

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Детали машин»

МЕХАНИКА

учебно-методическое пособие по курсовому проектированию для студентов специальностей 1-43 01 03 «Электроснабжение» и 1-43 01 05 «Промышленная теплоэнергетика дневной и заочной форм обучения

Часть 1

УДК 621.81(075.8) ББК 22.2я73 М55

Рекомендовано научно-методическим советом машиностроительного факультета ГГТУ им. П. О. Сухого (протокол № 10 от 08.06.2015 г.)

Составители: *Н. В. Иноземцева*, *С. И. Прач, Н. В. Прядко* Рецензент: зам. декана заоч. фак. ГГТУ им. П. О. Сухого канд. техн. наук, доц. *Ю. И. Рудченко*

Механика: учеб.-метод. пособие по курсовому проектированию для студентов спе-М55 циальностей 1-43 01 03 «Электроснабжение» и 1-43 01 05 «Промышленная теплоэнергетика» днев. и заоч. форм обучения: ч. 1 / сост.: Н. В. Иноземцева, С. И. Прач, Н. В. Прядко. – Гомель: ГГТУ им. П. О. Сухого, 2016. – 62 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: http://elib.gstu.by. – Загл. с титул. экрана.

Содержит пример выполнения раздела «Энергетический и кинематический расчет. Выбор стандартного редуктора» для различных кинематических схем курсового проекта по курсу «Механика».

Для студентов немашиностроительных специальностей дневной и заочной форм обучения.

УДК 621.81(075.8) ББК 22.2я73

ВВЕДЕНИЕ

Курсовой проект по дисциплине «Механика» является первой самостоятельной конструкторской работой студентов. Основная задача проекта- освоение студентами принципов конструирования деталей и узлов машин общего назначения. Курсовое проектирование подготавливает студентов к выполнению проектов по специальным дисциплинам и дипломному проектированию.

Настоящее методическое пособие облегчает студентам выполнение первого раздела курсового проекта по дисциплине «Механика», содержит примеры выбора цилиндрических, конических, червячных стандартных редукторов и необходимые справочные материалы.

1. МЕТОДИКА ВЫБОРА РЕДУКТОРА

1.1 Общие положения

- 1.1.2 Выбор редуктора заключается в определении его типоразмера на основании:
- Сравнения расчетных, задаваемых и номинальных значений крутящих моментов на выходном валу и радиальных консольных нагрузок приложенных в середине посадочной части концов входного и выходного валов.
 - Проверки условий отсутствия перегрева редуктора.
- 1.1.3 Номинальные значения крутящих моментов и передаточных чисел, радиальных консольных нагрузок редукторов общемашиностроительного применения приведены в таблицах технических характеристик настоящего каталога.

Указанные нагрузки для редукторов (за исключением редукторов, работающих в повторно-кратковременных режимах) приведены для условий непрерывной (продолжительность включения ПВ 100%), нереверсивной работы, без толчков и ударов, без вибрации, при продолжительности работы 8 часов в сутки, не более 2-х пусков в час, с допустимым двукратным повышением номинального крутящего момента во время пусков.

При этом ведущей машиной является электродвигатель.

Для специальных редукторов (подъемно - транспортных машин, кранов и т.д.) указанные параметры определены для фактических условий их работы.

- 1.1.4. Значения расчетных параметров для выбора редуктора определяются по настоящей методике при этом необходимо учитывать следующие факторы:
- Мощность двигателя выбирается из ряда мощностей двигателя принятого типа с округлением до ближайшего большего значения к мощности, потребляемой приводимой машиной с учетом КПД привода.
- Большие по мощности двигатели (значительно превышающие требуемые) развивают большие пусковые токи и пусковые мощности более двукратных, что может вызвать неучтенные перегрузки редуктора. Использование подобных двигателей возможно по согласованию с заводом изготовителем редуктора.
- Наиболее экономичной является эксплуатация редуктора при частоте вращения на входе ≤ 1500 об/мин, а с целью более длительной безотказной работы редуктора рекомендуется принимать частоту вращения входного вала ≤ 900 об/мин.

1.2 Порядок выбора редуктора

1.2.1 Выбор типа редуктора:

Исходными данными для выбора типа редуктора служат чертеж и кинематическая схема привода, требуемое передаточное число $u_{\rm peg}$, характеристики режима эксплуатации, требования к расположению осей в пространстве.

По известному передаточному числу определяется количество ступеней редуктора, руководствуясь схемой:

- При значениях $u_{\text{ред}} \le 6,3$ выбирают одноступенчатый редуктор.
- При значениях $7,1 \le u_{\rm peq} \le 20$ для эвольвентных, закаленных, шлифованных зубьев и $7,1 \le u_{\rm peq} \le 50$ для улучшенных зубьев, в том числе с зацеплением Новикова, выбирают двухступенчатый редуктор.
- При значениях $20 \le u_{\rm peq} \le 100$ для эвольвентных, закаленных, шлифованных зубьев и $50 \le u_{\rm peq} \le 200$ для улучшенных зубьев, в том числе с зацеплением Новикова, выбирают трехступенчатый редуктор.
- При значениях $i_{\text{ред}}$ превышающих ранее приведенные величины выбирают четырех и более ступенчатые редукторы.

Положение выходного вала (горизонтальное или вертикальное), расположение входного вала по отношению к выходному валу (параллельное или перпендикулярное), способ монтажа редуктора (на

фундаменте или на ведомый вал объекта) определяют по приведенным в каталоге рисункам.

Из рисунков каждого редуктора и размеров, приведенных в таблицах, определяются все монтажные положения, в которые редуктор может быть установлен. При этом в обозначении редукторов могут быть указаны специальные символы, обозначающие способ монтажа.

- 1.2.2 Выбор габарита (типоразмера) редуктора.
- 1.2.3 Критериями выбора типоразмера редуктора являются расчетные значения крутящего момента на выходном валу, радиальных консольных нагрузок на концах валов и недопустимость перегрева редуктора.
- 1.2.4 Исходными данными для определения габарита редуктора являются:
 - Вид приводимой машины.
- Требуемый крутящий момент на выходном валу, $T_{\mathit{BЫX.TPEB.}},$ $H \cdot \mathit{M}$
 - Частота вращения выходного вала редуктора, n_{BbIX} , об/мин.
 - Частота вращения входного вала редуктора, n_{BX} , об/мин.
 - Вид двигателя.
- Характер нагрузки (равномерная и неравномерная, реверсивная или нереверсивная, наличие и величина перегрузок, наличие толчков, ударов, вибраций).
 - Требуемая длительность эксплуатации редуктора в часах.
 - Средняя ежесуточная работа в часах.
 - Количество включений в час.
 - Продолжительность включений под нагрузкой, ПВ %.
- Условия окружающей среды (температура, условия отвода тепла).
- Соединение редуктора с приводимой машиной (муфтой или передачами: зубчатой, цепной, клиноременной и т.д.).
- Радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала $F_{\mathit{BX.TPEE.}}$, H.
- 1.2.5 При выборе габарита редуктора производится расчет следующих параметров редукторов по формулам:
 - Передаточное отношение редуктора:

$$u_{peo} = \frac{n_{BX}}{n_{BbIX}},\tag{1}$$

• Расчетный крутящий момент на выходном валу редуктора:

$$T_{BbIX.PACY} = T_{BbIX.TPEB.} \cdot K_{yp}, \tag{2}$$

где K_{yp} – коэффициент условия работы, определяем по формулам (3), (4):

$$K_{yp} = K_1 \cdot K_2 \cdot K_3 \cdot K_{IIB} \cdot K_{PEB}, \tag{3}$$

- для зубчатого редуктора

$$K_{VP} = K_1 \cdot K_2 \cdot K_3 \cdot K_{IIB} \cdot K_{PEB} \cdot K_V, \qquad (4)$$

- для червячного редуктора

где K_1 – коэффициент, учитывающий динамические характеристики двигателя;

 K_2 — коэффициент, учитывающий продолжительность работы в сутки;

 K_3 – коэффициент, учитывающий количество пусков в час;

 $K_{\it \Pi B}$ — коэффициент, учитывающий продолжительность включения (ПВ) ;

 K_{PEB} — коэффициент, учитывающий реверсивность редуктора (для нереверсивной работы $K_{PEB}=1{,}00\,;$ для реверсивной — $K_{PEB}=1{,}33\,)\;;$

 K_{Y} — коэффициент, учитывающий расположение червячной пары в пространстве (при расположении червяка под колесом $K_{Y}=1.0$; при расположении над колесом $K_{Y}=1.2$; при расположении червяка сбоку колеса $K_{Y}=1.1$)

Числовые значения входящих коэффициентов выбираются из таблиц 1, 2, 3, 4.

Таблица 1

Коэффициент характеристики двигателя K_1

Ведущая машина		Степень толчкообразно- сти ведомой машины							
	A	Б	В	Γ					
Электродвигатель, паровая турбина	1,0	1,2	1,5	1,8					
4-х, 6-ти цилиндровые двигатели внутрен-									
него сгорания, гидравлические и пневмати-	1,25	1,5	1,8	2,2					
ческие двигатели									
1-х, 2-х, 3-х цилиндровые двигатели внут-	1,5	1,8	2.2	2.5					
реннего сгорания	1,5	1,0	2,2	2,3					

А – плавная нагрузка, Б – слабые толчки,

B – толчки средней силы, Γ – сильные толчки.

Классификация ведомых машин по степени толчкообразности приведена в таблице 5.

Таблица 2

Коэффициент продолжительности работы K_2

Ежедневное пользование, ч/сут	<2	<8	<16	>16
K_2	0,9	1,0	1,12	1,25

Таблица 3 Коэффициент количества пусков K_3

Количество пусков в час	1	<20	<40	<80	<160	>160	
	1	1,0	1,2	1,3	1,5	1,6	2,0
Коэффициент характеристики	1,25	1,0	1,1	1,2	1,3	1,4	1,7
двигателя, \mathbf{K}_1	1,5	1,0	1,07	1,1	1,15	1,25	1,4
	1,8	1,0	1,05	1,05	1,07	1,1	1,2

Таблица 4

коэффициент продол	жите	льнос	ти вк	люче	ния Л	П
ПВ %	100	60	40	25	15	
$K_{\Pi B}$	1,0	0,90	0,80	0,70	0,67	

Степень толчкообразности ведомых машин

Характер нагрузки	Ведомая машина
A	Генераторы, элеваторы, центробежные компрессоры, равномерно загружаемые конвейеры, смесители жидких веществ, насосы центробежные, шестеренные, винтовые, стреловые механизмы, воздуходувки, вентиляторы, фильтрующие устройства.
Б	Водоочистные сооружения, неравномерно загружаемые конвейеры, лебедки, тросовые барабаны, ходовые, поворотные, подъемные механизмы подъемных кранов, бетономешалки, печи, трансмиссионые валы, резаки, дробилки, мельницы, оборудование для нефтяной промышленности.
В	Пробойные прессы, вибрационные устройства, лесопильные машины, грохот, одноцилиндровые компрессоры.
Γ	Оборудование для производства резинотехнических изделий и пластмасс, смесительные машины и оборудование для фасонного проката.

• Расчетная мощность двигателя:

$$P_{BX.PACY} = \frac{T_{BbIX.PACY} \cdot n_{BbIX}}{9550 \cdot \eta}, \kappa Bm \tag{5}$$

где $T_{\mathit{BЫX.PACY.}}$ – расчетная крутящий момент на выходном валу редуктора, Н·м;

 $n_{\mathit{BЫX}}$ – частота вращения выходного вала редуктора;

 η – коэффициент полезного действия редуктора (КПД).

Значения η принимаются равными:

- а) Для цилиндрических редукторов:
- одноступенчатых 0,99
- двухступенчатых 0,98
- трехступенчатых 0,97
- четырехступенчатых 0,95
- б) Для конических редукторов:
- одноступенчатых 0,98
- двухступенчатых 0,97

- в) Для коническо-цилиндрических редукторов как произведение значений конической и цилиндрической частей редуктора.
- г) Для червячных редукторов КПД приводится в технических характеристиках для каждого редуктора для каждого передаточного числа.
- 1.2.6 Подбор редукторов производится в следующей последовательности:
 - Определяется передаточное число редуктора по формуле (1).
 - Определяется количество ступеней по рекомендациям п. 2.1.
- Определяется коэффициент условий работы для редукторов общемашиностроительного применения по формуле (3),(4).

Примечание: Для специальных редукторов коэффициент условий работы $K_{\mathit{VP}}{=}1$.

- Для специальных редукторов и для редукторов общемашиностроительного применения с коэффициентом условий работы $K_{\mathit{VP}} = 1$ по известным типу редуктора, передаточному числу и количеству ступеней подбирается редуктор из таблиц каталога с обеспечением условия:

$$T_{BbIX.HOM.} \ge T_{BbIX.TPEB.},$$
 (6)

где $T_{\mathit{BЫX.HOM.}}$ - номинальный крутящий момент из таблиц каталога.

— Для редукторов с коэффициентом условий работы K_{VP} не равным 1,0 определяется значение расчетного крутящего момента по формуле (2), после чего производится подбор редуктора из таблиц каталога с обеспечением условия:

$$T_{BbIX.HOM.} \ge T_{BbIX.PACY.},$$
 (7)

1.2.7 Проверка радиальных консольных нагрузок, приложенных в середине посадочных частей концов входного и выходного валов редуктора, производится следующим образом:

Определяется расчетная величина консольных нагрузок по величинам требуемых нагрузок из соотношений для случаев не равенства единице коэффициента K_{VP} :

$$F_{BbIX.PACY.} = F_{BbIX.TPEB.} \cdot K_{yp}, \tag{8}$$

$$F_{BbIX.PACY.} = F_{BX.TPEB.} \cdot K_{yP}, \tag{9}$$

Проверяем выполнение условий:

$$F_{BbIX.HOM.} = F_{BbIX.PACY.}, \tag{10}$$

$$F_{BX,HOM.} = F_{BX,PACY.}, \tag{11}$$

где $F_{BЫX.HOM.}$, $F_{BX.HOM..}$ — номинальные радиальные консольные нагрузки из таблиц «Технические характеристики» каталога редукторов.

Для специальных редукторов и редукторов общемашиностроительного применения с коэффициентом условий работы $K_{VP}=1$ проверяется выполнение условий:

$$F_{BUX.HOM.} \ge F_{BUX.TPEB.}$$
, (12)

$$F_{BX.HOM.} \ge F_{BX.TPEB.}$$
 (13)

При невыполнении условий (10), (11), (12) и (13) - выбирается больший типоразмер редуктора.

1.2.8. Проверка условий отсутствия перегрева редуктора. Проверка производится определением выполнения условия:

$$P_{RXPACY} \le P_{TFPM} \cdot K_T, \kappa Bm \tag{14}$$

где K_T – температурный коэффициент, значения которого приведены в таблице 6.

 $P_{TEPM.}$ — термическая мощность (кВт), значение которой приводятся в паспортах, технических условиях на редукторы, каталогах.

В случае невыполнения условия (14) при выбранном первоначально способе охлаждения определяются другие технологические приемы охлаждения, или переходят к большему типоразмеру редуктора.

