, а также симметрично относительно оси OX. При этом максимальные значения напряжений σ_{yz} наблюдаются в узловых точках зерна, а двойниковая граница явно не выражена (см. рис. 3∂).

Напряжения σ_{xz} (рис. 3e) максимальны в узловых точках зерна. При этом поле напряжений σ_{xz} знакопеременно относительно оси OX. В первой и второй четвертях имеют место сжимающие напряжения σ_{xz} , а в третьей и четвертой – растягивающие. В данном случае двойниковые границы выражены явно, однако напряжения на них не являются максимальными (см. рис. 3e).

Таким образом, для поликристалла с гексагональной структурой разработан метод расчета напряженно-деформированного состояния в зерне при наличии в нем единичного микродвойника. Установлено, что напряжения границ зерен способны экранировать напряжения некогерентных границ клиновидного двойника.

Литература

- 1. Остриков, О. М. Дислокационная макроскопическая модель клиновидного двойника / О. М. Остриков // Вестн. Гомел. гос. техн. ун-та им. П. О. Сухого. 2006. N 2. С. 10–18.
- 2. Миркин, Л. И. Физические основы прочности и пластичности. (Введение в теорию дислокаций) / Л. И. Миркин. М. : МГУ, 1968. 538 с.
- 3. Остриков, О. М. Механика двойникования твердых тел / О. М. Остриков. Гомель : ГГТУ им. П. О. Сухого, 2008. 301 с.
- 4. Хирт, Дж. Теория дислокаций / Дж. Хирт, И. Лоте. М.: Атомиздат, 1972. 600 с.
- 5. Полухин, П. И. Физические основы пластической деформации / П. И. Полухин, С. С. Горелик, В. К. Воронцов. М. : Металлургия, 1982. 584 с.
- 6. Киттель, Ч. Введение в физику твердого тела / Ч. Киттель. М. : Наука, 1978. 792 с.

Получено 15.02.2016 г.