Способ	Температура окружающей	Продолжительность включения, ПВ %.									
охлаждения	среды, С°	100	80	60	40	25					
	10	1,12	1,34	1,57	1,79	2,05					
Редуктор без	20	1,0	1,2	1,4	1,6	1,8					
постороннего	30	0,88	1,06	1,23	1,41	1,58					
охлаждения.	40	0,75	0,9	1,05	1,21	1,35					
	50	0,63	0,76	0,88	1,01	1,13					
Dawyymana aa	10	1,1	1,32	1,54	1,76	1,98					
Редукторе со	20	1,0	1,2	1,4	1,6	1,8					
спиралью во-	30	0,9	1,08	1,26	1,44	1,62					
дяного охлаж-	40	0,85	1,02	1,19	1,36	1,53					
дения.	50	0,8	0,96	1,12	1,29	1,44					
	10	1,15	1,38	1,61	1,84	2,07					
Редуктор	20	1,0	1,2	1,4	1,6	1,8					
охлаждается	30	0,9	1,08	1,26	1,44	1,82					
обдуванием.	40	0,8	0,96	1,12	1,29	1,44					
	50	0,7	0,84	0,98	1,12	1,26					
Dawywan a a 5	10	1,12	1,34	1,57	1,79	2,05					
Редуктор с об-	20	1,0	1,2	1,4	1,6	1,8					
дуванием и во-	30	0,92	1,1	1,29	1,47	1,66					
-жапхо мынкд	40	0,83	1,0	1,16	1,33	1,5					
дением.	50	0,78	0,94	1,09	1,25	1,4					

2. ВЫБОР ОДНОСТУПЕНЧАТОГО ЦИЛИНДРИЧЕСКОГО РЕДУКТОРА

Основные параметры цилиндрических одно- и многоступенчатых редукторов установлены ГОСТ 25301-95.

Узкие горизонтальные одноступенчатые цилиндрические зубчатые редукторы типа 1ЦУ выполняют четырех типоразмеров: 1ЦУ-100, 1ЦУ-160, 1ЦУ-200, 1ЦУ-250. К узкому типу относят редукторы, у которых ширина зубчатых колес равна (0,2...0,4) от межосевого рас-

стояния. Номинальный вращающий момент на выходном валу от 315 до 5000H·м, при номинальных передаточных числах от 2 до 6,3.

Назначение: редукторы цилиндрические одноступенчатые узкие горизонтальные общемашиностроительного применения предназначены для увеличения крутящего момента и уменьшения частоты вращения.

Рис. 1 Редуктор цилиндрический одноступенчатый

Условия применения:

- нагрузка постоянная и переменная, одного направления и реверсивная;
 - работа постоянная или с периодическими остановками;
 - вращение валов в любую сторону;
- $-\,$ частота вращения входного вала (n_1) не должна превышать $1800\,$ об/мин;
- атмосфера типов I и II по ГОСТ 15150 при запыленности воздуха не более 10 мг/м3;
- климатические исполнения У, Т (для категорий размещения 1...3) и климатические исполнения УХЛ и О (для категории размещения 4) по ГОСТ 15150.

Пример записи условного обозначения:

Редуктор 1ЦУ-160-4-12 ЦУ2,

где 1ЦУ – цилиндрический одноступенчатый редуктор;

160 - межосевое расстояние, мм;

4 – номинальное передаточное число;

12 – вариант сборки (см. рис.2);

Ц – цилиндрическое исполнение конца выходного вала;

У – климатическое исполнение;

2 – категория размещения

2.1. Исходные данные для выбора редуктора

Кинематическая схема:

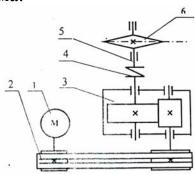


Рис. 2 Кинематическая схема привода цепного конвейера

1 — электродвигатель, 2 — открытая клиноременная передача, 3 — цилиндрический одноступенчатый редуктор, 4 — муфта, 5 — приводной вал, 6 — тяговая звездочка

Характер нагрузки: работа непрерывная, нереверсивная, толчки средней силы.

Средняя ежесуточная работа - 17 часов.

Количество включений в час - до 30.

Продолжительность включений - ПВ 100 %.

Условия окружающей среды: температура воздуха $\leq 30^{\circ}$ C, условия отвода тепла — естественное охлаждение воздухом окружающей среды.

2.2. Энергетический и кинематический расчеты привода

Энергетический и кинематический расчет привода выполняется в соответствии с рекомендациями [1].

2.2.1 Определение расчетной мощности привода

Расчетная мощность электродвигателя определяется по формуле [1, с.49, формула 6.1]:

$$P_{\rm 90} = \frac{P}{\eta_{\rm o \delta u \mu}},$$

где P — мощность на приводном валу конвейера, кВт, P=2,6 κ Bm; $\eta_{oбщ}$ — общий КПД привода.

Для рассматриваемой схемы общий КПД привода определяем по формуле:

$$\eta_{o \delta u u} = \eta_{\scriptscriptstyle M} \cdot \eta_{\scriptscriptstyle ped} \cdot \eta_{\scriptscriptstyle on} \cdot \eta_{\scriptscriptstyle n\kappa}$$
 ,

где $\eta_{\scriptscriptstyle M}$ – КПД муфты; $\eta_{\scriptscriptstyle M}$ = 0,99 [1, c.140, т.П2.1];

 $\eta_{\it peo}$ – КПД редуктора; $\eta_{\it peo}$ =0,98 по таблице 9;

 η_{on} — КПД открытой клиноременной передачи; η_{on} = 0,94 [1, c.140, т.П2.1];

— КПД пары подшипников качения; $\eta_{n\kappa}$ =0,99 [1, c.140, т.П2.1];

$$\eta_{o \delta u u} = 0.99 \cdot 0.98 \cdot 0.94 \cdot 0.99 = 0.903;$$

$$P_{9\partial} = \frac{2,6}{0,903} = 2,879 \text{ kBt.}$$

2.2.2 Выбор электродвигателя

Ориентировочно требуемая частота вращения вала электродвигателя определяется по формуле [1, с.50, формула 6.3]:

$$n_{mp} = n \cdot u_{on\,min} \cdot u_{ped.cp}$$
,

где u_{onmin} — наименьшее значение передаточного числа открытой передачи привода; u_{onmin} = 2 [1, c.141, т.П2.3];

 $u_{\it ped.cp}$ — среднее значение передаточного числа редуктора привода; $u_{\it ped.cp}$ =4 [1, с.141, т.П2.3];

n — номинальная частота вращения приводного вала; n=91 об/мин,

$$n_{mp} = 91 \cdot 2 \cdot 4 = 728$$
 об/мин.

По величине n_{mp} с учетом $P_{\ni \partial}$ принимаем по [1, с.140, т.П2.2] электродвигатель АИР112МВ8.

Техническая характеристика принятого электродвигателя представлена в таблице 7.

Таблица 7

Характеристика электродвигателя

Обозначение	Номинальная	Частота	$T_{nvc\kappa}$	T_{uax}	$d_{i\partial}$,	
электродвигателя	мощность, кВт	вращения, об/мин	T_{HOM}	$\frac{T_{max}}{T_{hom}}$	мм	
АИР112МВ8	3	709	2	2,2	32	

2.2.3 Определение общего передаточного числа привода и разбивка его по передачам

Общее передаточное число привода определяется по формуле [1, с.51, формула 6.6]

$$u_{oбщ} = \frac{n_{9\partial}}{n};$$
 $u_{oбщ} = \frac{709}{91} = 7,79.$

Оставляем передаточное число редуктора $u_{ped} = 4$, тогда передаточное число открытой клиноременной передачи составит

$$u_{o\kappa n} = \frac{u_{o\delta uq}}{u_{ped}} = \frac{7,79}{4} = 1,948.$$

2.2.4 Силовые и кинематические параметры привода

Расчет элементов привода выполняем по расчетной мощности $P_{3\partial}$ электродвигателя.

Для каждого из валов элементов привода определяем частоту вращения n, мощность P и вращающий момент T.

Определяем частоты вращения валов привода[1, с. 51]:

$$n_{3\partial} = 709 \,\text{об/мин};$$

$$n_1=rac{n_{
m 9\partial}}{u_{
m o\kappa n}}$$
; $n_1=rac{709}{1{,}948}=363{,}963\,{
m o}6/{
m mu}$ н;

$$n_2 = \frac{n_1}{u_{nea}}$$
; $n_2 = \frac{393,963}{4} = 91$ об/мин;

$$n_3 = n_2$$
; $n_3 = 91$ об/мин.

Определение мощностей, передаваемых на валы привода[1, с. 52]:

$$\begin{split} P_{_{9\partial}} &= 2,\!879\,\mathrm{kBt};\\ P_{1} &= P_{_{9\partial}} \cdot \eta_{_{OKN}};\, P_{1} = 2,\!908\cdot 0,\!94 = 2,\!707\,\mathrm{kBt};\\ P_{2} &= P_{1} \cdot \eta_{_{De\partial}};\, P_{2} = 2,\!707\cdot 0,\!98 = 2,\!652\,\mathrm{kBt};\\ P_{3} &= P_{2} \cdot \eta_{_{M}} \cdot \eta_{_{NK}};\, P_{3} = 2,\!652\cdot 0,\!99\cdot 0,\!99 = 2,\!6\,\mathrm{kBt}. \end{split}$$

Определение вращающих моментов передаваемых на валы[1, c. 52]:

$$T_i = 9550 \frac{P_i}{n_i};$$

$$T_{9\partial} = 9550 \cdot \frac{2,879}{709} = 38,779 \text{ H·m};$$

 $T_1 = 9550 \cdot \frac{2,707}{363,963} = 71,029 \text{ H·m};$
 $T_2 = 9550 \cdot \frac{2,652}{91} = 278,314 \text{ H·m};$
 $T_3 = 9550 \cdot \frac{2,6}{91} = 272,857 \text{ H·m}.$

Результаты расчета представлены в таблице 8.

Таблица 8

Силовые и кинематические параметры привода

Номер вала	Частота вра- щения, об/мин	Мощность, кВт	Крутящий мо- мент,Н∙м
Электродвигатель	709	2,879	38,779
1	363,963	2,707	71,029
2	91	2,652	278,314
3	91	2,6	272,857

2.3 Выбор редуктора

Передаточное число редуктора $u_{peo} = 4$.

Расчетный крутящий момент на выходном валу редуктора определяется по формуле (2)

$$T_{BbIX.PACY} = T_{BbIX.TPED.} \cdot K_{yp}$$

где $T_{BЫX.TPEB.}$ – требуемый крутящий момент на выходном валу редуктора, $T_{BЫX.TPEB.} = T_2 = 278,314 \ H\cdot M;$

 K_{VP} – коэффициент условия работы, определяем по формуле (3),

$$K_{VP} = K_1 \cdot K_2 \cdot K_3 \cdot K_{IB} \cdot K_{PEB},$$

Из таблиц 1, 2, 3, 4 находим значения: K_1 =1,2; K_2 =1,25; K_3 =1,2; K_{IIB} =1,0; K_{PEB} =1 (передача нереверсивная).

$$K_{VP} = 1,2\cdot 1,25\cdot 1,2\cdot 1\cdot 1=1,8;$$

$$T_{BbIX,PACY}$$
 = 278,314 · 1,8=500,965 H · M .

Из каталога выбираем стандартный одноступенчатый редуктор из условия (7):

$$T_{BbIX.HOM.} \ge T_{BbIX.PACY.}$$

где $T_{BЫX.HOM.}$ - номинальный крутящий момент из таблицы 9 для одноступенчатого цилиндрического редуктора,

$$T_{BbIX.HOM.} = 1250 \ge T_{BbIX.PACY.} = 500,965 \text{ H} \cdot \text{m}.$$

Принимаем редуктор: Редуктор 1ЦУ-160-4-12 ЦУ2.

Выполняем проверку правильности выбора редуктора по консольным радиальным нагрузкам на входном и выходном валах редуктора (10), (11):

$$F_{BbIX.HOM.} = F_{BbIX.PACY.}, \quad F_{BX.HOM.} = F_{BX.PACY.},$$

где $F_{BЫX.HOM}$, $F_{BX.HOM}$ —номинальные радиальные консольные нагрузки из таблицы 9 для цилиндрического одноступенчатого редуктора, для редуктора 1ЦУ-160: $F_{BЫX.HOM}$ =4500 H, $F_{BX.HOM}$ =1250 H;

 $F_{BЫX,PACY}$, $F_{BX,PACY}$ — расчетные радиальные консольные нагрузки на выходном и входном валах редуктора соответственно (8), (9):

$$F_{BbIX.PACY.} = F_{BbIX.TPEB.} \cdot K_{yp}$$
,

$$F_{BbIX.PACY.} = F_{BX.TPEB.} \cdot K_{yp}$$
,

где $F_{BЫX.TPEБ.}$, $F_{BX.TPEБ.}$ — требуемые радиальные консольные нагрузки на выходном и входном валах редуктора соответственно,

$$F_{\mathit{BbIX.TPEF.}} = F_{\mathit{M}}$$
 ,

где F_M – консольная нагрузка от муфты, выбранной в зависимости от требуемого крутящего момента и диаметров валов, которых она со-

единяет,
$$F_M = (0,2...0,5) \cdot 2 \cdot \frac{T_2}{D_0}$$
, $(D_0$ - диаметр муфты, $D_0 = 210$ мм)

$$F_M = (0,2...0,5) \cdot 2 \cdot \frac{278,314}{0,21} = 530,12...1325 \text{ H}.$$

$$F_{BX.PACY.} = F_{O\Pi}$$
,

где F_{OII} – консольная нагрузка от открытой клиноременной передачи, $F_{OII} = 564 \, \mathrm{H}.$

$$\begin{split} F_{BbIX.HOM.} &= 4500 \geq F_{BbIX.PACY.} = 1325 \cdot 1,8 = 2385,5 \, H \\ F_{BX.HOM.} &= 1250 \geq F_{BX.PACY.} = 564 \cdot 1,8 = 1015,2 \, H \end{split}$$

Условия выполнены.

Проверку условия отсутствия перегрева не выполняем, т.к. термическая мощность для данного типа редуктора не лимитируется.

Технические характеристики цилиндрических одноступенчатых горизонтальных редукторов типа 1ПV

		•	Номинальный	Номина. Диальная	V			
Тип	Межосевое расстояние	Номинальное передаточное число, u_{ped}	H. 14	на вход- ном валу,	на выход	Масса, кг	кпд	
1ЦУ- 100	100		315	630	2240	27		
1ЦУ- 160	160	2; 2,5; 3,15; 4;	1250	1250	4500	77,5	0,98	
1ЦУ- 200	200	5; 6,3	2500	2800	6300	135	10,98	
1ЦУ- 250	250		5000*	4000	9000	210		

^{*4500} для передаточных чисел 5 и 6,3

Примечания:

- при работе в реверсивном режиме, т.е. при периодическом изменении направлений нагрузки номинальные крутящие моменты на выходном валу, указанные в таблице 1, должны быть снижены на 30 %;
- редукторы допускают кратковременные перегрузки, в 2,2 раза превышающие номинальные нагрузки, возникающие при пусках и остановках двигателя, если число циклов нагружения входного вала за время действия этих перегрузок не превысит $3\cdot10^6$ в течение всего срока службы редукторов;
- номинальные крутящие моменты на выходном валу, указанные для редукторов ЦУ-200 и ЦУ-250, соответствуют струйному смазыванию зацепления;
- номинальная радиальная нагрузка на выходном валу для вариантов сборки 13, 23, 33 и на входном валу для вариантов сборки 31, 32, 33 должна быть уменьшена на 50%;
 - варианты сборки 11-13, 21-23 являются предпочтительными;

– термическая мощность редуктора при температуре окружающего воздуха 20°С и предельно допустимой температуре масла в картере 75°С приведена в таблице 2.

Под термической мощностью понимается наибольшая передаваемая редуктором мощность без охлаждения или циркуляции масла при температуре окружающей среды 20°С. В тех случаях, когда термическая мощность по таблице меньше передаваемой, следует применять струйное смазывание и охлаждение масла вне редуктора.

Термическая мощность, кВт

Таблица 10

Typononyon nogyyerono	Номинальные передаточные числа, иред											
Типоразмер редуктора	2	2,5	3,15	4	5	6,3						
1ЦУ-100	Не лимитируется											
1ЦУ-160		Не	е лимити	руется								
1ЦУ-200	80	74	68	60	54	47						
1ЦУ-250	127	118	108	97	87	76						

Габаритные и присоединительные размеры цилиндрических одноступенчатых редукторов типа 1ЦУ приведены на рис. 2 и в табл. 11.

Номинальные вращающие моменты на выходном валу редуктора и радиальные силы на концы входных и выходных валов приведены в табл. 9. Радиальную силу следует считать приложенной в середине посадочной поверхности выходного конца вала.

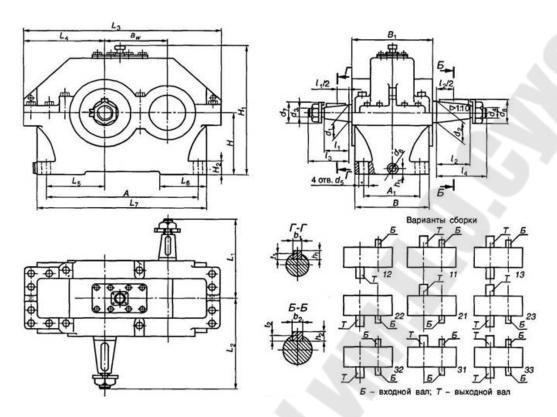


Рис.3 Габаритные и присоединительные размеры цилиндрических одноступенчатых редукторов типа 1ЦУ

Таблица 11 Габаритные и присоединительные размеры цилиндрических одноступенчатых горизонтальных редукторов типа 1ЦУ (рис. 2), мм

Типоразмер редуктора	a _w	A	\mathbf{A}_{1}	В	\mathbf{B}_1	Н	H ₁	H_2	L ₁	L_2	L_3	L_4	L_5	L_6	L_7	d ₅
1ЦУ-100	100	224	95	132	140	112	224	22	136	155	315	132	85	90	265	15
1ЦУ-160	160	355	125	175	185	170	335	28	218	218	475	195	136	125	412	24
1ЦУ-200	200	437	136	200	212	212	425	36	230	265	580	236	165	160	500	24
1ЦУ-250	250	545	185	250	265	265	530	40	280	315	710	290	212	190	615	28

Продолжение таблицы 11

													1							
\mathbf{b}_1	\mathbf{b}_2	$\mathbf{d}_{1,\mathbf{в}\mathbf{x}\mathbf{o}\mathbf{д}\mathbf{h}\mathbf{o}\breve{\mathbf{n}}}$	d _{2,выходной}	\mathbf{d}_3	$\mathbf{d_4}$	\mathbf{d}_{6}	\mathbf{d}_7	d_8	\mathbf{h}_1	h ₂	h_3	l_1	l_2	l_3	l_4	t_1	\mathbf{t}_2			
8	10	25	35	M16x1,5	M20x1,5	M24x1,5	40	48	7	8	32	42	58	60	80	4,0	5,0			
14	16	45	55	M30x2,0	M36x3,0	M24x1,5	63	75	9	10	32	82	82	110	110	5,5	6,0			
16	20	55	70	M36x3,0	M48x3,0	M24x1,5	75	100	10	12	32	82	105	110	140	6,0	7,5			
20	25	70	90	M48x3,0	M64x4,0	M24x1,5	100	130	12	14	32	105	130	140	170	7,5	9,0			

3. ВЫБОР ДВУХСТУПЕНЧАТОГО ЦИЛИНДРИЧЕСКОГО РЕДУКТОРА

Редукторы цилиндрические двухступенчатые узкие горизонтальные общемашиностроительного применения типов 1Ц2У-100, 1Ц2У-125, 1Ц2У-160, 1Ц2У-200, 1Ц2У-250 предназначены для увеличения крутящего момента и уменьшения частоты вращения.

Рис. 4 Редуктор цилиндрический двухступенчатый

Зубчатые цилиндрические двухступенчатые узкие горизонтальные редукторы общемашиностроительного применения выполняют следующих типоразмеров: 1Ц2У-100, 1Ц2У-125, 1Ц2У-160, 1Ц2У-200, 1Ц2У-250. Номинальный вращающий момент на выходном валу от 315 до 5000Н·м, при номинальных передаточных числах от 8 до 40.

Назначение: редукторы цилиндрические одноступенчатые узкие горизонтальные общемашиностроительного применения предназначены для увеличения крутящего момента и уменьшения частоты вращения.

Условия применения:

- нагрузка постоянная и переменная, одного направления и реверсивная;
 - работа постоянная или с периодическими остановками;
 - вращение валов в любую сторону;
- частота вращения входного вала (n_1) не должна превышать 1800 об/мин;
- атмосфера типов I и II по ГОСТ 15150 при запыленности воздуха не более 10 мг/м3;

- климатические исполнения У, Т (для категорий размещения 1...3) и климатические исполнения УХЛ и О (для категории размещения 4) по ГОСТ 15150.

Пример записи условного обозначения:

Редуктор 1Ц2У-200-16-12Ц У2,

где 1Ц2У - цилиндрический двухступенчатый редуктор;

200 - межосевое расстояние тихоходной ступени, а_{wt}, мм;

16 - номинальное передаточное число, ирел;

12 - вариант сборки (см. рис. 4);

У - климатическое исполнение;

2 - категория размещения;

3.1. Исходные данные для выбора редуктора

Кинематическая схема:

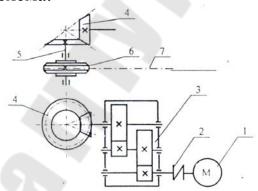


Рис. 5 Кинематическая схема привода цепного конвейера

1 — электродвигатель, 2 — муфта, 3 — цилиндрический двухступенчатый редуктор, 4 — открытая коническая передача, 5 — приводной вал, 6 — тяговая звездочка

Характер нагрузки: работа непрерывная, нереверсивная, толчки средней силы.

Средняя ежесуточная работа - 10 часов.

Количество включений в час - до 18.

Продолжительность включений - ПВ 100 %.

Условия окружающей среды: температура воздуха $\leq 30^{\circ}$ С, условия отвода тепла — естественное охлаждение воздухом окружающей среды.

3.2. Энергетический и кинематический расчеты привода

Энергетический и кинематический расчет привода выполняется в соответствии с рекомендациями [1].

3.2.1 Определение расчетной мощности привода

Расчетная мощность электродвигателя определяется по формуле [1, с.49, формула 6.1]:

$$P_{\mathfrak{I}} = \frac{P}{\eta_{o \delta u u}},$$

где P — мощность на приводном валу конвейера, кВт, P=5,5 κ Bm; $\eta_{oбщ}$ — общий КПД привода.

Для рассматриваемой схемы общий КПД привода определяем по формуле:

$$\eta_{o \delta u u} = \eta_{\scriptscriptstyle M} \cdot \eta_{\scriptscriptstyle pe \partial} \cdot \eta_{\scriptscriptstyle on} \cdot \eta_{\scriptscriptstyle n \kappa}$$
 ,

где $\eta_{\scriptscriptstyle M}$ – КПД муфты; $\eta_{\scriptscriptstyle M}$ = 0,99 [1, c.140, т.П2.1];

 $\eta_{\it peo}$ – КПД редуктора; $\eta_{\it peo}$ =0,97 по таблице 14;

 η_{on} – КПД открытой конической передачи; η_{on} = 0,92[1, c.140, т.П2.1];

 $\eta_{n\kappa}$ — КПД пары подшипников качения; $\eta_{n\kappa}$ =0,99 [1, c.140, т.П2.1];

$$\eta_{obu} = 0.99 \cdot 0.97 \cdot 0.92 \cdot 0.99 = 0.875;$$

$$P_{9\partial} = \frac{5.5}{0.875} = 6.296 \,\mathrm{KBT}.$$

3.2.2 Выбор электродвигателя

Ориентировочно требуемая частота вращения вала электродвигателя определяется по формуле [1, с.50, формула 6.3]:

$$n_{mp} = n \cdot u_{on\,min} \cdot u_{ped.cp}$$
,

где u_{onmin} — наименьшее значение передаточного числа открытой передачи привода; u_{onmin} = 2 [1, c.141, т.П2.3];

 $u_{\it ped.cp}$ — среднее значение передаточного числа редуктора привода; $u_{\it ped.cp}$ =10 [1, c.141, т.П2.3];

n — номинальная частота вращения приводного вала;

$$n=70$$
 об/мин,

$$n_{mp} = 70 \cdot 2 \cdot 10 = 1400$$
 об/мин.

По величине n_{mp} с учетом $P_{\ni \partial}$ принимаем по [1, с.140, т.П2.2] электродвигатель АИР132S4.

Техническая характеристика принятого электродвигателя представлена в таблице 12.

Таблица 12

Характеристика электродвигателя

Обозначение	Номинальная	Частота	$T_{nvc\kappa}$	<i>T</i>	$d_{\partial \partial}$,
электродвигателя	мощность,	вращения,	$\frac{T_{Max}}{T}$	мм	
элскіродын атсла	кВт	об/мин	1 ном	1 ном	
АИР132S4	7,5	1440	2	2,2	38

3.2.3 Определение общего передаточного числа привода и разбивка его по передачам

Общее передаточное число привода определяется по формуле [1, с.51, формула 6.6]

$$u_{oби \mu} = \frac{n_{9\partial}}{n};$$
 $u_{oбu \mu} = \frac{1440}{70} = 20,57.$

Оставляем передаточное число редуктора $u_{pe\partial}=10$, тогда передаточное число открытой конической передачи составит

$$u_{o\kappa n} = \frac{u_{o\delta u_{\downarrow}}}{u_{pe\delta}} = \frac{20,57}{10} = 2,057.$$

3.2.4 Силовые и кинематические параметры привода

Расчет элементов привода выполняем по расчетной мощности $P_{\ni \partial}$ электродвигателя.

Для каждого из валов элементов привода определяем частоту вращения n, мощность P и вращающий момент T.

Определяем частоты вращения валов привода[1, с. 51]:

$$n_{30} = 1440$$
 об/мин;

$$n_1 = n_{_{9\partial}}$$
; $n_1 = 1440$ об/мин;

$$n_2 = \frac{n_1}{u_{ped}}$$
; $n_2 = \frac{1440}{10} = 144$ об/мин;

$$n_3 = \frac{n_2}{u_{ovn}}$$
; $n_3 = \frac{144}{2,057} = 70$ об/мин.

Определение мощностей, передаваемых на валы привода[1, с. 52]:

$$\begin{split} P_{_{9\partial}} &= 6,\!296\,\mathrm{kBt}; \\ P_{1} &= P_{_{9\partial}}\!\cdot \eta_{_{M}}; P_{1} = 6,\!296\cdot 0,\!99 = 6,\!223\,\mathrm{kBt}; \\ P_{2} &= P_{1}\cdot \eta_{_{pe\partial}}; P_{2} = 6,\!223\cdot 0,\!97 = 6,\!036\,\mathrm{kBt}; \\ P_{3} &= P_{2}\cdot \eta_{_{okn}}\cdot \eta_{_{nk}}; P_{3} = 6,\!036\cdot 0,\!92\cdot 0,\!99 = 5,\!5\,\mathrm{kBt}. \end{split}$$

Определение вращающих моментов передаваемых на валы[1, с. 52]:

$$\begin{split} T_i &= 9550 \frac{P_i}{n_i}; \\ T_{9\partial} &= 9550 \cdot \frac{6,296}{1440} = 41,755 \text{ H·m}; \\ T_1 &= 9550 \cdot \frac{6,223}{1440} = 41,271 \text{H·m}; \\ T_2 &= 9550 \cdot \frac{6,036}{144} = 400,304 \text{ H·m}; \\ T_3 &= 9550 \cdot \frac{5,5}{70} = 750,357 \text{ H·m}. \end{split}$$

Результаты расчета представлены в таблице 13.

Таблица 13

Силовые и кинематические параметры привода

Номер вала	Частота враще- ния, об/мин	Мощность, кВт	Крутящий мо- мент,Н·м
Электродвигатель	1440	6,296	41,755
1	1440	6,223	41,271
2	144	6,036	400,304
3	70	5,5	750,357

3.3 Выбор редуктора

Передаточное число редуктора $u_{ped} = 10$.

Расчетный крутящий момент на выходном валу редуктора определяется по формуле (2)

$$T_{BbIX.PACY} = T_{BbIX.TPEB.} \cdot K_{yp},$$

где $T_{BЫX.TPEБ.}$ – требуемый крутящий момент на выходном валу редуктора, $T_{BЫX.TPEБ.}$ = T_2 =400,304 H·M;

 K_{yp} – коэффициент условия работы, определяемый по формуле (3),

$$K_{VP} = K_1 \cdot K_2 \cdot K_3 \cdot K_{\Pi B} \cdot K_{PEB},$$

Из таблиц 1, 2, 3, 4 находим значения: K_1 =1,2; K_2 =1,12; K_3 =1,1; K_{IIB} =1,0; K_{PEB} =1 (передача нереверсивная).

$$K_{yp} = 1,2 \cdot 1,12 \cdot 1,1 \cdot 1 \cdot 1 = 1,478$$

 $T_{BLIX,PACY}$ =400,304· 1,478=591,649 H·M.

Из каталога выбираем стандартный двухступенчатый редуктор из условия (7):

 $T_{BUX.HOM.} \geq T_{BUX.PACY}$

где $T_{BЫX.HOM}$ - номинальный крутящий момент из таблицы 14 для двухступенчатого цилиндрического редуктора, $T_{BЫX.HOM.}=630H\cdot M \ge T_{BЫX.PACY}=591,649 H\cdot M$.

Принимаем редуктор: Редуктор 1Ц2У-125-10-12Ц У2.

Выполняем проверку правильности выбора редуктора по консольным радиальным нагрузкам на входном и выходном валах редуктора (10), (11):

$$F_{BbIX.HOM.} = F_{BbIX.PACY.}, \quad F_{BX.HOM.} = F_{BX.PACY.},$$

где $F_{BЫX.HOM.}$, $F_{BX.HOM.}$ —номинальные радиальные консольные нагрузки из таблицы 14 для двухступенчатого цилиндрического редуктора, для редуктора 1Ц2У-125: $F_{BЫX.HOM.}$ = 6300 H, $F_{BX.HOM.}$ = 750 H;

 $F_{BЫX,PACY}$, $F_{BX,PACY}$ — расчетные радиальные консольные нагрузки на выходном и входном валах редуктора соответственно (8), (9):

$$F_{BbIX.PACY.} = F_{BbIX.TPEB.} \cdot K_{yp}$$
,

$$F_{BbIX.PACY.} = F_{BX.TPEB.} \cdot K_{yp}$$
,

где $F_{BЫX,TPEБ}$, $F_{BX,TPEБ}$ — требуемые радиальные консольные нагрузки на выходном и входном валах редуктора соответственно,

$$F_{BX.PACY.} = F_{O\Pi}$$

где $F_{O\!\Pi}$ – консольная нагрузка от открытой конической передачи,

$$F_{O\Pi} = 2 \frac{T_2}{d_{m3}} \ (d_{m3} - \text{ средний диаметр шестерни открытой конической}$$

передачи, $d_{m3} = 200$ мм)

$$F_{O\Pi} = 2 \frac{400,304}{0,2} = 4003,04 \text{ H}.$$

$$F_{BX.PACY.} = F_{M}$$

где F_M — консольная нагрузка от муфты, выбранной в зависимости от требуемого крутящего момента и диаметров валов, которых она соединяет, $F_M = \left(0,2...0,5\right)\cdot 2\cdot \frac{T_1}{D_0}$ (D_0 — диаметр муфты, $D_0 = 102$ мм),

$$F_M = (0,2...0,5) \cdot 2 \cdot \frac{41,27}{0,102} = 161,9...404,62 \text{ H}.$$

 $F_{BbIX.HOM.}$ =6300 $H \ge F_{BbIX.PACY.}$ =4003,04·1,478=5916,5H

 $F_{BX.HOM.}$ =750 $H \ge F_{BX.PACY.}$ =404,62·1,478=598,03H

Условия выполнены.

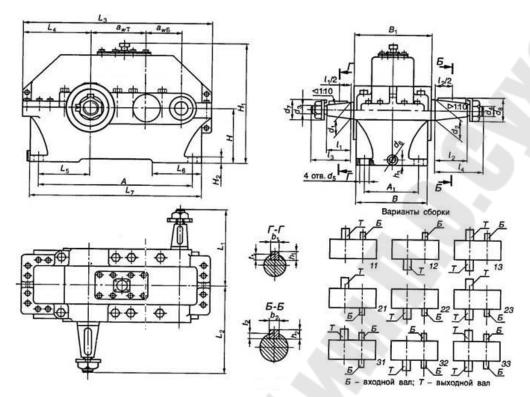
Проверку условия отсутствия перегрева не выполняем, т.к. термическая мощность для данного типа редуктора не лимитируется.

Таблица 14

Технические характеристики цилиндрических одноступенчатых горизонтальных редукторов типа 1Ц2У

	1 op 11 so 11 1		Типоразмер 1Ц2У						
П	араметры		1Ц2У	1Ц2У	1Ц2У	1Ц2У	1Ц2У		
		100	125	160	200	250			
Номинальные п	ередаточные	числа, иред	8;	10; 12,5;	16; 20; 2	25; 31,5;	40		
Ном. крутящий мом валу при длительно постоянной нагруз	й работе с	непрерывный (Н) ПВ=100%	315	630	1250	2500	5000		
Номинальный крутяі	ций момент	тяжелый (Т) ПВ=40%			1600	3150	6300		
на вых. валу при раб тора в повтор	оно-	средний (С) ПВ=25%	315	630	2000	4000	8000		
кратковременных ре	жимах, Н∙м	легкий (Л) ПВ=15%			2500	5000	10000		
		непрерывный (H) ПВ=100%			1000	2240	3150		
	руолиого	тяжелый (Т) ПВ=40%	500	750	1150	2500	3550		
Допускаемая ради- альная консольная	входного	средний (С) ПВ=25%	300	730	1280	2800	4000		
нагрузка, прило- женная в середине		легкий (Л) ПВ=15%			1450	3150	4500		
посадочной части вала, Н		непрерывный (Н) ПВ=100%			9000	12500	18000		
	выходного	тяжелый (Т) ПВ=40%	4500	6300	10000	14000	20000		
		средний (С) ПВ=25%			11200	16000	22400		

Продолжение таблицы 14


	легкий (Л) ПВ=15%	` /		12500	18000	25000
КПД, не менее			0,97			
Масса ил	с чугунным корпусом	37	55	95	170	310
Масса, кг	с алюминиевым корпусом	21	31,5	57	/) -

Примечания:

- значения допускаемых крутящих моментов и радиальных консольных нагрузок редукторов 1Ц2У-160, 1Ц2У-200, 1Ц2У-250 с передаточными числами 8, 10, 12,5 при легком режиме работы, редукторов 1Ц2У-200 с цилиндрическим концом выходного вала должны быть снижена на 20%;
- номинальная радиальная нагрузка на выходном валу для вариантов сборки 13, 23, 33 и на входном валу для 31, 32, 33 должна быть уменьшена в два раза;
- при работе редукторов в реверсивном режиме допускаемые крутящие моменты на выходном валу должны быть снижены на 30%;
 - термическая мощность не лимитируется.

Габаритные и присоединительные размеры цилиндрических двухступенчатых редукторов типа 1Ц2У приведены на рис. 2 и в табл. 5.

Номинальные вращающие моменты на выходном валу редуктора и радиальные силы на концы входных и выходных валов приведены в табл. 4. Радиальную силу следует считать приложенной в середине посадочной поверхности выходного конца вала.

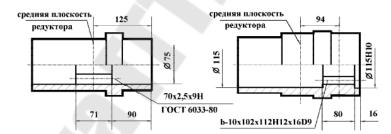
Puc.6 Габаритные и присоединительные размеры цилиндрических двухступенчатых редукторов типа 1Ц2У

Таблица 15 Габариты и присоединительные размеры цилиндрических двухступенчатых горизонтальных редукторов типа Ц2У (рис. 2), мм

ADJACI	J			0 2 - 2 - 3	0 11 1 0			<u> </u>	TOPOL	- 1111100	η- υ	(12	<i>- 1</i> ,	
Типораз-										H_2			L ₃ L ₄ L ₇	
мер ре- дуктора	a _{wő}	а _{wт}	A	$\mathbf{A_1}$	В	B ₁	Н	H_1	Чугун. кор- пус	Алю- мин. корпус	L_1	L ₂	не более	L_5
1Ц2У-100	80	100	290	109	145	155	112	224	-	20±3	136	165	390 136 325	85
1Ц2У-125	80	125	335	125	165	175	132	265	-	22±3	145	206	446 160 375	106
1Ц2У-160	100	160	425	140	195	206	170	335	24±4	28±4	170	224	557 200 475	136
1Ц2У-200	125	200	515	165	230	243	212	412	30±4	-	212	280	678 243 580	165
1Ц2У-250	160	250	670	218	280	290	265	515	32±4	-	265	335	829 290 730	212

Продолжение таблицы 15

L_6	$\mathbf{b_1}$	$\mathbf{b_2}$	$d_{1,BX}$	$d_{2,BMX}$	d_3	\mathbf{d}_4	\mathbf{d}_{5}	\mathbf{d}_{6}	\mathbf{d}_7	d_8	\mathbf{h}_1	h ₂	h_3	$\mathbf{l_1}$	l_2	l_3	l_4	\mathbf{t}_1	\mathbf{t}_2
90	6	10	20	35	M12x1,25	M20x1,5	15	M24x1,5	32	45	6	8	32	36	58	50	80	3,5	5,0
100	6	14	20	45	M12x1,25	M30x2,0	19	M24x1,5	32	63	6	9	32	36	82	50	110	3,5	5,5
125	8	16	25	55	M16x1,5	M36x3,0	24	M24x1,5	40	75	7	10	32	42	82	60	110	4,0	6,0
160	8	20	30	70	M20x1, 5	M48x3,0	24	M24x1,5	45	100	7	12	32	58	105	80	140	4,0	7,5
190	12	25	40	90	M24x2,0	M64x4,0	28	M24x1,5	50	130	8	14	32	82	130	110	170	5,0	9,0


Габаритные и присоединительные размеры, мм

Тип	m	Z	b	L	L ₁ , не менее	k	В	d	d ₁
1Ц2У-160	4	40	20	48	20	19	38	72F7	95F7
1Ц2У-200	5	40	25	55	32	22	50	80F7	105F7
1Ц2У-250	4	56	35	63	16	31	50	120F8	170F7

Рис. 7 Размеры концов выходных валов в виде зубчатой полумуфты

полых валов

- цилиндрического конца выходного вала

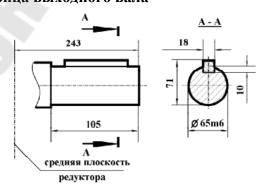


Рис. 8 Размеры концов выходных валов

4. ВЫБОР ЧЕРВЯЧНОГО РЕДУКТОРА

Назначение: редукторы червячные одноступенчатые универсальные предназначены для увеличения крутящего момента и уменьшения частоты вращения в качестве комплектующих в приводах машин, оборудования и механизмов.

Рис. 9 Редуктор червячный

Условия применения:

- нагрузка постоянная и переменная, одного направления и реверсивная;
 - работа постоянная или с периодическими остановками;
 - вращение валов в любую сторону;
- частота вращения входного вала (n_1) не должна превышать 1800 об/мин;
- атмосфера типов I и II по ГОСТ 15150 при запыленности воздуха не более 10 мг/м3;
- климатические исполнения У, Т (для категорий размещения 1...3) и климатические исполнения УХЛ и О (для категории размещения 4) по ГОСТ 15150.

Пример записи условного обозначения:

Редуктор Ч-80М-20-52-1-2-ЦЦ В УЗ ТУ2-056181-79 Редуктор Ч-100М-20-52-1-2-ЦЦ В УЗ ТУ2-056178-83

где Ч-тип;

80, 100 - межосевое расстояние;

40 - номинальное передаточное число;

52 - вариант сборки (см. рис.7);

1 - вариант по расположению червячной пары;

2 - вариант по расположению лап;

ЦЦ - цилиндрическое исполнение конца входного и выходного валов (K - коническое);

В - с вентилятором;

У3 - климатическое исполнение и категория размещения.

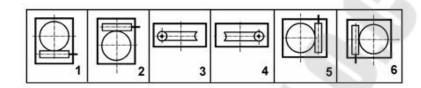


Рис. 10 Варианты расположения червячной пары

1-без лап; 2-со стороны червяка; 3-со стороны колеса; 4-боковое расположение лап со стороны противоположной выходному концу червяка; 5,6-боковое расположение лап со стороны выходного конца червяка.

4.1. Исходные данные для выбора редуктора

Кинематическая схема:

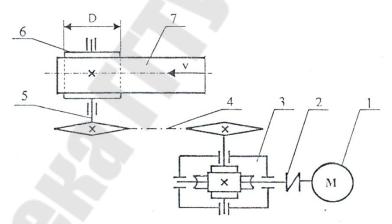


Рис. 11 Кинематическая схема привода ленточного транспортера

- 1 электродвигатель, 2 муфта, 3 червячный редуктор,
- 4 открытая цепная передача, 5 приводной вал, 6 барабан

Характер нагрузки: работа непрерывная, нереверсивная, толчки средней силы.

Средняя ежесуточная работа - 10 часов.

Количество включений в час - до 18.

Продолжительность включений - ПВ 100 %.

Условия окружающей среды: температура воздуха $\leq 30^{\circ}$ С, условия отвода тепла — естественное охлаждение воздухом окружающей среды.

4.2. Энергетический и кинематический расчеты привода

Энергетический и кинематический расчет привода выполняется в соответствии с рекомендациями [1].

4.2.1 Определение расчетной мощности привода

Расчетная мощность электродвигателя определяется по формуле [1, c.49, формула 6.1]:

$$P_{3\partial} = \frac{P}{\eta_{o \delta u u}},$$

где P — мощность на приводном валу конвейера, кВт, P=2,53 кВm; $\eta_{oбщ}$ — общий КПД привода.

Для рассматриваемой схемы общий КПД привода определяем по формуле:

$$\eta_{oбщ} = \eta_{\scriptscriptstyle M} \cdot \eta_{ped} \cdot \eta_{on} \cdot \eta_{n\kappa} \; ,$$
 где
$$\eta_{\scriptscriptstyle M} - \mathrm{K}\Pi \Xi \; \mathrm{My} \oplus \mathrm{Th}; \; \eta_{\scriptscriptstyle M} = 0.99 \; [1, \, \mathrm{c}.140, \, \mathrm{t}.\Pi 2.1];$$

$$\eta_{\scriptscriptstyle ped} - \mathrm{K}\Pi \Xi \; \mathrm{pedyktopa}; \; \eta_{\scriptscriptstyle ped} = 0.87 \; \mathrm{no} \; \mathrm{Tadduu} \; 19;$$

$$\eta_{\scriptscriptstyle on} - \mathrm{K}\Pi \Xi \; \mathrm{otkphtom} \; \mathrm{uenhom} \; \mathrm{nepedaum}; \; \eta_{\scriptscriptstyle on} = 0.93 [1, \, \mathrm{c}.140, \, \mathrm{t}.\Pi 2.1];$$

$$\eta_{\scriptscriptstyle n\kappa} - \; \mathrm{K}\Pi \Xi \; \mathrm{naph} \; \mathrm{nodehom} \; \mathrm{nodehom} \; \mathrm{kauehhm}; \; \eta_{\scriptscriptstyle n\kappa} = 0.99 \; [1, \, \, \mathrm{c}.140, \, \mathrm{t}.\Pi 2.1];$$

$$\eta_{\scriptscriptstyle odehom} = 0.99 \cdot 0.87 \; \cdot 0.93 \cdot 0.99 \; = 0.793;$$

$$P_{\scriptscriptstyle 9d} = \frac{2.53}{0.793} = 3.19 \; \mathrm{kBt}.$$

4.2.2 Выбор электродвигателя

Ориентировочно требуемая частота вращения вала электродвигателя определяется по формуле [1, с.50, формула 6.3]:

$$n_{mp} = n \cdot u_{on\,min} \cdot u_{ped.cp}$$
,

где u_{onmin} — наименьшее значение передаточного числа открытой передачи привода; u_{onmin} = 2 [1, с.141, т.П2.3]; $u_{ped.cp}$ — среднее значение передаточного числа редуктора привода; $u_{ped.cp}$ =20 [1, с.141, т.П2.3];

n — номинальная частота вращения приводного вала; n=25 об/мин, $n_{mp} = 25 \cdot 2 \cdot 20 = 1000$ об/мин.

По величине n_{mp} с учетом $P_{9\partial}$ принимаем по [1, с.140, т.П2.2] электродвигатель АИР100L4.

Техническая характеристика принятого электродвигателя представлена в таблице 17.

Таблица 17

Характеристика электродвигателя

Обозначение элек- тродвигателя	Номинальная мощность, кВт	Частота вра- щения, об/мин	$rac{T_{_{nyc\kappa}}}{T_{_{_{HOM}}}}$	$\frac{T_{_{MAX}}}{T_{_{HOM}}}$	d _{эд} , мм
АИР100L4	4	1410	2,1	2,4	28

4.2.3 Определение общего передаточного числа привода и разбивка его по передачам

Общее передаточное число привода определяется по формуле [1, с. 51, формула 6.6]

$$u_{oбиμ} = \frac{n_{9∂}}{n_{e}};$$
 $u_{oбиμ} = \frac{1410}{25} = 56,4.$

Оставляем передаточное число редуктора $u_{\it ped}$ = 20 , тогда передаточное число открытой цепной передачи составит

$$u_{oun} = \frac{u_{oбuy}}{u_{ped}} = \frac{56,4}{20} = 2,82.$$

4.2.4 Силовые и кинематические параметры привода

Расчет элементов привода выполняем по расчетной мощности P_{3d} электродвигателя.

Для каждого из валов элементов привода определяем частоту вращения n, мощность P и вращающий момент T.

Определяем частоты вращения валов привода[1, с. 51]:

$$n_{9\partial} = 1410 \text{ об/мин};$$

$$n_1 = n_{2\partial}$$
; $n_1 = 1410$ об/мин;

$$n_2=rac{n_1}{u_{ped}}$$
; $n_2=rac{1410}{20}=70,5\, ext{об/мин};$ $n_3=rac{n_2}{u_{orn}}$; $n_3=rac{70,5}{2,82}=25\, ext{об/мин}.$

Определение мощностей, передаваемых на валы привода[1, с. 52]:

$$\begin{split} P_{_{9\partial}} &= 3,\!19\,\mathrm{kBt}; \\ P_{1} &= P_{_{9\partial}} \cdot \eta_{_{M}}; P_{1} = 3,\!19 \cdot 0,\!99 = 3,\!158\,\mathrm{kBt}; \\ P_{2} &= P_{1} \cdot \eta_{_{pe\partial}}; P_{2} = 3,\!158 \cdot 0,\!87 = 2,\!748\,\mathrm{kBt}; \\ P_{3} &= P_{2} \cdot \eta_{oun} \cdot \eta_{n\kappa}; P_{3} = 2,\!748 \cdot 0,\!93 \cdot 0,\!99 = 2,\!53\,\mathrm{kBt}. \end{split}$$

Определение вращающих моментов передаваемых на валы[1, с. 52]:

$$T_i = 9550 \frac{P_i}{n_i};$$
 $T_{90} = 9550 \cdot \frac{3,19}{1410} = 21,606 \text{ H·m};$
 $T_1 = 9550 \cdot \frac{3,158}{1410} = 21,398 \text{ H·m};$
 $T_2 = 9550 \cdot \frac{2,748}{70,5} = 372,247 \text{ H·m};$
 $T_3 = 9550 \cdot \frac{2,53}{25} = 966,46 \text{ H·m}.$

Результаты расчета представлены в таблице 18

Таблица 18

Силовые и кинематические параметры привода

Номер вала	Частота вра- щения, об/мин	Мощность, кВт	Крутящий мо- мент, Н·м
Электродвигатель	1410	3,19	21,606
1	1410	3,158	21,398
2	70,5	2,748	372,247
3	25	2,53	966,46

4.3 Выбор редуктора

Передаточное число редуктора: $u_{peg}=20$.

Расчетный крутящий момент на выходном валу редуктора определяем по формуле (2):

 $T_{BbIX.PACY} = T_{BbIX.TPEB.} \cdot K_{yp},$

где $T_{BЫX.TPEБ.}$ – требуемый крутящий момент на выходном валу редуктора, $T_{BЫX.TPEБ.}$ = T_2 =372,247 Н·м;

 $K_{\text{ур}}$ – коэффициент условия работы, определяемый по формуле (4),

 $K_{VP} = K_1 \cdot K_2 \cdot K_3 \cdot K_{\Pi B} \cdot K_{PEB} \cdot K_{V},$

Из таблиц 1, 2, 3, 4 находим значения: K_1 =1,2; K_2 =1,12; K_3 =1,1; $K_{\Pi B}$ =1,0; K_{PEB} =1 (передача нереверсивная); K_4 =1 (червяк расположен под колесом).

 $K_{VP} = 1, 2 \cdot 1, 12 \cdot 1, 1 \cdot 1 \cdot 1 \cdot 1 = 1,478$

 $T_{BHX,PACY} = 372,247 \cdot 1,478 = 550,181 \text{ H·m}.$

Из каталога выбираем стандартный червячный редуктор из условия (7):

 $T_{BUX.HOM.} \geq T_{BUX.PACY}$

где $T_{\rm BЫX.HOM}$ - номинальный крутящий момент из таблицы 19 червячного редуктора (частота вращения входного вала до 1500 об/мин, передаточное число 20), $T_{\rm BЫX.HOM}$ =650 $H\cdot M \ge T_{\rm BЫX.PAC4}$ =550,181 $H\cdot M$.

Принимаем редуктор: Pedykmop Y-125M-20-52-1-2-ЦЦ В УЗ <math>TУ2-056178-83.

Выполняем проверку правильности выбора редуктора по консольным радиальным нагрузкам на входном и выходном валах редуктора (10), (11):

 $F_{BUX.HOM} \ge F_{BUX.PACY.}$

 $F_{BX.HOM} \ge F_{BX.PACY.}$

где $F_{BЫX.HOM}$, $F_{BX.HOM}$ — номинальные радиальные консольные нагрузки из таблицы 20, для редуктора Ч-125: $F_{BЫX.HOM}$ =8000 H, $F_{BX.HOM}$ =1200 H;

 $F_{\text{ВЫХ.РАСЧ.}}$ – расчетные радиальные консольные нагрузки на выходном и входном валах редуктора соответственно (8), (9):

 $F_{BbIX.PACY.} = F_{BbIX.TPEb.} \cdot K_{yp}$

 $F_{BX.PACY.} = F_{BX.TPEB.} \cdot K_{yp}$

где $F_{BMX,TPEE}$, $F_{BX,TPEE}$ – требуемые радиальные консольные нагрузки на выходном и входном валах редуктора соответственно,

 $F_{BMX.TPEB.} = F_{OII.}$

где $F_{O\!\Pi}$ — консольная нагрузка от открытой цепной передачи, $F_{O\!\Pi} = 5048,24~H.$

 $F_{BX.PACY.} = F_{M,}$

где F_M — консольная нагрузка от муфты, выбранной в зависимости от требуемого крутящего момента и диаметров валов, которых она соединяет, $F_M = \left(0.2...0.5\right) \cdot 2 \cdot \frac{T_1}{D_0} \ (D_0$ — диаметр муфты, $D_0 = 102 \, \mathrm{mm}$),

$$F_M = (0,2...0,5) \cdot 2 \cdot \frac{21,398}{0,102} = 83,9...209,7 \text{ H}.$$

 $F_{BbIX.HOM.}$ =8000 $H \ge F_{BbIX.PACY.}$ =5048,24·1,478=7461,3H

 $F_{BX.HOM.}$ =1200 $H \ge F_{BX.PACY.}$ =209,7·1,478=310H

Условия выполнены.

Проверку условия отсутствия перегрева не выполняем, т.к. термическая мощность для данного типа редуктора не лимитируется.

Таблица 19 Технические характеристики редукторов Ч-40М...160М

	n_1	n_2		Ч-4	0M		Ч-50)M		Ч-6	3M		Ч-80	0M	ч	[-100]	М	ų	[-125]	М	ų	I-160I	М
u_{peo}			P_1	T_2	n	P_1	T_2	ŋ	P_1	T_2	n	P_1	T_2	η	P_1	T_2	η	P_1	T_2	n	P_1	T_2	n
	об/1	мин	кВт	Н∙м	''	кВт	Н∙м	"	кВт	Н·м	η	кВт	Н∙м		кВт	Н·м	"	кВт	Н·м	η	кВт	Н·м	η
6.3	1500	238	0.75	28	0.92	1.5	56	0.92	2.8	104	0.93	5.6	211	0.94	10.1	385	0.95	17.0	646	0.95	32.3	1243	0.96
0,3	1000	158,5	0.54	30	0.91	1.2	66	0.91	1.9	108	0.93	4.4	249	0.94	8.1	459	0.94	13.0	746	0.95	25.0	1441	0.96
	750	119	0.43	31	0.9	1.0	71	0.9	1.6	114	0.92	3.7	278	0.93	6.8	512	0.94	11.2	845	0.94	20.9	1590	0.95
8,0	1500	187,5	0.63	28	0.87	1.3	56	0.88	2.3	105	0.89	4.6	212	0.91	8.3	387	0.92	13.7	650	0.93	26.1	1250	0.94
0,0	1000	125	0.46	30	0.86	1.0	66	0.87	1.6	109	0.87	3.6	250	0.9	6.7	462	0.91	10.7	750	0.92	20.4	1450	0.93
	750	93,75	0.36	31	0.85	0.8	71	0.86	1.3	115	0.86	3.1	280	0.89	5.6	515	0.9	9.2	850	0.91	17.3	1600	0.91
10.0	1500	150	0.52	28	0.85	0.9	51	0.87	1.8	100	0.88	3.3	190	0.9	6.5	375	0.91	10.8	630	0.92	19.4	1150	0.93
10,0	1000	100	0.38	30	0.83	0.7	60	0.85	1.3	104	0.86	2.6	224	0.89	5.2	450	0.9	8.3	725	0.91	15.0	1320	0.92
	750	75	0.29	31	0.83	0.6	65	0.85	1.0	110	0.86	2.2	250	0.88	4.4	500	0.89	7.2	825	0.9	129.5	1500	0.91
12,5	1500	120	0.39	26	0.83	0.8	52	0.86	1.3	93	0.88	2.8	195	0.89	5.4	387	0.9	8.7	630	0.91	15.7	1150	0.92
12,3	1000	80	0.28	27	0.82	0.6	61	0.84	1.0	100	0.85	2.2	230	0.87	4.3	462	0.9	6.8	725	0.9	12.0	1320	0.92
	750	60	0.22	28	0.81	0.5	66	0.83	0.8	105	0.85	1.8	250	0.86	3.7	510	0.88	5.8	825	0.89	10.5	1500	0.9
16.0	1500	93,75	0.36	30	0.81	0.7	56	0.83	1.4	120	0.84	2.5	218	0.86	4.3	387	0.88	7.5	670	0.88	15.3	1400	0.9
10,0	1000	62,5	0.26	31	0.79	0.5	65	0.81	1.0	122	0.81	1.9	250	0.85	3.4	458	0.86	5.7	750	0.86	11.9	1600	0.88
	750	46,88	0.20	31	0.77	0.4	71	0.8	0.8	125	0.8	1.7	280	0.83	2.9	515	0.85	4.9	850	0.86	10.2	1800	0.87
20,0	1500	75	0.31	30	0.76	0.5	52	0.81	1.0	110	0.83	1.8	195	0.84	3.4	375	0.86	5.9	650	0.87	10.4	1150	0.87
20,0	1000	50	0.22	31	0.74	0.4	60	0.78	0.8	116	0.8	1.5	224	0.81	2.7	437	0.84	4.6	750	0.85	8.1	1320	0.85
	750	37,5	0.17	31	0.72	0.3	65	0.77	0.6	120	0.79	1.2	243	0.79	2.4	487	0.81	3.9	825	0.84	7.1	1500	0.84
25,0	1500	60	0.24	28	0.73	0.4	51	0.76	0.8	100	0.81	1.5	195	0.83	2.8	375	0.85	4.6	615	0.85	8.2	1120	0.86
	1000	40	0.17	29	0.71	0.3	59	0.73	0.6	105	0.77	1.2	224	0.79	2.2	437	0.83	3.5	700	0.83	6.6	1320	0.84

Продолжение таблииы 19

																poc	JOSH	ncc.	inc	ma	Oni	ıyoı	1)
	750	30	0.13	29	0.7	0.3	64	0.72	0.5	110	0.76	1.0	243	0.78	1.9	475	0.8	3.0	775	0.82	5.4	1400	0.83
21.5	1500	47,6	0.26	36	0.7	0.4	58	0.73	0.9	130	0.74	1.6	250	0.78	2.6	412	0.79	5.0	800	0.8	9.6	1600	0.83
31,5	1000	31,7	0.18	37	0.67	0.3	67	0.69	0.7	137	0.69	1.2	280	0.75	2.1	475	0.75	3.9	900	0.77	7.5	1800	0.8
	750	23,8	0.14	37	0.65	0.3	71	0.68	0.5	138	0.68	1.0	300	0.72	1.7	515	0.74	3.3	1000	0.75	6.3	2000	0.79
10.0	1500	37,5	0.21	33	0.63	0.3	56	0.69	0.7	120	0.73	1.1	195	0.73	2.0	387	0.75	3.5	690	0.78	6.2	1250	0.79
40,0	1000	25	0.15	34	0.6	0.3	65	0.66	0.5	122	0.68	0.8	218	0.71	1.6	437	0.72	2.7	775	0.74	5.0	1450	0.76
	750	18,75	0.12	34	0.58	0.2	68	0.65	0.4	124	0.67	0.7	230	0.67	1.3	475	0.7	2.3	850	0.72	4.3	1600	0.73
50.0	1500	30	0.16	31	0.6	0.3	54	0.62	0.6	120	0.68	0.9	206	0.71	1.6	387	0.74	2.7	650	0.75	5.0	1180	0.75
50,0	1000	20	0.12	32	0.57	0.2	60	0.61	0.4	125	0.64	0.7	230	0.66	1.3	437	0.71	2.1	725	0.72	3.8	1320	0.73
	750	15	0.09	32	0.54	0.2	65	0.61	0.3	130	0.64	0.6	243	0.65	1.1	475	0.69	1.8	800	0.7	3.2	1450	0.71
(2.0	1500	23,8	0.11	26	0.58	0.2	52	0.6	0.4	95	0.62	0.7	190	0.64	1.2	315	0.66	2.1	615	0.72	3.7	1090	0.74
63,0	1000	15,87	0.09	28	0.54	0.2	56	0.57	0.3	100	0.61	0.6	212	0.62	0.9	345	0.63	1.7	700	0.69	2.9	1250	0.71
	750	11,9	0.07	28	0.52	0.1	61	0.58	0.2	102	0.6	0.5	224	0.6	0.8	375	0.6	1.4	750	0.66	2.4	1320	0.69
00.0	1500	18,75	-	-	-	0.2	51	0.58	0.3	83	0.6	0.6	175	0.6	0.9	300	0.64	1.6	530	0.67	3.1	1090	0.69
80,0	1000	12,5	-	-	-	0.1	56	0.57	0.2	85	0.57	0.4	190	0.58	0.7	335	0.6	1.2	600	0.64	2.4	1250	0.67
	750	9,37	-	-	-	0.1	57	0.55	0.2	90	0.56	0.4	200	0.57	0.6	350	0.58	1.0	650	0.62	2.0	1320	0.64

Технические характеристики редукторов Ч-200М...500М

	n_1	n_2		Ч-20	0M		Ч-250	M	. 🗔	Ч-320	M		Ч-400	M		Ч-500	M
u_{peo}			P_1	T_2		P_1	T_2		P_1	T_2		P_1	T_2		P_1	T_2	
	об/1	мин	кВт	Н·м	η	кВт	Н∙м	η	кВт	Н∙м	η	кВт	Н·м	η	кВт	Н·м	η
	1500	238	45.0	1706	0.95	67.5	2627	0.97	98.4	3809	0.97	137.8	5332	0.97	185.4	7176	0.97
6,3	1000	158,5	34.8	1978	0.95	52.8	3047	0.96	76.9	4418	0.96	106.6	6186	0.97	145.3	8351	0.97
	750	119	28.8	2183	0.95	43.7	3362	0.96	63.6	4876	0.96	89.1	6826	0.96	120.3	9214	0.96
0.0	1500	187,5	43.3	2063	0.94	65.6	3176	0.95	95.7	4606	0.95	132.6	6448	0.96	179.0	8705	0.96
8,0	1000	125	33.9	2393	0.93	51.3	3684	0.94	74.8	5342	0.94	103.6	7479	0.95	138.4	10097	0.96
	750	93,75	28.3	2640	0.92	42.5	4066	0.94	61.9	5895	0.94	86.6	8253	0.94	115.7	11142	0.95
10.0	1500	150	32.2	1898	0.93	48.8	2922	0.94	71.2	4237	0.94	98.6	5932	0.95	133.1	8008	0.95
10,0	1000	100	24.9	2178	0.92	37.8	3354	0.93	55.1	4863	0.93	76.3	6809	0.94	102.9	9192	0.94
	750	75	21.5	2475	0.91	32.5	3812	0.92	47.4	5527	0.92	65.7	7737	0.93	88.7	10445	0.93
12.5	1500	120	26.1	1850	0.92	39.5	2912	0.93	57.6	4147	0.93	79.7	5882	0.94	106.5	7918	0.95
12,5	1000	80	20.2	2150	0.91	30.5	3256	0.92	44.5	4765	0.92	61.7	6759	0.93	83.2	9090	0.93
	750	60	17.4	2470	0.90	26.3	3750	0.91	38.4	5487	0.91	53.1	7687	0.92	71.7	10140	0.92
16.0	1500	93,75	25.1	2310	0.91	38.0	3557	0.92	55.3	5158	0.92	76.6	7222	0.93	102.4	9749	0.94
10,0	1000	62,5	19.3	2640	0.90	29.2	4066	1.91	42.6	5895	0.91	59.0	8253	0.92	78.8	11142	0.93
	750	46,88	16.5	2970	0.89	24.9	4574	0.90	36.4	6632	0.90	50.3	9285	0.91	67.2	12534	0.92
20,0	1500	75	16.5	1910	0.91	25.2	2920	0.91	36.8	4290	0.91	50.9	5952	0.92	68.0	8100	0.93
20,0	1000	50	12.9	2190	0.89	19.5	3385	0.90	28.1	4885	0.91	39.4	6859	0.91	52.6	9202	0.92
	750	37,5	11.0	2480	0.88	16.8	3862	0.89	24.2	5587	0.90	33.9	7789	0.90	45.3	10645	0.91
25,0	1500	60	13.0	1848	0.90	20.1	2846	0.89	28.6	4127	0.91	40.1	5777	0.91	53.5	7799	0.92
23,0	1000	40	10.4	2178	0.88	15.8	3354	0.89	23.0	4863	0.89	31.9	6809	0.90	42.5	9192	0.91
	750	30	8.5	2310	0.86	12.8	3557	0.87	18.5	5158	0.88	25.6	7222	0.89	34.2	9749	0.90

Продолжение таблицы 19

												Pool	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			sivily	,, ,
31,5	1500	47,6	15.2	2640	0.87	22.8	4066	0.89	32.8	5895	0.90	45.5	8253	0.91	61.4	11142	0.91
	1000	31,7	11.7	2970	0.85	17.5	4574	0.87	25.2	6632	0.88	34.5	9285	0.90	46.5	12534	0.90
	750	23,8	10.0	3300	0.83	14.9	5082	0.85	21.5	7369	0.86	29.7	10316	0.87	39.7	13927	0.88
40.0	1500	37,5	9.6	2063	0.85	14.3	3176	0.87	20.7	4606	0.88	28.6	6448	0.89	38.2	8705	0.90
40,0	1000	25	7.6	2393	0.83	11.4	3684	0.85	16.4	5342	0.86	22.6	7479	0.87	29.9	10097	0.89
	750	18,75	6.4	2640	0.81	9.6	4066	0.83	13.9	5895	0.84	19.2	8253	0.85	25.0	11142	0.88
50.0	1500	30	7.4	1947	0.83	11.1	2998	0.85	16.0	4348	0.86	22.1	6087	0.87	29.5	8217	0.88
50,0	1000	20	5.7	2178	0.81	8.6	3354	0.82	12.3	4863	0.83	16.9	6809	0.85	22.5	9192	0.86
	750	15	4.7	2393	0.80	7.1	3684	0.81	10.3	5342	0.82	14.2	7479	0.83	18.8	10097	0.85
(2.0	1500	23,8	5.5	1799	0.82	8.3	2770	0.83	11.8	4016	0.85	16.4	5622	0.86	21.9	7590	0.87
63,0	1000	15,87	4.4	2063	0.79	6.6	3176	0.80	9.4	4606	0.82	13.0	6448	0.83	17.3	8705	0.84
	750	11,9	3.7	2178	0.73	5.4	3354	0.78	7.6	4863	0.80	10.5	6809	0.81	14.1	9192	0.82
00.0	1500	18,75	4.8	1799	0.74	6.9	2770	0.79	9.6	4016	0.83	13.2	5622	0.84	17.4	7590	0.86
80,0	1000	12,5	3.8	2063	0.72	5.5	3176	0.75	7.8	4606	0.78	10.6	6448	0.80	13.8	8705	0.83
	750	9,37	3.1	2178	0.70	4.5	3354	0.73	6.3	4863	0.76	8.6	6809	0.78	11.2	9192	0.81

^{*}Технические характеристики на другие типоразмеры редуктора представлены в [4].

Примечания:

- редукторы с $u_{peo} \ge 50$ целесообразно применять при переменных режимах работы;
- редукторы типа Ч имеют воздушное охлаждение. На червячном валу установлен вентилятор для охлаждения корпуса редуктора;
- для исполнения по варианту расположения червячной пары 2 допустимый крутящий момент должен быть снижен на 20%;
- в непрерывном режиме работы редукторы с передаточным числом больше 50 применять не рекомендуется.

Габаритные и присоединительные размеры червячных редукторов типа приведены на рис. 7, 8, 9 и в табл. 21,22,23.

Номинальные вращающие моменты на выходном валу редуктора и радиальные силы на концы входных и выходных валов приведены в табл. 20.

Таблица 20

			A011	y cirac	MIDIC	ладиа	IDIIDI	CIOII	COMPI	DIC III	ու թյու	711	
]	Показатель	H-40M	4-50M	Ч-63М	H-80M	H-100M	H -125M	Ч-160 M	ч-200М	ч-250М	ч-320М	H -400M	H-500M
	$F_{BX.HOM}$, H	300	400	500	800	1000	1400	1900	2300	3200	4000	5000	5500
	$F_{BUX.HOM}$, H	1500	1900	2850	4000	5000	7000	10000	13500	16000	22000	27000	36000

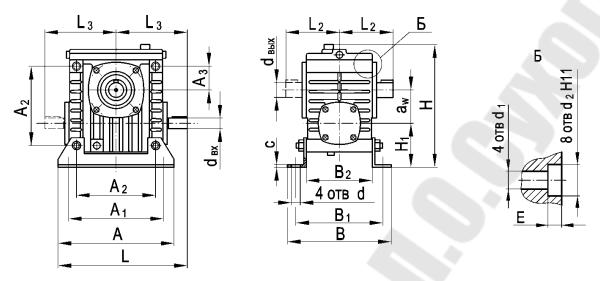
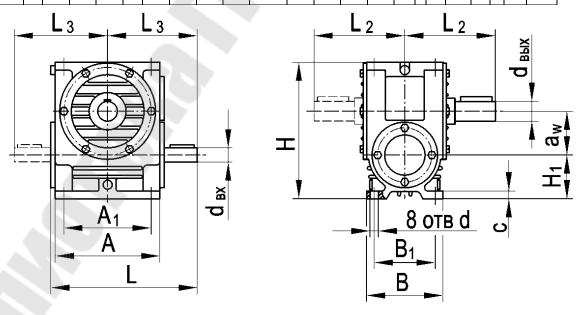
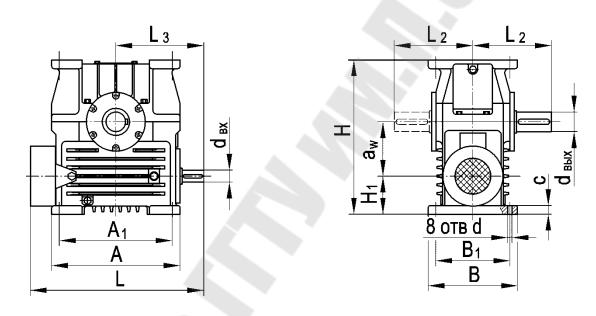



Рис. 12 Редукторы на лапах Ч-40М, -63М, -80М

Таблица 21 Габаритные и присоединительные размеры редукторов Ч-40М, -63М, -80М


Типораз- мер	a _w	A	$\mathbf{A_1}$	\mathbf{A}_2	A ₃	В	B ₁	B ₂	L	L _{1max}	L_2	L_3	L_4	Н	\mathbf{H}_1	c	d	d ₁	\mathbf{d}_2	E	d _{BX}	$\mathbf{d}_{\scriptscriptstyle{\mathbf{B}\mathbf{b}\mathbf{I}\mathbf{X}}}$
Ч-40М	40	180	150	105	30	164	140	100	190	561	90	100	143	180	72	4	13	10,5	16	8	16	18
Ч-63М	63	220	180	150	45	197	165	125	245	624	100	135	190	232	82	5	13	10,5	16	8	22	28
Ч-80М	80	260	225	180	50	212	185	140	290	688	125	160	230	267	92	5	15	12,5	18	8	25	35

Puc. 13 Редукторы на лапах Ч-50M, -100M, -125M,-160M

Таблица 22 Габаритные и присоединительные размеры редукторов Ч-50М,-100М, -125М,-160М

Типо- размер	a _w	A	\mathbf{A}_1	В	B ₁	L	L _{1ma}	L ₂	L ₃	L_4	Н	H_1	c	d	d _{BX}	d _{вы}
Ч-50М	50	135	110	135	110	20	540	110	115	165	174	40	12	10	16	25
Ч-100М	100	240	200	175	140	37	758	225	225	285	312	100	18	19	32	45
Ч-125М	125	275	230	230	190	43	103	230	261	346	396	111	22	19	32	55
Ч-160М	160	350	300	280	230	55	113	280	345	460	500	140	30	22	40	70

Puc. 14 Редукторы на лапах Ч-200M, -250M, -320M,-400M, -500M

Таблица 23 Габаритные и присоединительные размеры редукторов Ч-200М, - 250М, -320М, -400М, -500М

Типораз- мер	a _w	A	$\mathbf{A_1}$	В	B ₁	L	L _{1max}	L ₂	L ₃	Н	H_1	c	d	d _{BX}	d _{вых}
Ч-200М	200	475	420	330	275	674	1110	340	355	595	160	32	24	45	80
Ч-250М	250	590	520	410	340	825	1300	365	415	710	175	40	28	55	90
Ч-320М	320	695	560	485	405	1045	1665	460	520	890	215	65	34	70	120
Ч-400М	400	940	840	600	500	1270	1785	580	575	1100	260	70	39	90	160
Ч-500М	500	1160	1020	700	600	1394	1945	635	795	1288	265	90	45	100	180

5.ВЫБОР КОНИЧЕСКОГО РЕДУКТОРА

Конические редуктора применяются для передачи движениия и крутящего момента под углом 90^{0} . В редукторах конические колеса могут выполняться с прямыми, тангенциальными и круговыми зубьями. Редуктора с прямозубыми колесами применяются при окружных скоростях до 3 м/с, с тангенциальными зубьями до 12м/с, с круговыми зубьями — до 12 м/с. При повышении окружной скорости передачи, необходимо более точное изготовление колес.

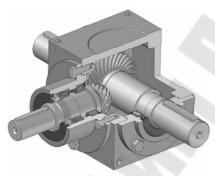


Рис.15 Конический редуктор

Конический редуктор выбирают по отношению $\frac{P}{n_{\tau}}$. Это соот-

ношение рассчитывается по поверхностной прочности зубьев и по напряжениям изгиба зубьев шестерни при передаче равномерной реверсивно действующей нагрузки.

Редукторы выполняются двух типов: узкого и широкого. Отличаются друг от друга шириной колес, узкий тип применяют для передаточных чисел от 3 до 5, а широкий тип от 1 до 2, 5.

5.1. Исходные данные для выбора редуктора Кинематическая схема:

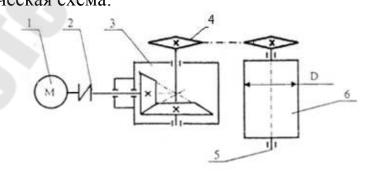


Рис. 16 Кинематическая схема привода ленточного транспортера 1 — электродвигатель, 2 — муфта, 3 — конический редуктор, 4 — открытая цепная передача, 5 — приводной вал, 6 — барабан

Частота вращения приводного вала n=50 об\мин Мощность приводного вала P=3,5 кВт Срок службы привода t=20000 час

5.2. Энергетический и кинематический расчет привода

Энергетический и кинематический расчет привода выполняется в соответствии с рекомендациями [1] в следующей последовательности:

5.2.1. Определение расчетной мощности привода.

Расчетная мощность привода определяется по формуле 6.1. стр.49 [1]:

$$P_{9\partial} = \frac{P}{\eta_{oou}},$$

где P — мощность на приводном валу, кВт;

 $\eta_{oбu}$ – общий кпд привода:

$$\eta_{o \delta u i} = \eta_{\scriptscriptstyle M} \cdot \eta_{\scriptscriptstyle pe \partial} \cdot \eta_{\scriptscriptstyle on} \cdot \eta_{\scriptscriptstyle nn}$$
 ,

где η_{ped} — кпд конического редуктора, принимаем по рекомендации стр.8 для конических одноступенчатых редукторов;

 $\eta_{\scriptscriptstyle M}$ – кпд муфты, принимаем по рекомендации ([1] с.140, т.П2.1.);

 η_{on} – кпд открытой передачи (в данном случае цепной) по рекомендации ([1] с.140, т.П2.1.);

 η_{nn} – кпд пары подшипников ([1] с.140, т.П2.1.),

$$\eta_{obu} = 099 \cdot 0.98 \cdot 0.92 \cdot 0.995 = 0.888 ,$$

$$P_{90} = \frac{3.5}{0.888} = 3.94 \kappa Bm.$$

5.2.2. Выбор электродвигателя

Электродвигатель выбирается исходя из двух условий:

$$n_{{\scriptscriptstyle \ni\partial.ma6\pi}} \approx n_{{\scriptscriptstyle \ni\partial.mp}}$$
 ,

$$P_{\ni \partial.maб\pi} \ge P_{\ni \partial.mp}$$
.

Определим требуемую частоту вращения электродвигателя:

$$n_{\mathfrak{d}.mp} = n \cdot u_{\mathfrak{o}\mathfrak{o}\mathfrak{u}},$$

где $u_{\text{общ}}$ – общее передаточное число привода ([1] с.141, т.П2.3.)

$$u_{oби \psi} = u_{ped} \cdot u_{on} = 4 \cdot 2 = 8,$$

$$n_{9\partial,mp} = 50 \cdot 8 = 400 o \delta /$$
 мин.

По таблице П.2.2 с.140 [1] выбираем электродвигатель по частоте вращения $n_{9\partial maбn} = 750$ об/мин, мощность $P_{9\partial maбn} = 4.0$ кВт, что соответствует двигателю AИР132S8. Характеристики электродвигателя приведены в таблице 24.

Таблица 24

Характеристика электродвигателя

Обозначение элек-	Номинальная	Частота	T_{mon}	T	$d_{\partial \partial}$
тродвигателя	мощность, кВт	вращения, об/мин	T_{hom}	T_{hom}	мм
АИР132S8	4,0	719,25	1,8	2,2	38

5.2.3. Определение общего передаточного числа привода

$$u_{oби} = \frac{n_{30}}{n} = \frac{719,25}{50} = 14,38;$$

$$u_{on} = \frac{u_{o\delta uq}}{u_{peo}} = \frac{14,38}{4} = 3,59.$$

5.2.4 Силовые и кинематические параметры привода

Определение частот вращения валов привода:

$$n_{9\partial} = 719,25$$
 об/мин;

$$n_1 = n_{2\partial}$$
; $n_1 = 719,25$ об/мин;

$$n_2 = \frac{n_1}{u_{ped}}$$
; $n_2 = \frac{719,25}{4} = 179,81$ об/мин;

$$n_3 = \frac{n_2}{u_{on}}$$
; $n_3 = \frac{179,81}{3,59} = 50,08$ об/мин.

Определение мощностей, передаваемых на валы привода:

$$P_{30} = 3,94 \, \text{kBT};$$

$$P_1 = P_{30} \cdot \eta_M$$
; $P_1 = 3.94 \cdot 0.99 = 3.9 \text{ kBT}$;

$$P_2 = P_1 \cdot \eta_{ped}$$
; $P_2 = 3.9 \cdot 0.98 = 3.82 \text{ kBT}$;

$$P_3 = P_2 \cdot \eta_{on} \cdot \eta_{nn}$$
; $P_3 = 3.828 \cdot 0.92 \cdot 0.99 = 3.49 \text{ kBt}$.

Определение моментов, передаваемых на валы привода:

$$T_i = 9550 \frac{P_i}{n_i};$$

$$\begin{split} T_{9\partial} &= 9550 \cdot \frac{3,94}{719,25} = 52,31 \text{ H·m;} \\ T_1 &= 9550 \cdot \frac{3,9}{719,25} = 51,78 \text{ H·m;} \\ T_2 &= 9550 \cdot \frac{3,82}{179,81} = 202,88 \text{ H·m;} \\ T_3 &= 9550 \cdot \frac{3,49}{50,08} = 665,52 \text{ H·m.} \end{split}$$

Таблица 25

Силовые и кинематические параметры привода

Номер вала	Частота вра- щения, об/мин	Мощность, кВт	Крутящий мо- мент,Н∙м
Электродвигатель	719,25	3,94	52,31
1	719,25	3,9	51,78
2	179,81	3,82	202,88
3	50,08	3,49	665,52

5.3 Выбор редуктора

Конический редуктор выбираем по наибольшему крутящему моменту на тихоходном валу. Определим соотношение $\left(\frac{P}{n_{\tau}}\right)_{n}$

по поверхностной прочности зубьев:

$$\left(\frac{P}{n_{\tau}}\right)_{p} = \frac{T_{2} \cdot K_{1}}{9740 \cdot K_{2}} = \frac{202,88 \cdot 1}{976 \cdot 1,2} = 0,0173$$

где T_2 - момент на тихоходном валу редуктора, H м;

 K_{I} - коэффициент, учитывающий характер нагрузки (табл. 26);

 K_2 - коэффициент, учитывающий продолжительность работы редуктора, определяемый по графику (рис. 17). по изгибу зубьев:

$$\left(\frac{P}{n_{\tau}}\right)_{p} = \frac{T_{2} \cdot K_{1}}{9740 \cdot K_{2}} = \frac{202,88 \cdot 1}{976 \cdot 1,1} = 0,0189$$

При этом должно выполняться условие:

$$\left(\frac{P}{n_{\tau}}\right)_{p} \leq \frac{P}{n_{\tau}},$$

где $\frac{P}{n_{\tau}}$ — значение, взятое по таблице 27 или 28.

Значение коэффициента K_2 определяется по поверхностной прочности и по прочности зубьев на изгиб в зависимости от общего срока службы редуктора t. Если значение t выходит за пределы графика, то в расчет принимается соответствующее предельное значение K_2 .

При известных значениях K_1 и K_2 определяется $\left(\frac{P}{n_{ au}}\right)_p$, учитывая

передаточное число u=4 и частоту вращения тихоходного вала $n_2=179,81$ об/мин по таблицы 27 или 28 находим значения, близкие к расчетным:

по поверхностной прочности

$$\left(\frac{P}{n_{\tau}}\right)_{p} = 0.029$$

по изгибу зубьев

$$\left(\frac{P}{n_{\tau}}\right)_{p} = 0.041$$

Расчетные значения $\left(\frac{P}{n_{\tau}}\right)_p$ как по поверхностной прочности

зубьев, так и по изгибу должны быть ниже допускаемых.

Эти значения соответствуют коническому редуктору узкого типа с $R_e = 220$ мм (таблица 27). По таблице 29 определяем габаритные размеры конического редуктора.

Продолжительность работы редуктора Т, ч
Рис.17 График для определения коэффициента продолжительности работы редуктора

Таблица 26 Значение коэффициента К в зависимости от нагрузки

Нагрузка	К
Спокойная	1,00
С умеренными толчками	1,25
С сильными толчками	1.75

Таблица 27 Редукторы конические узкого типа

		u=3,15		u=4		u=5	
				P/n_{τ}			
Re , мм	п,об/мин	по поверхностной прочности	по изгибу зубьев	по поверхностной прочности	по изгибу зубьев	по поверхностной прочности	по изгибу зубьев
	250	0,046	0,065	0,029	0,041	0,021	0,029
220	400	0,04	0,056	0,026	0,037	0,018	0,026
	500	0,037	0,051	0,024	0,033	0,016	0,024
	200	0,096	0,131	0,058	0,104	0,054	0,082
250	300	0,085	0,115	0,06	0,091	0,047	0,073
	400	0,077	0,104	0,054	0,083	0,043	0,066
	150	0,186	0,272	0,133	0,202	0,099	0,14
300	250	0,162	0,242	0,118	0,178	0,088	0,123
	300	0,147	0,217	0,107	0,162	0,079	0,112
2	125	0,376	0,507	0,294	0,423	0,239	0,349
400	200	0,307	0,445	0,249	0,372	0,21	0,307
	250	0,276	0,404	0,235	0,338	0,191	0,279

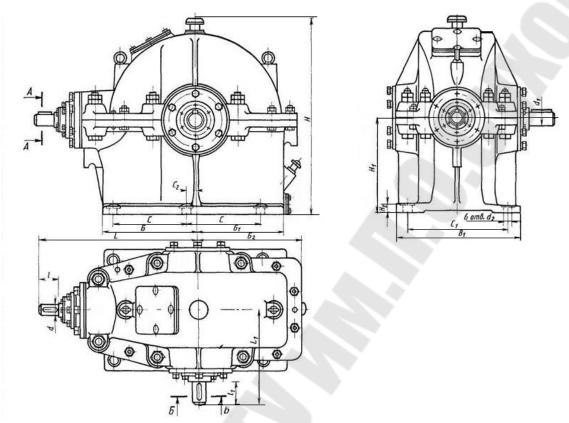


Рис.18 Редуктор конический одноступенчатый узкого типа

Таблица 28

Редукторы конические широкого типа

		Редуктор	ы кони	іческие широк	сого тиг	ıa	
		u=1		u=1,6		u=2,5	
	п,об/мин			$P/n_{ au}$			
Re , мм		по поверхностной прочности	по изгибу зубьев	по поверхностной прочности	по изгибу зубьев	по поверхностной прочности	по изгибу зубьев
	400	0,025	0,046	0,025	0,042	0,019	0,029
150	600	0,024	0,044	0,024	0,04	0,018	0,029
150	800	0,023	0,042	0,023	0,038	0,018	0,026
	1000	0,021	0,04	0,021	0,036	0	0
	300	0,059	0,105	0,063	0,098	0,05	0,073
200	500	0,057	0,096	0,06	0,093	0,048	0,07
200	600	0,054	0,09	0,057	0,089	0,046	0,066
	800	0,051	0,21	0,054	0,085	0	0
	250	0,123	0,201	0,138	0,21	0,109	0,146
250	400	0,118	0,191	0,132	0,201	0,104	0,139
230	500	0,112	0,182	0,125	0,191	0,099	0,132
	800	0,106		0,119	0,182	0	0

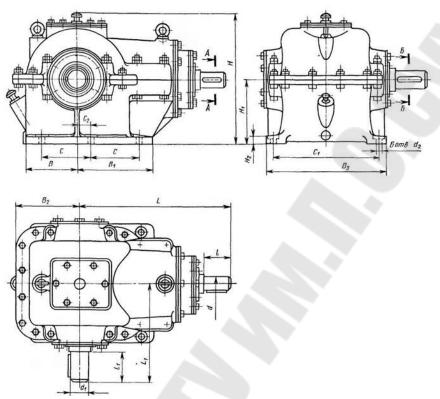


Рис.19 Редуктор конический одноступенчатый широкого типа

Таблица 29 Габаритные размеры конических редукторов узкого типа

R _e	Б	Б ₁	Б ₂	\mathbf{B}_1	Н	\mathbf{H}_{1}	H ₂	l	l_1	d	\mathbf{d}_1	$\mathbf{d_2}$
200	305	215	260	400	545	250	25	580	320	40	50	23
250	350	270	330	440	648	300	25	680	370	50	60	23
300	450	330	390	500	758	350	30	810	430	60	80	27
400	605	435	500	600	993	480	35	1060	520	80	100	34
$L_{\mathbf{b}}$	l	l_1	C	C_1	$\mathbf{C_2}$	В	B ₁	t	$\mathbf{t_1}$	t_2	t_3	
80	80	200	330	50	12	12	16	3505	43,5	45	55	
80	110	250	370	50	16	16	18	45	55	54,5	65	
110	140	320	420	60	18	18	24	54,5	65,5	73	87	
140	170	450	520	85	24	24	28	73	87	92	108	

Таблица 30 Габаритные размеры конических редукторов широкого типа

R_{e}	Б	Б1	Б2	\mathbf{B}_1	H	H_1	H_2	l	l_1	d	$\mathbf{d_1}$	$\mathbf{d_2}$
150	165	260	210	480	460	250	25	580	360	50	50	23
200	220	340	275	580	570	300	25	710	450	60	60	23
250	275	450	330	700	380	350	30	310	540	80	80	27
300	330	500	400	850	800	420	35	1050	640	100	100	34
$L_{\mathbf{b}}$	l	l_1	C	C_1	$\mathbf{C_2}$	В	B ₁	t	t_1	t_2	t_3	
1250	80	80	160	400	50	16	16	45	55	45	55	
200	110	110	230	500	60	18	18	51,5	65,5	51,5	65,5	
250	140	140	300	630	85	24	24	73	87	73	87	
300	170	170	350	760	85	28	28	92	108	92	108	

6. ВЫБОР КОНИЧЕСКО-ЦИЛИНДРИЧЕСКОГО РЕДУКТОРА

Коническо-цилиндрические редукторы общемашиностроительного назначения применяются в приводах различных машин и механизмов для изменения крутящих моментов и частоты вращения. Типоразмеры коническо-цилиндрических редукторов КЦ1-200МРЗ, КЦ1-250МРЗ, КЦ1-300МРЗ, КЦ1-400, КЦ1-500. Условия экспуатации до 24 часов в сутки, работа в непрерывном режиме или при переменных нагрузках с периодическими остановками, нагрузка реверсивная и нереверсивная, неагрессивная среда, климатическое исполнение У1,У2, У3,УХЛ-4, Т1,Т2,Т3,Т4.

Рис. 20 Редуктор коническо-цилиндрический

Пример условного обозначения:

Редуктор КЦ1-200-МР3-и-М-У1,

где КЦ1- редуктор коническо-цилиндрический двухступенчатый,

200- межосевое расстояние, мм,

МРЗ- наименование завода изготовителя,

и- передаточное число редуктора,

М- конец выходного вала в виде части зубчатой муфты,

У1-климатическое исполнение и категория размещения.

6.1. Исходные данные для выбора редуктора

Кинематическая схема

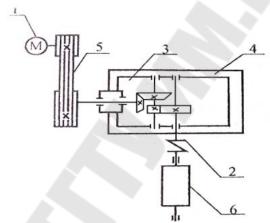


Рис. 21 – Кинематическая схема привода ленточного конвейера
 1 – электродвигатель, 2 – муфта, 3 – коническо-цилиндрический редуктор, 4 – рама, 5 – открытая клиноременная передача, 6 – барабан

Частота вращения приводного вала n=30 об\мин Мощность приводного вала P=5 кВт Срок службы привода t=20000 час

6.2. Энергетический и кинематический расчет привода

Энергетический и кинематический расчет привода выполняется в соответствии с рекомендациями [1] в следующей последовательности:

6.2.1 Определение расчетной мощности привода

Расчетная мощность привода определяется по формуле 6.1. стр.49 [1]:

$$P_{\ni \partial} = \frac{P}{\eta_{oou}},$$

где Р- мощность на приводном валу, кВт;

 $\eta_{o \delta u l}$ - общий кпд привода:

$$\eta_{o \delta u u} = \eta_{\scriptscriptstyle M} \cdot \eta_{\scriptscriptstyle ped} \cdot \eta_{\scriptscriptstyle on} \cdot \eta_{\scriptscriptstyle n\kappa}$$
 ,

где η_{ped} - кпд конического-цилиндрического редуктора, принимаем по рекомендации стр.8 для коническо-цилиндрических редукторов,

 $\eta_{\text{м}}$ - кпд муфты, принимаем по рекомендации ([1] с.140, т.П2.1.)

 η_{on} - кпд открытой передачи (в данном случае ременной) по рекомендации ([1] с.140, т.П2.1.)

 η_{nn} -кпд пары подшипников ([1] с.140, т.П2.1.)

$$\eta_{obu} = 0.93 \cdot 0.97 \cdot 0.99 \cdot 0.995 = 0.888;$$

$$P_{9\partial} = \frac{5}{0.888} = 5.63 \text{ KBT}.$$

6.2.2 Выбор электродвигателя

Электродвигатель выбирается исходя из двух условий:

$$n_{\ni\partial.ma\delta n} \approx n_{\ni\partial.mp}$$
,

$$P_{\ni \partial.maб\pi} \ge P_{\ni \partial.mp}$$
.

Определим требуемую частоту вращения электродвигателя:

$$n_{\ni \partial.mp} = n \cdot u_{o \delta u \mu}$$
,

где $u_{oбщ}$ – общее передаточное число привода ([1] с.141, т.П2.3.)

$$u_{o \delta u u} = u_{p e \partial} \cdot u_{o n} = 10 \cdot 2 = 20,$$

$$n_{9\partial,mp} = 30 \cdot 20 = 60006 / \text{мин}.$$

По таблице П.2.2 с.140 [1] выбираем электродвигатель по частоте вращения $n_{\it 90\ maбn}$ =750 об/мин, мощность $P_{\it 90\ maбn}$ =5,5 кВт, что соответствует двигателю АИР132М8. Для предотвращения выхода двигателя из строя, его перегрузка не должна превышать 5%:

$$\Delta P = \frac{P_{\rm 30} - P_{\rm HOM}}{P_{\rm HOM}} \cdot 100\% = \frac{5,63 - 5,0}{5,0} \cdot 100\% = 12,6\%,$$

что превышает 5%, следовательно принимаем электродвигатель AИР 160S8 с мощностью $P_{\text{ном}}$ =7,5 кВт. Характеристики электродвигателя приведены в таблице 31.

Характеристика электродвигателя

Обозначение	Номинальная	Частота вра-	T_{max}	T	d эд,
электродвигателя	мощность, кВт	щения, об/мин	$\frac{T_{nyck}}{T_{hom}}$	$T_{_{HOM}}$	MM
АИР160S8	7,5	731	1.4	2,2	48

6.2.3 Определение общего передаточного числа привода

$$u_{oби} = \frac{n_{90}}{n} = \frac{731}{30} = 24,36;$$

$$u_{on} = \frac{u_{o\delta uq}}{u_{ped}} = \frac{24,36}{10} = 2,436.$$

6.2.4 Силовые и кинематические параметры приводы Определение частот вращения валов привода:

$$n_{3\partial} = 731$$
 об/мин;

$$n_1 = \frac{n_{9\partial}}{u_{on}}$$
; $n_1 = \frac{731}{2,436} = 300,82$ об/мин;

$$n_2 = \frac{n_1}{u_{ped}}$$
; $n_2 = \frac{300,82}{10} = 30,082$ об/мин;

$$n_3 = n_2$$
; $n_3 = 30,082$ об/мин.

Определение мощностей, передаваемых на валы привода:

$$P_{9\partial} = 5,63 \, \text{KBT};$$

$$P_1 = P_{ad} \cdot \eta_{on}$$
; $P_1 = 5.63 \cdot 0.93 = 5.23 \text{ kBT}$;

$$P_2 = P_1 \cdot \eta_{ped}$$
; $P_2 = 5.23 \cdot 0.97 = 50.7 \text{ kBT}$;

$$P_3 = P_2 \cdot \eta_M \cdot \eta_{nn}$$
; $P_3 = 5.07 \cdot 0.99 \cdot 0.995 = 5.002 \text{ kBt}$.

Определение моментов, передаваемых на валы привода:

$$T_i = 9550 \frac{P_i}{n_i};$$

$$T_{90} = 9550 \cdot \frac{5,63}{731} = 73,55 \text{ H} \cdot \text{m};$$

$$T_1 = 9550 \cdot \frac{5,23}{300,82} = 166,03 \,\mathrm{H\cdot m};$$

$$T_2 = 9550 \cdot \frac{5,07}{30,08} = 1609,65 \text{ H} \cdot \text{m};$$

 $T_3 = 9550 \cdot \frac{5,002}{30,08} = 1588,07 \text{ H} \cdot \text{m}.$

Таблица 32

Силовые и кинематические параметры привода

Номер вала	Частота вра- щения, об/мин	Мощность, кВт	Крутящий мо- мент, Н·м
Электродвигатель	731	5,63	73,55
1	300,82	5,23	166,03
2	30,08	5,07	1609,65
3	30,08	5,002	1588,07

6.3. Выбор редуктора

Определение коэффициента условий работы определяется по формуле (2):

$$K_{\mathit{VP}} = K_1 \cdot K_2 \cdot K_3 \cdot K_{\mathit{\PiB}} \cdot K_{\mathit{PEB}},$$

где K_I – коэффициент, учитывающий динамические характеристики двигателя; K_I =I,2 (по таблице 1);

 K_2 – коэффициент, учитывающий продолжительность работы в сутки; K_2 =1,12(по таблице 2);

 K_3 — коэффициент, учитывающий количество пусков в час; K_3 =1,1(по таблице 3);

 $K_{\Pi B}$ – коэффициент, учитывающий продолжительность включения (ПВ); $K_{\Pi B}$ =1,0(по таблице 4);

 K_{PEB} — коэффициент, учитывающий реверсивность редуктора; $K_{PEB} = I$ (передача нереверсивная).

$$K_{yp} = 1, 2 \cdot 1, 12 \cdot 1, 1 \cdot 1 \cdot 1 = 1,478.$$

Исходя из расчетного значения T_2 принимаем двухступенчатый коническо-цилиндрический редуктор KU1-400MP3 (таблица 33).

Номинальный крутящий момент для выбранного редуктора $T_{\text{ном}} = 5300~H\cdot \text{м}$. Так как $T_2\cdot K_{yp} = 1609.65\cdot 1,478 = 2379.06H\cdot \text{м} < T_{\text{ном}}$, то редуктор выбран верно.

Выполняем проверку правильности выбора редуктора по консольным радиальным нагрузкам на входном и выходном валах редуктора (10), (11):

 $F_{BLIX,HOM} \geq F_{BLIX,PACY}$

 $F_{BX,HOM} \ge F_{BX,PACY}$

где $F_{BЫX.HOM}$, $F_{BX.HOM}$. —номинальные радиальные консольные нагрузки из таблицы 33 двухступенчатого коническо-цилиндрического редуктора, для редуктора KU1-400MP3: $F_{BЫX.HOM}=18000~H$, $F_{BX.HOM}=1000H$;

Расчетные радиальные консольные нагрузки на выходном $F_{BMX,PACY}$ и входном валах $F_{BX,PACY}$ редуктора (8), (9):

$$F_{BbIX.PACY.} = F_{BbIX.TPEB.} \cdot K_{YP,}$$

$$F_{BX,PACY} = F_{BX,TPEE} \cdot K_{VP}$$

где $F_{BЫX,TPEE}$, $F_{BX,TPEE}$ — требуемые радиальные консольные нагрузки на выходном и входном валах редуктора соответственно,

$$F_{BLIX.TPEE} = F_{M}$$

где F_{M} – консольная нагрузка от муфты,

$$F_M = (0,2...0,5) \cdot 2 \cdot \frac{T_2}{D_0}$$
 (D_0 – диаметр муфты, $D_0 = 280$ мм),

$$F_M = (0,2...0,5) \cdot 2 \cdot \frac{1609,65}{0,28} = 2299,5...5748,75 \text{ H}.$$

$$F_{BX.PACY.} = F_{OII}$$

где $F_{O\!\Pi}$ – консольная нагрузка от открытой клиноременной передачи, $F_{O\!\Pi}$ = 695 H

$$F_{BbIX.HOM.}$$
=18000 $H \ge F_{BbIX.PACY.}$ =5748,75·1,478=8796,655 H $F_{BX.HOM.}$ =1000 $H \ge F_{BX.PACY.}$ =695·1,478=997,65 H

Условия выполнены.

Проверку условия отсутствия перегрева не выполняем, т.к. термическая мощность для данного типа редуктора не лимитируется.

Таблица 33 Основные технические характеристики редукторов КЦ1-200

Наименование технических характеристик		КЦ1-200							
Передаточные числа	6,3	10	14	20	28				
Допускаемая консольная нагрузка на тихоходном валу, Н	5100	56	500	6150	6500				
Допускаемая консольная нагрузка на быстроходном валу, Н		600	900	1200	1400				
Номинальный крутящий момент на тихоходном валу, Н.м	520		900		560				
Масса, кг			185		1				

Таблица 34 Основные технические характеристики редукторов КЦ1-250

Наименование технических характеристик		КЦ1-250							
Передаточные числа	6,3	10	14	20	28				
Допускаемая консольная нагрузка на тихоходном валу, Н	8400	93	350	8400	7900				
Допускаемая консольная нагрузка на быстроходном валу, Н	1080	950	800	600	480				
Номинальный крутящий момент на тихоходном валу, Н.м	1150	14	400	1150	1000				
Масса, кг			320						

Таблица 35 Основные технические характеристики редукторов КЦ1-300

Наименование технических характеристик		КЦ1-300								
Передаточные числа	6,3	10	14	20	28					
Допускаемая консольная нагрузка на тихоходном валу, Н	8290	10300	11700	11180	10150					
Допускаемая консольная нагрузка на быстроходном валу, Н	1	050	1000	800	600					
Номинальный крутящий момент на тихоходном валу, Н.м	1100	1700	2200	2000	1650					
Масса, кг			405							

Таблица 36 Основные технические характеристики редукторов КЦ1-400

Наименование технических характеристик		КЦ1-400						
Передаточные числа	6,3	10	14	20	28			
Допускаемая консольная нагрузка на тихоходном валу, Н	21000	18	000	20000	21200			
Допускаемая консольная нагрузка на быстроходном валу, Н	1	000	2200	3300	4000			
Номинальный крутящий момент на тихоходном валу, Н.м	3300	50	000	4500	3800			
Масса, кг			980	1	1			

Таблица 37 Основные технические характеристики редукторов КЦ1-500

Наименование технических характеристик		КЦ1-500							
Передаточные числа	6,3	10	14	20	28				
Допускаемая консольная нагрузка на тихоходном валу, Н	30000	25	000	28000	30000				
Допускаемая консольная нагрузка на быстроходном валу, Н	8	000	10000	13200	15500				
Номинальный крутящий момент на тихоходном валу, Н.м	5700	90	000	8250	7100				
Масса, кг			1740						

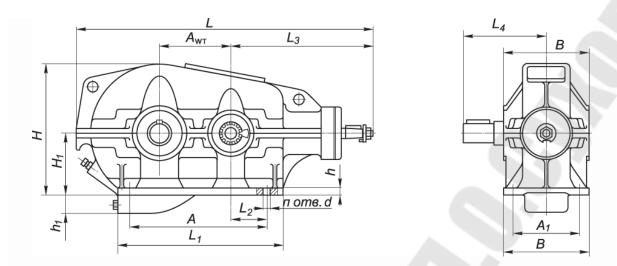


Рис. 22 Экиз коническо-цилиндрического редуктора КЦ1

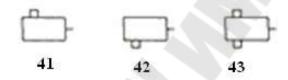


Рис. 23 Варианты сборки коническо-цилиндрического редуктора

Таблица 38

Габаритные и присоеденительные размеры редукторов КЦ1

Редуктор	$A_{w \tau}$	A	\mathbf{A}_{1}	В	Н) H ₁	h	\mathbf{h}_1	L	L_1	L_2	L_3	L_4	d	n
КЦ1-200	200	375	250	300	435	225	20	ı	900	480	85	460	247	17	4
КЦ1-250	250	480	325	375	515	265	25	-	1170	600	120	625	320	22	4
КЦ1-300	300	545	350	450	607	315	25	-	1275	680	120	625	385	22	6
КЦ1-400	400	810	450	526	705	320	35	95	1705	930	212	848	452	26	8
КЦ1-500	500	990	550	630	877	400	40	100	2085	1160	250	1030	544	33	8

Таблица 39 Присоеденительные размеры быстроходных валов редукторов КЦ1

Ронхистор	Бы	Быстроходный вал (конический) d d ₁ l l ₁ b t										
гедуктор	d	$\mathbf{d_1}$	l	\mathbf{l}_1	b	t						
КЦ1-200	40	M24x2,0	110	82	10	20,9						
КЦ1-250	50	M36x3,0	110	82	12	26						
КЦ1-300	50	M36x3,0	110	82	12	26						
КЦ1-400			140	105	16	31,4						
КЦ1-500	90	M64x4,0	170	130	22	46,8						

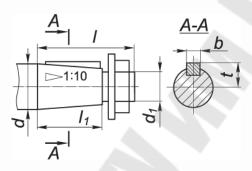


Рис. 24 Эксиз быстроходного вала (конический)

Таблица 40

Присоеденительные размерытихоходных валов редукторов КЦ1

Ронуистор	тихоходный вал (цилиндрический)						
Редуктор	d_2	$\mathbf{l_2}$	$\mathbf{b_1}$	$\mathbf{t_1}$			
КЦ1-200	45	80	14	48,5			
КЦ1-250	55	110	16	59			
КЦ1-300	70	140	20	74,5			
КЦ1-400	90	170	25	95			
КЦ1-500	110	210	28	116			

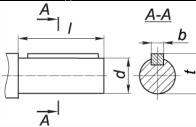


Рис.25 Эскиз тихоходного вала (цилиндрический)

Таблица 41 Присоеденительные размеры тихоходного вала в виде зубчатой полумуфты

Редуктор	b	d	$\mathbf{d_1}$	L	1	l ₁	Зацеп.	пение
	1	,	1			-1	m	Z
КЦ1-200	20	126	80	219	14	45	3	40
КЦ1-250	25	150	90	267	14	48	3	48
КЦ1-300	25	174	110	325	14	55	3	56
КЦ1-400	35	232	140	370	14	60	4	56
КЦ1-500	35	232	140	422	14	60	4	56

Рис.26 Эскиз тихоходного конца вала в виде полумуфты.

СПИСОК ЛИТЕРАТУРЫ

- 1. Разработка привода с одноступенчатым редуктором: прак. рук. и задания к курсовому проектированию по курсам «Детали машин», «Прикладная механика», «Механика» для студентов техн. специальностей днев. и заоч. форм обучения /авт.-сост: Н.В. Акулов, Э.Я. Коновалов.- Гомель: ГГТУ им. П.О.Сухого, 2005.-151 с.
- 2. Выбор редуктора: метод. указания к курсовому проекту по дисциплинам «Прикладная механика» и «Механика» для студентов немашиностроительных специальностей дневной и заочной форм обучения /Э.Я. Коновалов, В.Н. Полейчук, В.М.Ткачев.-Гомель: ГГТУ им. П.О. Сухого, 2009.- 47с.
- 3. Выбор коническо-цилиндрического редуктора: метод. указания к курсовому проекту по дисциплинам «Механика» и «Прикладная механика» для студентов немашиностроительных специальностей дневной и заочной форм обучения/Э.Я. Коновалов, В.Н. Полейчук, В.М.Ткачев.- Гомель: ГГТУ им. П.О. Сухого, 2010.-45с.
- 4. Выбор червячного редуктора: метод. указания к курсовому проекту по дисциплинам «Механика» и «Прикладная механика» для студентов немашиностроительных специальностей дневной и заочной форм обучения /Э.Я. Коновалов, В.Н. Полейчук, В.М.Ткачев.- Гомель: ГГТУ им. П.О. Сухого, 2010.-26 с.
- 5. Санюкевич, Ф.М. Детали машин. Курсовое проектирование: учебное пособие для вузов / Санюкевич Ф.М. Брест: БГТУ, 2004.- 488 с.
- 6. ГОСТ 25301-95 Редукторы цилиндрические. Параметры.
- 7. ГОСТ 24266-94 Концы валов редукторов и мотор-редукторов. Основные размеры, допускаемые крутящие моменты.

СОДЕРЖАНИЕ

Введение	3
1. Методика выбора редуктора	3
1.1. Общие положения	3
1.2. Порядок выбора редуктора	4
2. Выбор одноступенчатого цилиндрического редуктора	11
2.1 Исходные данные для выбора редуктора	
2.2 Энергетический и кинематический расчеты привода	
2.2.1 Определение расчетной мощности привода	
2.2.2 Выбор электродвигателя	
2.2.3 Определение общего передаточного числа привода	
бивка его по передачам.	
2.2.4 Силовые и кинематические параметры привода	
2.3 Выбор редуктора	
3. Выбор двухступенчатого цилиндрического редуктора	
3.1 Исходные данные для выбора редуктора	
3.2 Энергетический и кинематический расчеты привода	
3.2.1 Определение расчетной мощности привода	
3.2.2 Выбор электродвигателя	
3.2.3 Определение общего передаточного числа привода	
бивка его по передачам	_
3.2.4 Силовые и кинематические параметры привода	
3.3 Выбор редуктора	
4. Выбор червячного редуктора	
4.1 Исходные данные для выбора редуктора	
4.2 Энергетический и кинематический расчеты привода	
4.2.1 Определение расчетной мощности привода	
4.2.2 Выбор электродвигателя	
4.2.3 Определение общего передаточного числа привода	
бивка его по передачам	
4.2.4 Силовые и кинематические параметры привода	
4.3 Выбор редуктора	
5. Выбор конического редуктора	
5.1 Исходные данные для выбора редуктора	

	5.2 Энергетический и кинематический расчеты привода	43
	5.2.1 Определение расчетной мощности привода	43
	5.2.2 Выбор электродвигателя	
	5.2.3 Определение общего передаточного числа привода	
	бивка его по передачам	44
	5.2.4 Силовые и кинематические параметры привода	44
	5.3 Выбор редуктора	45
6.	Выбор коническо-цилиндрического редуктора	
	6.1 Исходные данные для выбора редуктора	
	6.2 Энергетический и кинематический расчеты привода	51
	6.2.1 Определение расчетной мощности привода	51
	6.2.2 Выбор электродвигателя	52
	6.2.3 Определение общего передаточного числа привода и ра	
	его по передачам	53
	6.2.4 Силовые и кинематические параметры привода	53
	6.3 Выбор редуктора	54
	Список литературы.	

МЕХАНИКА. ЧАСТЬ 1

Учебное пособие по одноименному курсу для студентов специальностей: 1-43 01 03 «Электроснабжение» 1-43 01 05 «Промышленная теплоэнергетика» дневной и заочной форм обучения

составители:

Иноземцева Наталья ВладимировнаПрач Светлана ИгоревнаПрядко Наталья Владимировна

Подписано к размещению в электронную библиотеку ГГТУ им. П.О. Сухого в качестве электронного учебно-методического документа .15.

Рег. №

http://www/gstu.by

МЕХАНИКА

учебно-методическое пособие по курсовому проектированию для студентов специальностей 1-43 01 03 «Электроснабжение» и 1-43 01 05 «Промышленная теплоэнергетика» дневной и заочной форм обучения

Часть 1

Составители: **Иноземцева** Наталья Владимировна **Прач** Светлана Игоревна **Прядко** Наталья Владимировна

Подписано к размещению в электронную библиотеку ГГТУ им. П. О. Сухого в качестве электронного учебно-методического документа 01.06.16.

Рег. № 54E.

http://www.gstu.by